Myosotis-Researches 0.0.12__py3-none-any.whl → 0.0.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (23) hide show
  1. myosotis_researches/CcGAN/models_128/CcGAN_SAGAN.py +301 -0
  2. myosotis_researches/CcGAN/models_128/ResNet_class_eval.py +141 -0
  3. myosotis_researches/CcGAN/models_128/ResNet_embed.py +188 -0
  4. myosotis_researches/CcGAN/models_128/ResNet_regre_eval.py +175 -0
  5. myosotis_researches/CcGAN/models_128/__init__.py +8 -0
  6. myosotis_researches/CcGAN/models_128/autoencoder.py +119 -0
  7. myosotis_researches/CcGAN/models_128/cGAN_SAGAN.py +276 -0
  8. myosotis_researches/CcGAN/models_128/cGAN_concat_SAGAN.py +245 -0
  9. myosotis_researches/CcGAN/models_256/CcGAN_SAGAN.py +303 -0
  10. myosotis_researches/CcGAN/models_256/ResNet_class_eval.py +142 -0
  11. myosotis_researches/CcGAN/models_256/ResNet_embed.py +188 -0
  12. myosotis_researches/CcGAN/models_256/ResNet_regre_eval.py +178 -0
  13. myosotis_researches/CcGAN/models_256/__init__.py +8 -0
  14. myosotis_researches/CcGAN/models_256/autoencoder.py +133 -0
  15. myosotis_researches/CcGAN/models_256/cGAN_SAGAN.py +280 -0
  16. myosotis_researches/CcGAN/models_256/cGAN_concat_SAGAN.py +249 -0
  17. myosotis_researches/CcGAN/utils/make_h5.py +13 -9
  18. {myosotis_researches-0.0.12.dist-info → myosotis_researches-0.0.14.dist-info}/METADATA +1 -1
  19. myosotis_researches-0.0.14.dist-info/RECORD +28 -0
  20. myosotis_researches-0.0.12.dist-info/RECORD +0 -12
  21. {myosotis_researches-0.0.12.dist-info → myosotis_researches-0.0.14.dist-info}/WHEEL +0 -0
  22. {myosotis_researches-0.0.12.dist-info → myosotis_researches-0.0.14.dist-info}/licenses/LICENSE +0 -0
  23. {myosotis_researches-0.0.12.dist-info → myosotis_researches-0.0.14.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,175 @@
1
+ '''
2
+ codes are based on
3
+ @article{
4
+ zhang2018mixup,
5
+ title={mixup: Beyond Empirical Risk Minimization},
6
+ author={Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz},
7
+ journal={International Conference on Learning Representations},
8
+ year={2018},
9
+ url={https://openreview.net/forum?id=r1Ddp1-Rb},
10
+ }
11
+ '''
12
+
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+
18
+ NC = 3
19
+ IMG_SIZE = 128
20
+
21
+
22
+ class BasicBlock(nn.Module):
23
+ expansion = 1
24
+
25
+ def __init__(self, in_planes, planes, stride=1):
26
+ super(BasicBlock, self).__init__()
27
+ self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
28
+ self.bn1 = nn.BatchNorm2d(planes)
29
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
30
+ self.bn2 = nn.BatchNorm2d(planes)
31
+
32
+ self.shortcut = nn.Sequential()
33
+ if stride != 1 or in_planes != self.expansion*planes:
34
+ self.shortcut = nn.Sequential(
35
+ nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
36
+ nn.BatchNorm2d(self.expansion*planes)
37
+ )
38
+
39
+ def forward(self, x):
40
+ out = F.relu(self.bn1(self.conv1(x)))
41
+ out = self.bn2(self.conv2(out))
42
+ out += self.shortcut(x)
