MultiOptPy 1.20.2__py3-none-any.whl → 1.20.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,438 +1,497 @@
1
- Metadata-Version: 2.4
2
- Name: MultiOptPy
3
- Version: 1.20.2
4
- Summary: Multifunctional geometry optimization tools for quantum chemical calculations.
5
- Author-email: ss0832 <highlighty876@gmail.com>
6
- License: GPLv3
7
- Requires-Python: >=3.12
8
- Description-Content-Type: text/markdown
9
- License-File: LICENSE
10
- Requires-Dist: numpy~=2.2.0
11
- Requires-Dist: scipy>=1.13.0
12
- Requires-Dist: matplotlib~=3.10.0
13
- Requires-Dist: torch~=2.6.0
14
- Requires-Dist: pyscf~=2.9.0
15
- Requires-Dist: tblite~=0.4.0
16
- Requires-Dist: ase~=3.26.0
17
- Requires-Dist: fairchem-core~=2.7.0
18
- Requires-Dist: sympy~=1.13.0
19
- Dynamic: license-file
20
-
21
- # MultiOptPy
22
-
23
-
24
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wpW8YO8r9gq20GACyzdaEsFK4Va1JQs4?usp=sharing) (Test 1, only use GFN2-xTB)
25
-
26
-
27
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lfvyd7lv6ChjRC7xfPdrBZtGME4gakhz?usp=sharing) (Test 2, GFN2-xTB + PySCF(HF/STO-3G))
28
-
29
-
30
- [![Buy Me A Coffee](https://img.shields.io/badge/Buy%20Me%20a%20Coffee-ffdd00?style=for-the-badge&logo=buy-me-a-coffee&logoColor=black)](https://buymeacoffee.com/ss0832)
31
-
32
-
33
- If this tool helped your studies, education, or saved your time, I'd appreciate a coffee!
34
- Your support serves as a great encouragement for this personal project and fuels my next journey.
35
- I also welcome contributions, bug reports, and pull requests to improve this tool.
36
-
37
- Note on Contributions: While bug reports and pull requests are welcome, please note that this is a personal project maintained in my spare time. Responses to issues and PRs may be delayed or not guaranteed. I appreciate your patience and understanding.
38
-
39
- Multifunctional geometry optimization tools for quantum chemical calculations
40
-
41
- This program implements many geometry optimization methods in Python for learning purposes.
42
-
43
- This program can also automatically calculate the transition-state structure from a single equilibrium geometry.
44
-
45
- **Notice:** This program has NOT been experimentally validated in laboratory settings. I release this code to enable community contributions and collaborative development. Use at your own discretion and validate results independently.
46
-
47
- (Caution: Using Japanese to explain) Instructions on how to use:
48
- - https://ss0832.github.io/
49
- - https://ss0832.github.io/posts/20251130_mop_usage_menschutkin_reaction_uma_en/ (In English, auto-translated)
50
-
51
- ## Features
52
-
53
- - It is intended to be used in a linux environment.
54
- - It can be used not only with AFIR functions, but also with other bias potentials.
55
-
56
- ## Quick Start (for Linux)
57
- ```
58
- # Below is an example showing how to use GFN2-xTB to calculate a transition-state structure.
59
- # These commands are intended for users who want a straightforward, ready-to-run setup on Linux.
60
-
61
- ## 1. Download and install Anaconda:
62
- cd ~
63
- wget https://repo.anaconda.com/archive/Anaconda3-2025.06-1-Linux-x86_64.sh
64
- bash Anaconda3-2025.06-1-Linux-x86_64.sh
65
- source .bashrc
66
- # if the conda command is not available, you need to manually add Anaconda to your PATH:
67
- # (example command) echo 'export PATH="$HOME/anaconda3/bin:$PATH"' >> ~/.bashrc
68
- source ~/.bashrc
69
-
70
- ## 2. Create and activate a conda environment:
71
- conda create -n test_mop python=3.12.7
72
- conda activate test_mop
73
-
74
- ## 3. Download and install MultiOptPy:
75
- wget https://github.com/ss0832/MultiOptPy/archive/refs/tags/v1.20.0.zip
76
- unzip v1.20.0.zip
77
- cd MultiOptPy-1.20.0
78
- pip install -r requirements.txt
79
-
80
- ## 4. Copy the test configuration file and run the AutoTS workflow:
81
- cp test/config_autots_run_xtb_test.json .
82
- python run_autots.py aldol_rxn.xyz -cfg config_autots_run_xtb_test.json
83
-
84
-
85
- # Installation via environment.yml (Linux / conda-forge)
86
-
87
- ## 1. Download and install MultiOptPy:
88
- git clone -b stable-v1.0 https://github.com/ss0832/MultiOptPy.git
89
- cd MultiOptPy
90
-
91
- ## 2. Create and activate a conda environment:
92
- conda env create -f environment.yml
93
- conda activate test_mop
94
-
95
- ## 3. Copy the test configuration file and run the AutoTS workflow:
96
- cp test/config_autots_run_xtb_test.json .
97
- python run_autots.py aldol_rxn.xyz -cfg config_autots_run_xtb_test.json
98
-
99
- # Installation via pip (Linux)
100
- conda create -n <env-name> python=3.12 pip
101
- conda activate <env-name>
102
- pip install git+https://github.com/ss0832/MultiOptPy.git@v1.20.2
103
-
104
- ## 💻 Command Line Interface (CLI) Functionality (v1.20.2)
105
- # The following eight core functionalities are available as direct executable commands in your terminal after installation:
106
- # optmain (Logic from optmain.py):
107
- # Function: Executes the Core Geometry Optimization functionality.
108
- # nebmain (Logic from nebmain.py):
109
- # Function: Executes the Nudged Elastic Band (NEB) path optimization tool for transition state searches.
110
- # confsearch (Logic from conformation_search.py):
111
- # Function: Utilizes the comprehensive Conformational Search routine.
112
- # run_autots (Logic from run_autots.py):
113
- # Function: Launches the Automated Transition State (AutoTS) workflow.
114
- # mdmain (Logic from mdmain.py):
115
- # Function: Initiates Molecular Dynamics (MD) simulation functionality.
116
- # relaxedscan (Logic from relaxed_scan.py):
117
- # Function: Executes the Relaxed Potential Energy Surface (PES) Scanning functionality.
118
- # orientsearch (Logic from orientation_search.py):
119
- # Function: Executes the molecular Orientation Sampling and Search utility.
120
-
121
- ```
122
-
123
- ## Required Modules
124
- ```
125
- cd <directory of repository files>
126
- pip install -r requirements.txt
127
- ```
128
- - psi4 (Official page:https://psicode.org/) or PySCF
129
- - numpy
130
- - matplotlib
131
- - scipy
132
- - pytorch (for calculating derivatives)
133
-
134
- Optional
135
-
136
- - tblite (If you use extended tight binding (xTB) method, this module is required.)
137
- - dxtb (same as above)
138
- - ASE
139
-
140
- ## References
141
-
142
- References are given in the source code.
143
-
144
- ## Usage
145
-
146
- After downloading the repository using git clone or similar commands, move to the generated directory and run the following:
147
-
148
- ```
149
- python optmain.py SN2.xyz -ma 150 1 6 -pyscf -elec 0 -spin 0 -opt rsirfo_block_fsb -modelhess
150
- ```
151
- ```
152
- python optmain.py aldol_rxn.xyz -ma 95 1 5 50 3 11 -pyscf -elec 0 -spin 0 -opt rsirfo_block_fsb -modelhess
153
- ```
154
- For SADDLE calculation
155
- ```
156
- python optmain.py aldol_rxn_PT.xyz -xtb GFN2-xTB -opt RSIRFO_bofill -order 1 -fc 5
157
- ```
158
-
159
- For NEB method
160
-
161
- ```
162
- python nebmain.py aldol_rxn -xtb GFN2-xTB -ns 50 -adpred 1 -nd 0.5
163
- ```
164
-
165
- For iEIP method
166
-
167
- ```
168
- python ieipmain.py ieip_test -xtb GFN2-xTB
169
- ```
170
- For Molecular Dynamics (MD)
171
-
172
- ```
173
- python mdmain.py aldol_rxn_PT.xyz -xtb GFN2-xTB -temp 298 -traj 1 -time 100000
174
- ```
175
- (Default deterministic algorithm for MD is Nosé–Hoover thermostat.)