43
+ out = F.relu(out)
44
+ return out
45
+
46
+
47
+ class Bottleneck(nn.Module):
48
+ expansion = 4
49
+
50
+ def __init__(self, in_planes, planes, stride=1):
51
+ super(Bottleneck, self).__init__()
52
+ self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
53
+ self.bn1 = nn.BatchNorm2d(planes)
54
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
55
+ self.bn2 = nn.BatchNorm2d(planes)
56
+ self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
57
+ self.bn3 = nn.BatchNorm2d(self.expansion*planes)
58
+
59
+ self.shortcut = nn.Sequential()
60
+ if stride != 1 or in_planes != self.expansion*planes:
61
+ self.shortcut = nn.Sequential(
62
+ nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
63
+ nn.BatchNorm2d(self.expansion*planes)
64
+ )
65
+
66
+ def forward(self, x):
67
+ out = F.relu(self.bn1(self.conv1(x)))
68
+ out = F.relu(self.bn2(self.conv2(out)))
69
+ out = self.bn3(self.conv3(out))
70
+ out += self.shortcut(x)
71
+ out = F.relu(out)
72
+ return out
73
+
74
+
75
+ class ResNet_regre_eval(nn.Module):
76
+ def __init__(self, block, num_blocks, nc=NC, ngpu = 1, feature_layer='f3'):
77
+ super(ResNet_regre_eval, self).__init__()
78
+ self.in_planes = 64
79
+ self.ngpu = ngpu
80
+ self.feature_layer=feature_layer
81
+
82
+ self.block1 = nn.Sequential(
83
+ nn.Conv2d(nc, 64, kernel_size=3, stride=1, padding=1, bias=False), # h=h
84
+ nn.BatchNorm2d(64),
85
+ nn.ReLU(),
86
+ nn.MaxPool2d(2,2), #h=h/2 64
87
+ self._make_layer(block, 64, num_blocks[0], stride=2), # h=h/2 32
88
+ )
89
+ self.block2 = self._make_layer(block, 128, num_blocks[1], stride=2) # h=h/2 16
90
+ self.block3 = self._make_layer(block, 256, num_blocks[2], stride=2) # h=h/2 8
91
+ self.block4 = self._make_layer(block, 512, num_blocks[3], stride=2) # h=h/2 4
92
+
93
+ self.pool1 = nn.AvgPool2d(kernel_size=4)
94
+ if self.feature_layer == 'f2':
95
+ self.pool2 = nn.AdaptiveAvgPool2d((2,2))
96
+ elif self.feature_layer == 'f3':
97
+ self.pool2 = nn.AdaptiveAvgPool2d((2,2))
98
+ else:
99
+ self.pool2 = nn.AdaptiveAvgPool2d((1,1))
100
+
101
+ linear_layers = [
102
+ nn.Linear(512*block.expansion, 128),
103
+ nn.BatchNorm1d(128),
104
+ nn.ReLU(),
105
+ nn.Linear(128, 128),
106
+ nn.BatchNorm1d(128),
107
+ nn.ReLU(),
108
+ nn.Linear(128, 1),
109
+ # nn.Sigmoid()
110
+ nn.ReLU(),
111
+ ]
112
+ self.linear = nn.Sequential(*linear_layers)
113
+
114
+
115
+ def _make_layer(self, block, planes, num_blocks, stride):
116
+ strides = [stride] + [1]*(num_blocks-1)
117
+ layers = []
118
+ for stride in strides:
119
+ layers.append(block(self.in_planes, planes, stride))
120
+ self.in_planes = planes * block.expansion
121
+ return nn.Sequential(*layers)
122
+
123
+ def forward(self, x):
124
+
125
+ if x.is_cuda and self.ngpu > 1:
126
+ ft1 = nn.parallel.data_parallel(self.block1, x, range(self.ngpu))
127
+ ft2 = nn.parallel.data_parallel(self.block2, ft1, range(self.ngpu))
128
+ ft3 = nn.parallel.data_parallel(self.block3, ft2, range(self.ngpu))