176
-
177
- For orientation search
178
- ```
179
- python orientation_search.py aldol_rxn.xyz -part 1-4 -ma 95 1 5 50 3 11 -nsample 5 -xtb GFN2-xTB
180
- ```
181
- For conformation search
182
- ```
183
- python conformation_search.py s8_for_confomation_search_test.xyz -xtb GFN2-xTB -ns 2000
184
- ```
185
- For relaxed scan (Similar to functions implemented in Gaussian)
186
- ```
187
- python relaxed_scan.py SN2.xyz -nsample 8 -scan bond 1,2 1.3,2.6 -elec -1 -spin 0 -pyscf
188
- ```
189
- ## Options
190
- (optmain.py)
191
-
192
- **`-opt`**
193
-
194
- Specify the algorithm to be used for structural optimization.
195
-
196
- example 1) `-opt FIRE`.
197
-
198
- Perform structural optimization using the FIRE method.
199
-
200
-
201
- Available optimization methods:
202
-
203
- Recommended optimization methods:
204
-
205
- - FIRE (Robust method)
206
- - TR_LBFGS (Limited-memory BFGS method with trust radius method, Faster convergence than FIRE without Hessian)
207
- - rsirfo_block_fsb
208
- - rsirfo_block_bofill (for calculation of saddle point)
209
-
210
- `-ma`
211
-
212
- Add the potential by AFIR function.
213
- Energy (kJ/mol) Atom 1 or fragment 1 to which potential is added Atom 2 or fragment 2 to which potential is added.
214
-
215
- Example 1) `-ma 195 1 5`
216
-
217
- Apply a potential of 195 kJ/mol (pushing force) to the first atom and the fifth atom as a pair.
218
-
219
- Example 2) `-ma 195 1 5 195 3 11`
220
-
221
- Multiply the potential of 195 kJ/mol (pushing force) by the pair of the first atom and the fifth atom. Then multiply the potential of 195 kJ/mol (pushing force) by the pair of the third atom and the eleventh atom.
222
-
223
- Example 3) `-ma -195 1-3 5,6`
224
-
225
- Multiply the potential of -195 kJ/mol (pulling force) by the fragment consisting of the 1st-3rd atoms paired with the fragments consisting of the 5th and 6th atoms.
226
-
227
-
228
- `-bs`
229
-
230
- Specifies the basis function. The default is 6-31G*.
231
-
232
- Example 1) `-bs 6-31G*`
233
-
234
- Calculate using 6-31G* as the basis function.
235
-
236
- Example 2) `-bs sto-3g`
237
-
238
- Calculate using STO-3G as the basis function.
239
-
240
- `-func`
241
-
242
- Specify the functionals in the DFT (specify the calculation method). The default is b3lyp.
243
-
244
- Example 1) `-func b3lyp`
245
-
246
- Calculate using B3LYP as the functional.
247
-
248
- Example 2) `-func hf`
249
-
250
- Calculate using the Hartree-Fock method.
251
-
252
- `-sub_bs`
253
-
254
- Specify a specific basis function for a given atom.
255
-
256
- Example 1) `-sub_bs I LanL2DZ`
257
-
258
- Assign the basis function LanL2DZ to the iodine atom, and if -bs is the default, assign 6-31G* to non-iodine atoms for calculation.
259
-
260
- `-ns`
261
-
262
- Specifies the maximum number of times the gradient is calculated for structural optimization. The default is a maximum of 300 calculations.
263
-
264
- Example 1) `-ns 400`
265
-
266
- Calculate gradient up to 400 iterations.
267
-
268
-
269
-
270
- `-core`
271
-
272
- Specify the number of CPU cores to be used in the calculation. By default, 8 cores are used. (Adjust according to your own environment.)
273
-
274
- Example 1) `-core 4`
275
-
276
- Calculate using 4 CPU cores.
277
-
278
- `-mem`
279
-
280
- Specify the memory to be used for calculations. The default is 1GB. (Adjust according to your own environment.)
281
-
282
- Example 1) `-mem 2GB`
283
-
284
- Calculate using 2GB of memory.
285
-
286
- `-d`
287
-
288
- Specifies the size of the step width after gradient calculation. The larger the value, the faster the convergence, but it is not possible to follow carefully on the potential hypersurface.
289
-
290
- Example 1) `-d 0.05`
291
-
292
-
293
-
294
- `-kp`
295
-
296
- Multiply the potential calculated from the following equation (a potential based on the harmonic approximation) by the two atom pairs. This is used when you want to fix the distance between atoms to some extent.
297
-
298
- $V(r) = 0.5k(r - r_0)^2$
299
-
300
- `spring const. k (a.u.) keep distance [$ r_0] (ang.) atom1,atom2 ...`
301
-
302
- Example 1) `-kp 2.0 1.0 1,2`
303
-
304
- Apply harmonic approximation potentials to the 1st and 2nd atoms with spring constant 2.0 a.u. and equilibrium distance 1.0 Å.
305
-
306
- `-akp`
307
-
308
- The potential (based on anharmonic approximation, Morse potential) calculated from the following equation is applied to two atomic pairs. This is used when you want to fix the distance between atoms to some extent. Unlike -kp, the depth of the potential is adjustable.
309
-
310
- $V(r) = D_e [1 - exp(- \sqrt(\frac{k}{2D_e})(r - r_0))]^2$
311
-
312
- `potential well depth (a.u.) spring const.(a.u.) keep distance (ang.) atom1,atom2 ...`
313
-
314
- Example 1) `-ukp 2.0 2.0 1.0 1,2`
315
-
316
- Anharmonic approximate potential (Mohs potential) is applied to the first and second atoms as equilibrium distance 1.0 Å with a potential depth of 2.0 a.u. and a spring constant of 2.0 a.u.
317
-
318
- `-ka`
319
-
320
- The potential calculated from the following equation (potential based on the harmonic approximation) is applied to a group of three atoms, which is used when you want to fix the angle (bond angle) between the three atoms to some extent.
321
-
322
- $V(\theta) = 0.5k(\theta - \theta_0)^2$
323
-
324
- `spring const.(a.u.) keep angle (degrees) atom1,atom2,atom3`
325
-
326
- Example 1) `-ka 2.0 60 1,2,3`
327
-
328
- Assuming a spring constant of 2.0 a.u. and an equilibrium angle of 60 degrees, apply a potential so that the angle between the first, second, and third atoms approaches 60 degrees.
329
-
330
- `-kda`
331
-
332
- The potential (based on the harmonic approximation) calculated from the following equation is applied to a group of 4 atoms to fix the dihedral angle of the 4 atoms to a certain degree.
333
-
334
- $V(\phi) = 0.5k(\phi - \phi_0)^2$
335
-
336
- `spring const.(a.u.) keep dihedral angle (degrees) atom1,atom2,atom3,atom4 ...`
337
-
338
- Example 1) `-kda 2.0 60 1,2,3,4`
339
-
340
- With a spring constant of 2.0 a.u. and an equilibrium angle of 60 degrees, apply a potential so that the dihedral angles of the planes formed by the 1st, 2nd, and 3rd atoms and the 2nd, 3rd, and 4th atoms approach 60 degrees.
341
-
342
- `-xtb`
343
-
344
- Use extended tight binding method. (It is required tblite (python module).)
345
-
346
- Example 1) `-xtb GFN2-xTB`
347
-
348
- Use GFN2-xTB method to optimize molecular structure.
349
-
350
- - Other options are experimental.
351
-
352
-
353
- ## Author
354
-
355
- Author of this program is ss0832.