129
+ ft4 = nn.parallel.data_parallel(self.block4, ft3, range(self.ngpu))
130
+ out = nn.parallel.data_parallel(self.pool1, ft4, range(self.ngpu))
131
+ out = out.view(out.size(0), -1)
132
+ out = nn.parallel.data_parallel(self.linear, out, range(self.ngpu))
133
+ else:
134
+ ft1 = self.block1(x)
135
+ ft2 = self.block2(ft1)
136
+ ft3 = self.block3(ft2)
137
+ ft4 = self.block4(ft3)
138
+ out = self.pool1(ft4)
139
+ out = out.view(out.size(0), -1)
140
+ out = self.linear(out)
141
+
142
+ if self.feature_layer == 'f2':
143
+ ext_features = self.pool2(ft2)
144
+ elif self.feature_layer == 'f3':
145
+ ext_features = self.pool2(ft3)
146
+ else:
147
+ ext_features = self.pool2(ft4)
148
+
149
+ ext_features = ext_features.view(ext_features.size(0), -1)
150
+
151
+ return out, ext_features
152
+
153
+
154
+ def ResNet18_regre_eval(ngpu = 1):
155
+ return ResNet_regre_eval(BasicBlock, [2,2,2,2], ngpu = ngpu)
156
+
157
+ def ResNet34_regre_eval(ngpu = 1):
158
+ return ResNet_regre_eval(BasicBlock, [3,4,6,3], ngpu = ngpu)
159
+
160
+ def ResNet50_regre_eval(ngpu = 1):
161
+ return ResNet_regre_eval(Bottleneck, [3,4,6,3], ngpu = ngpu)
162
+
163
+ def ResNet101_regre_eval(ngpu = 1):
164
+ return ResNet_regre_eval(Bottleneck, [3,4,23,3], ngpu = ngpu)
165
+
166
+ def ResNet152_regre_eval(ngpu = 1):
167
+ return ResNet_regre_eval(Bottleneck, [3,8,36,3], ngpu = ngpu)
168
+
169
+
170
+ if __name__ == "__main__":
171
+ net = ResNet34_regre_eval(ngpu = 1).cuda()
172
+ x = torch.randn(4,NC,IMG_SIZE,IMG_SIZE).cuda()
173
+ out, features = net(x)
174
+ print(out.size())
175
+ print(features.size())
@@ -0,0 +1,8 @@
1
+ from .autoencoder import *
2
+ from .cGAN_SAGAN import cGAN_SAGAN_Generator, cGAN_SAGAN_Discriminator
3
+ from .cGAN_concat_SAGAN import cGAN_concat_SAGAN_Generator, cGAN_concat_SAGAN_Discriminator
4
+ from .CcGAN_SAGAN import CcGAN_SAGAN_Generator, CcGAN_SAGAN_Discriminator
5
+ from .ResNet_embed import ResNet18_embed, ResNet34_embed, ResNet50_embed, model_y2h
6
+ from .ResNet_regre_eval import ResNet34_regre_eval
7
+ from .ResNet_class_eval import ResNet34_class_eval
8
+
@@ -0,0 +1,119 @@
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+
6
+ class encoder(nn.Module):
7
+ def __init__(self, dim_bottleneck=512, ch=64):
8
+ super(encoder, self).__init__()
9
+ self.ch = ch
10
+ self.dim_bottleneck = dim_bottleneck
11
+
12
+ self.conv = nn.Sequential(
13
+ nn.Conv2d(3, ch, kernel_size=4, stride=2, padding=1), #h=h/2; 64
14
+ nn.BatchNorm2d(ch),
15
+ nn.ReLU(),
16
+ nn.MaxPool2d(2,2), #h=h/2; 32
17
+ nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), #h=h
18
+ nn.BatchNorm2d(ch),
19
+ nn.ReLU(),
20
+
21
+ nn.Conv2d(ch, ch*2, kernel_size=4, stride=2, padding=1), #h=h/2; 16
22
+ nn.BatchNorm2d(ch*2),
23
+ nn.ReLU(),
24
+ nn.Conv2d(ch*2, ch*2, kernel_size=3, stride=1, padding=1), #h=h
25
+ nn.BatchNorm2d(ch*2),
26
+ nn.ReLU(),
27
+
28
+ nn.Conv2d(ch*2, ch*4, kernel_size=4, stride=2, padding=1), #h=h/2; 8
29
+ nn.BatchNorm2d(ch*4),
30
+ nn.ReLU(),
31
+ nn.Conv2d(ch*4, ch*4, kernel_size=3, stride=1, padding=1), #h=h
32
+ nn.BatchNorm2d(ch*4),
33
+ nn.ReLU(),
34
+
35
+ nn.Conv2d(ch*4, ch*8, kernel_size=4, stride=2, padding=1), #h=h/2; 4
36
+ nn.BatchNorm2d(ch*8),
37
+ nn.ReLU(),
38
+ nn.Conv2d(ch*8, ch*8, kernel_size=3, stride=1, padding=1), #h=h
39
+ nn.BatchNorm2d(ch*8),
40
+ nn.ReLU(),
41
+ )
42
+
43
+ self.linear = nn.Sequential(
44
+ nn.Linear(ch*8*4*4, dim_bottleneck),
45
+ # nn.ReLU()
46
+ )
47
+
48
+ def forward(self, x):
49
+ feature = self.conv(x)
50
+ feature = feature.view(-1, self.ch*8*4*4)
51
+ feature = self.linear(feature)
52
+ return feature
53
+
54
+
55
+
56
+ class decoder(nn.Module):
57
+ def __init__(self, dim_bottleneck=512, ch=64):
58
+ super(decoder, self).__init__()
59
+ self.ch = ch
60
+ self.dim_bottleneck = dim_bottleneck
61
+
62
+ self.linear = nn.Sequential(
63
+ nn.Linear(dim_bottleneck, ch*16*4*4)
64
+ )
65
+
66
+ self.deconv = nn.Sequential(
67
+ nn.ConvTranspose2d(ch*16, ch*8, kernel_size=4, stride=2, padding=1), #h=2h; 8
68
+ nn.BatchNorm2d(ch*8),
69
+ nn.ReLU(True),
70
+ nn.Conv2d(ch*8, ch*8, kernel_size=3, stride=1, padding=1), #h=h
71
+ nn.BatchNorm2d(ch*8),
72
+ nn.ReLU(),
73
+
74
+ nn.ConvTranspose2d(ch*8, ch*4, kernel_size=4, stride=2, padding=1), #h=2h; 16
75
+ nn.BatchNorm2d(ch*4),
76
+ nn.ReLU(True),
77
+ nn.Conv2d(ch*4, ch*4, kernel_size=3, stride=1, padding=1), #h=h
78
+ nn.BatchNorm2d(ch*4),
79
+ nn.ReLU(),
80
+
81
+ nn.ConvTranspose2d(ch*4, ch*2, kernel_size=4, stride=2, padding=1), #h=2h; 32
82
+ nn.BatchNorm2d(ch*2),
83
+ nn.ReLU(True),
84
+ nn.Conv2d(ch*2, ch*2, kernel_size=3, stride=1, padding=1), #h=h
85
+ nn.BatchNorm2d(ch*2),
86
+ nn.ReLU(),
87
+
88
+ nn.ConvTranspose2d(ch*2, ch, kernel_size=4, stride=2, padding=1), #h=2h; 64
89
+ nn.BatchNorm2d(ch),
90
+ nn.ReLU(True),
91
+ nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), #h=h
92
+ nn.BatchNorm2d(ch),
93
+ nn.ReLU(),
94
+
95
+ nn.ConvTranspose2d(ch, ch, kernel_size=4, stride=2, padding=1), #h=2h; 128
96
+ nn.BatchNorm2d(ch),
97
+ nn.ReLU(True),
98
+ nn.Conv2d(ch, 3, kernel_size=3, stride=1, padding=1), #h=h
99
+ nn.Tanh()
100
+ )
101
+
102
+ def forward(self, feature):
103
+ out = self.linear(feature)
104
+ out = out.view(-1, self.ch*16, 4, 4)
105
+ out = self.deconv(out)
106
+ return out
107
+
108
+
109
+ if __name__=="__main__":
110
+ #test
111
+
112
+ net_encoder = encoder(dim_bottleneck=512, ch=64).cuda()
113
+ net_decoder = decoder(dim_bottleneck=512, ch=64).cuda()
114
+
115
+ x = torch.randn(10, 3, 128, 128).cuda()
116
+ f = net_encoder(x)
117
+ xh = net_decoder(f)
118
+ print(f.size())
119
+ print(xh.size())
@@ -0,0 +1,276 @@
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from torch.nn.utils import spectral_norm
7
+ from torch.nn.init import xavier_uniform_
8
+
9
+
10
+ def init_weights(m):
11
+ if type(m) == nn.Linear or type(m) == nn.Conv2d:
12
+ xavier_uniform_(m.weight)
13
+ m.bias.data.fill_(0.)