356
-
357
- ## License
358
-
359
- GNU Affero General Public License v3.0
360
-
361
-
362
- ## Contact
363
-
364
- highlighty876[at]gmail.com
365
-
366
- ## Citation
367
-
368
- ss0832. (2025). MultiOptPy: Multifunctional geometry optimization tools for quantum chemical calculations (v1.20.1). Zenodo. https://doi.org/10.5281/zenodo.17831065
369
-
370
-
371
- ## Setting Up an Environment for Using NNP(UMA) on Windows 11
372
-
373
- ### 1. Install Anaconda
374
-
375
- Download and install **Anaconda3-2025.06-1-Windows-x86_64.exe** from:
376
-
377
- [https://repo.anaconda.com/archive/](https://repo.anaconda.com/archive/)
378
-
379
- ### 2. Launch the Anaconda PowerShell Prompt
380
-
381
- Open **"Anaconda PowerShell Prompt"** from the Windows Start menu.
382
-
383
- ### 3. Create a New Virtual Environment
384
-
385
- ```
386
- conda create -n <env_name> python=3.12.7
387
- ```
388
-
389
- ### 4. Activate the Environment
390
-
391
- ```
392
- conda activate <env_name>
393
- ```
394
-
395
- ### 5. Install Required Libraries
396
-
397
- ```
398
- pip install ase==3.26.0 fairchem-core==2.7.1 torch==2.6.0
399
- ```
400
-
401
- * **fairchem-core**: Required for running NNP models provided by FAIR Chemistry.
402
- * **ase**: Interface for passing molecular structures to the NNP.
403
- * **torch**: PyTorch library for neural network execution.
404
-
405
- ---
406
-
407
- ## Setting Up the Model File (.pt) for Your NNP Library
408
-
409
- ### 1. Download the Model File
410
-
411
- Download **uma-s-1p1.pt** from the following page:
412
-
413
- [https://huggingface.co/facebook/UMA](https://huggingface.co/facebook/UMA)
414
-
415
- (Ensure that you have permission to use the file.)
416
-
417
- ### 2. Add the Model Path to MultiOptPy
418
-
419
- Open the file `software_path.conf` inside the **MultiOptPy-v1.20.0-rc.4** directory.
420
-
421
- Add the following line using the absolute path to the model file:
422
-
423
- ```
424
- uma-s-1p1::<absolute_path_to/uma-s-1p1.pt>
425
- ```
426
-
427
- This enables **MultiOptPy-v1.20.0-rc.4** to use the **uma-s-1p1 NNP model**.
428
-
429
- ### references of UMA
430
- - arXiv preprint arXiv:2505.08762 (2025).
431
- - https://github.com/facebookresearch/fairchem
432
-
433
- ## Create environment for Win11 / UMA(NNP) using conda
434
-
435
- ```
436
- conda env create -f environment_win11uma.yml
437
- conda activate test_mop_win11_uma
438
- ```
1
+ Metadata-Version: 2.4
2
+ Name: MultiOptPy
3
+ Version: 1.20.3
4
+ Summary: Multifunctional geometry optimization tools for quantum chemical calculations.
5
+ Author-email: ss0832 <highlighty876@gmail.com>
6
+ License: GPLv3
7
+ Requires-Python: >=3.12
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE
10
+ Requires-Dist: numpy~=2.2.0
11
+ Requires-Dist: scipy>=1.13.0
12
+ Requires-Dist: matplotlib~=3.10.0
13
+ Requires-Dist: torch~=2.6.0
14
+ Requires-Dist: pyscf~=2.9.0
15
+ Requires-Dist: tblite~=0.4.0
16
+ Requires-Dist: ase~=3.26.0
17
+ Requires-Dist: fairchem-core~=2.7.0
18
+ Requires-Dist: sympy~=1.13.0
19
+ Dynamic: license-file
20
+
21
+ # MultiOptPy
22
+
23
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wpW8YO8r9gq20GACyzdaEsFK4Va1JQs4?usp=sharing) (Test 1, only use GFN2-xTB)
24
+
25
+
26
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lfvyd7lv6ChjRC7xfPdrBZtGME4gakhz?usp=sharing) (Test 2, GFN2-xTB + PySCF(HF/STO-3G))
27
+
28
+
29
+ [![Buy Me A Coffee](https://img.shields.io/badge/Buy%20Me%20a%20Coffee-ffdd00?style=for-the-badge&logo=buy-me-a-coffee&logoColor=black)](https://buymeacoffee.com/ss0832)
30
+
31
+ [![PyPI Downloads](https://static.pepy.tech/personalized-badge/multioptpy?period=total&units=INTERNATIONAL_SYSTEM&left_color=BLACK&right_color=GREEN&left_text=downloads)](https://pepy.tech/projects/multioptpy)
32
+ [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.17839100.svg)](https://doi.org/10.5281/zenodo.17839100)
33
+
34
+ If this tool helped your studies, education, or saved your time, I'd appreciate a coffee!