14
+
15
+
16
+ def snconv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
17
+ return spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
18
+ stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias))
19
+
20
+
21
+ def snlinear(in_features, out_features):
22
+ return spectral_norm(nn.Linear(in_features=in_features, out_features=out_features))
23
+
24
+
25
+ def sn_embedding(num_embeddings, embedding_dim):
26
+ return spectral_norm(nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim))
27
+
28
+
29
+ class Self_Attn(nn.Module):
30
+ """ Self attention Layer"""
31
+
32
+ def __init__(self, in_channels):
33
+ super(Self_Attn, self).__init__()
34
+ self.in_channels = in_channels
35
+ self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0)
36
+ self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0)
37
+ self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2, kernel_size=1, stride=1, padding=0)
38
+ self.snconv1x1_attn = snconv2d(in_channels=in_channels//2, out_channels=in_channels, kernel_size=1, stride=1, padding=0)
39
+ self.maxpool = nn.MaxPool2d(2, stride=2, padding=0)
40
+ self.softmax = nn.Softmax(dim=-1)
41
+ self.sigma = nn.Parameter(torch.zeros(1))
42
+
43
+ def forward(self, x):
44
+ """
45
+ inputs :
46
+ x : input feature maps(B X C X W X H)
47
+ returns :
48
+ out : self attention value + input feature
49
+ attention: B X N X N (N is Width*Height)
50
+ """
51
+ _, ch, h, w = x.size()
52
+ # Theta path
53
+ theta = self.snconv1x1_theta(x)
54
+ theta = theta.view(-1, ch//8, h*w)
55
+ # Phi path
56
+ phi = self.snconv1x1_phi(x)
57
+ phi = self.maxpool(phi)
58
+ phi = phi.view(-1, ch//8, h*w//4)
59
+ # Attn map
60
+ attn = torch.bmm(theta.permute(0, 2, 1), phi)
61
+ attn = self.softmax(attn)
62
+ # g path
63
+ g = self.snconv1x1_g(x)
64
+ g = self.maxpool(g)
65
+ g = g.view(-1, ch//2, h*w//4)
66
+ # Attn_g
67
+ attn_g = torch.bmm(g, attn.permute(0, 2, 1))
68
+ attn_g = attn_g.view(-1, ch//2, h, w)
69
+ attn_g = self.snconv1x1_attn(attn_g)
70
+ # Out
71
+ out = x + self.sigma*attn_g
72
+ return out
73
+
74
+
75
+ class ConditionalBatchNorm2d(nn.Module):
76
+ # https://github.com/pytorch/pytorch/issues/8985#issuecomment-405080775
77
+ def __init__(self, num_features, num_classes):
78
+ super().__init__()
79
+ self.num_features = num_features
80
+ self.bn = nn.BatchNorm2d(num_features, momentum=0.001, affine=False)
81
+ self.embed = nn.Embedding(num_classes, num_features * 2)
82
+ # self.embed.weight.data[:, :num_features].normal_(1, 0.02) # Initialise scale at N(1, 0.02)
83
+ self.embed.weight.data[:, :num_features].fill_(1.) # Initialize scale to 1
84
+ self.embed.weight.data[:, num_features:].zero_() # Initialize bias at 0
85
+
86
+ def forward(self, x, y):
87
+ out = self.bn(x)
88
+ gamma, beta = self.embed(y).chunk(2, 1)
89
+ out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1)
90
+ return out
91
+
92
+
93
+ class GenBlock(nn.Module):
94
+ def __init__(self, in_channels, out_channels, num_classes):
95
+ super(GenBlock, self).__init__()
96
+ self.cond_bn1 = ConditionalBatchNorm2d(in_channels, num_classes)
97
+ self.relu = nn.ReLU(inplace=True)
98
+ self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
99
+ self.cond_bn2 = ConditionalBatchNorm2d(out_channels, num_classes)
100
+ self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
101
+ self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
102
+
103
+ def forward(self, x, labels):
104
+ x0 = x
105
+
106
+ x = self.cond_bn1(x, labels)
107
+ x = self.relu(x)
108
+ x = F.interpolate(x, scale_factor=2, mode='nearest') # upsample
109
+ x = self.snconv2d1(x)
110
+ x = self.cond_bn2(x, labels)
111
+ x = self.relu(x)
112
+ x = self.snconv2d2(x)
113
+
114
+ x0 = F.interpolate(x0, scale_factor=2, mode='nearest') # upsample
115
+ x0 = self.snconv2d0(x0)
116
+
117
+ out = x + x0
118
+ return out
119
+
120
+
121
+ class cGAN_SAGAN_Generator(nn.Module):
122
+ """Generator."""
123
+
124
+ def __init__(self, z_dim, num_classes, g_conv_dim=64):
125
+ super(cGAN_SAGAN_Generator, self).__init__()
126
+
127
+ self.z_dim = z_dim
128
+ self.g_conv_dim = g_conv_dim
129
+ self.snlinear0 = snlinear(in_features=z_dim, out_features=g_conv_dim*16*4*4)
130
+ self.block1 = GenBlock(g_conv_dim*16, g_conv_dim*16, num_classes)
131
+ self.block2 = GenBlock(g_conv_dim*16, g_conv_dim*8, num_classes)
132
+ self.block3 = GenBlock(g_conv_dim*8, g_conv_dim*4, num_classes)
133
+ self.self_attn = Self_Attn(g_conv_dim*4)
134
+ self.block4 = GenBlock(g_conv_dim*4, g_conv_dim*2, num_classes)
135
+ self.block5 = GenBlock(g_conv_dim*2, g_conv_dim, num_classes)
136
+ self.bn = nn.BatchNorm2d(g_conv_dim, eps=1e-5, momentum=0.0001, affine=True)
137
+ self.relu = nn.ReLU(inplace=True)
138
+ self.snconv2d1 = snconv2d(in_channels=g_conv_dim, out_channels=3, kernel_size=3, stride=1, padding=1)
139
+ self.tanh = nn.Tanh()
140
+
141
+ # Weight init
142
+ self.apply(init_weights)
143
+
144
+ def forward(self, z, labels):
145
+ # n x z_dim
146
+ act0 = self.snlinear0(z) # n x g_conv_dim*16*4*4
147
+ act0 = act0.view(-1, self.g_conv_dim*16, 4, 4) # n x g_conv_dim*16 x 4 x 4
148
+ act1 = self.block1(act0, labels) # n x g_conv_dim*16 x 8 x 8
149
+ act2 = self.block2(act1, labels) # n x g_conv_dim*8 x 16 x 16
150
+ act3 = self.block3(act2, labels) # n x g_conv_dim*4 x 32 x 32
151
+ act3 = self.self_attn(act3) # n x g_conv_dim*4 x 32 x 32
152
+ act4 = self.block4(act3, labels) # n x g_conv_dim*2 x 64 x 64
153
+ act5 = self.block5(act4, labels) # n x g_conv_dim x 128 x 128
154
+ act5 = self.bn(act5) # n x g_conv_dim x 128 x 128
155
+ act5 = self.relu(act5) # n x g_conv_dim x 128 x 128
156
+ act6 = self.snconv2d1(act5) # n x 3 x 128 x 128
157
+ act6 = self.tanh(act6) # n x 3 x 128 x 128
158
+ return act6
159
+
160
+
161
+ class DiscOptBlock(nn.Module):
162
+ def __init__(self, in_channels, out_channels):
163
+ super(DiscOptBlock, self).__init__()
164
+ self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
165
+ self.relu = nn.ReLU(inplace=True)
166
+ self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
167
+ self.downsample = nn.AvgPool2d(2)
168
+ self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
169
+
170
+ def forward(self, x):
171
+ x0 = x
172
+
173
+ x = self.snconv2d1(x)
174
+ x = self.relu(x)
175
+ x = self.snconv2d2(x)
176
+ x = self.downsample(x)
177
+
178
+ x0 = self.downsample(x0)
179
+ x0 = self.snconv2d0(x0)
180
+
181
+ out = x + x0
182
+ return out
183
+
184
+
185
+ class DiscBlock(nn.Module):
186
+ def __init__(self, in_channels, out_channels):
187
+ super(DiscBlock, self).__init__()
188
+ self.relu = nn.ReLU(inplace=True)
189
+ self.snconv2d1 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
190
+ self.snconv2d2 = snconv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
191
+ self.downsample = nn.AvgPool2d(2)
192
+ self.ch_mismatch = False
193
+ if in_channels != out_channels:
194
+ self.ch_mismatch = True
195
+ self.snconv2d0 = snconv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0)
196
+
197
+ def forward(self, x, downsample=True):
198
+ x0 = x
199
+
200
+ x = self.relu(x)
201
+ x = self.snconv2d1(x)
202
+ x = self.relu(x)
203
+ x = self.snconv2d2(x)
204
+ if downsample:
205
+ x = self.downsample(x)
206
+
207
+ if downsample or self.ch_mismatch:
208
+ x0 = self.snconv2d0(x0)
209
+ if downsample:
210
+ x0 = self.downsample(x0)
211
+
212
+ out = x + x0
213
+ return out
214
+
215
+
216
+ class cGAN_SAGAN_Discriminator(nn.Module):
217
+ """Discriminator."""
218
+
219
+ def __init__(self, num_classes, d_conv_dim=64):
220
+ super(cGAN_SAGAN_Discriminator, self).__init__()
221
+ self.d_conv_dim = d_conv_dim
222
+ self.opt_block1 = DiscOptBlock(3, d_conv_dim)
223
+ self.block1 = DiscBlock(d_conv_dim, d_conv_dim*2)
224
+ self.self_attn = Self_Attn(d_conv_dim*2)
225
+ self.block2 = DiscBlock(d_conv_dim*2, d_conv_dim*4)
226
+ self.block3 = DiscBlock(d_conv_dim*4, d_conv_dim*8)
227
+ self.block4 = DiscBlock(d_conv_dim*8, d_conv_dim*16)
228
+ self.block5 = DiscBlock(d_conv_dim*16, d_conv_dim*16)
229
+ self.relu = nn.ReLU(inplace=True)
230
+ self.snlinear1 = snlinear(in_features=d_conv_dim*16, out_features=1)
231
+ self.sn_embedding1 = sn_embedding(num_classes, d_conv_dim*16)
232
+
233
+ # Weight init
234
+ self.apply(init_weights)
235
+ xavier_uniform_(self.sn_embedding1.weight)
236
+
237
+ def forward(self, x, labels):
238
+ # n x 3 x 128 x 128
239
+ h0 = self.opt_block1(x) # n x d_conv_dim x 64 x 64
240
+ h1 = self.block1(h0) # n x d_conv_dim*2 x 32 x 32
241
+ h1 = self.self_attn(h1) # n x d_conv_dim*2 x 32 x 32
242
+ h2 = self.block2(h1) # n x d_conv_dim*4 x 16 x 16
243
+ h3 = self.block3(h2) # n x d_conv_dim*8 x 8 x 8
244
+ h4 = self.block4(h3) # n x d_conv_dim*16 x 4 x 4
245
+ h5 = self.block5(h4, downsample=False) # n x d_conv_dim*16 x 4 x 4
246
+ h5 = self.relu(h5) # n x d_conv_dim*16 x 4 x 4
247
+ h6 = torch.sum(h5, dim=[2,3]) # n x d_conv_dim*16
248
+ output1 = torch.squeeze(self.snlinear1(h6)) # n
249
+ # Projection
250
+ h_labels = self.sn_embedding1(labels) # n x d_conv_dim*16
251
+ proj = torch.mul(h6, h_labels) # n x d_conv_dim*16
252
+ output2 = torch.sum(proj, dim=[1]) # n
253
+ # Out
254
+ output = output1 + output2 # n
255
+ return output
256
+
257
+
258
+
259
+ if __name__ == "__main__":
260
+
261
+ num_classes = 10
262
+
263
+ netG = cGAN_SAGAN_Generator(z_dim=128, num_classes=num_classes, g_conv_dim=128).cuda()
264
+ netD = cGAN_SAGAN_Discriminator(num_classes=num_classes, d_conv_dim=128).cuda()
265
+
266
+ n = 4
267
+ # target = torch.randint(high=num_classes, size=(1,n)) # set size (2,10) for MHE
268
+ # y = torch.zeros(n, num_classes)
269
+ # y[range(y.shape[0]), target]=1
270
+ # y = y.type(torch.long).cuda()
271
+ y = torch.randint(high=num_classes, size=(n,)).type(torch.long).cuda()
272
+ z = torch.randn(n, 128).cuda()
273
+ x = netG(z,y)
274
+ o = netD(x,y)
275
+ print(x.size())
276
+ print(o.size())