35
+ Your support serves as a great encouragement for this personal project and fuels my next journey.
36
+ I also welcome contributions, bug reports, and pull requests to improve this tool.
37
+
38
+ Note on Contributions: While bug reports and pull requests are welcome, please note that this is a personal project maintained in my spare time. Responses to issues and PRs may be delayed or not guaranteed. I appreciate your patience and understanding.
39
+
40
+ Multifunctional geometry optimization tools for quantum chemical calculations
41
+
42
+ This program implements many geometry optimization methods in Python for learning purposes.
43
+
44
+ This program can also automatically calculate the transition-state structure from a single equilibrium geometry.
45
+
46
+ **Notice:** This program has NOT been experimentally validated in laboratory settings. I release this code to enable community contributions and collaborative development. Use at your own discretion and validate results independently.
47
+
48
+ (Caution: Using Japanese to explain) Instructions on how to use:
49
+ - https://ss0832.github.io/
50
+ - https://ss0832.github.io/posts/20251130_mop_usage_menschutkin_reaction_uma_en/ (In English, auto-translated)
51
+
52
+ ## Video Demo
53
+
54
+ [![MultiOptPy Demo](https://img.youtube.com/vi/AE61iY2HZ8Y/0.jpg)](https://www.youtube.com/watch?v=AE61iY2HZ8Y)
55
+
56
+
57
+ ## Features
58
+
59
+ - It is intended to be used in a linux environment.
60
+ - It can be used not only with AFIR functions, but also with other bias potentials.
61
+
62
+
63
+
64
+ ## Quick Start (for Linux)
65
+ ```
66
+ # Below is an example showing how to use GFN2-xTB to calculate a transition-state structure.
67
+ # These commands are intended for users who want a straightforward, ready-to-run setup on Linux.
68
+
69
+ ## 1. Download and install Anaconda:
70
+ cd ~
71
+ wget https://repo.anaconda.com/archive/Anaconda3-2025.06-1-Linux-x86_64.sh
72
+ bash Anaconda3-2025.06-1-Linux-x86_64.sh
73
+ source .bashrc
74
+ # if the conda command is not available, you need to manually add Anaconda to your PATH:
75
+ # (example command) echo 'export PATH="$HOME/anaconda3/bin:$PATH"' >> ~/.bashrc
76
+ source ~/.bashrc
77
+
78
+ ## 2. Create and activate a conda environment:
79
+ conda create -n test_mop python=3.12.7
80
+ conda activate test_mop
81
+
82
+ ## 3. Download and install MultiOptPy:
83
+ wget https://github.com/ss0832/MultiOptPy/archive/refs/tags/v1.20.3.zip
84
+ unzip v1.20.3.zip
85
+ cd MultiOptPy-1.20.3
86
+ pip install -r requirements.txt
87
+
88
+ ## 4. Copy the test configuration file and run the AutoTS workflow:
89
+ cp test/config_autots_run_xtb_test.json .
90
+ python run_autots.py aldol_rxn.xyz -cfg config_autots_run_xtb_test.json
91
+
92
+
93
+ # Installation via environment.yml (Linux / conda-forge)
94
+
95
+ ## 1. Download and install MultiOptPy:
96
+ git clone -b stable-v1.0 https://github.com/ss0832/MultiOptPy.git
97
+ cd MultiOptPy
98
+
99
+ ## 2. Create and activate a conda environment:
100
+ conda env create -f environment.yml
101
+ conda activate test_mop
102
+
103
+ ## 3. Copy the test configuration file and run the AutoTS workflow:
104
+ cp test/config_autots_run_xtb_test.json .
105
+ python run_autots.py aldol_rxn.xyz -cfg config_autots_run_xtb_test.json
106
+
107
+ # Installation via pip (Linux)
108
+ conda create -n <env-name> python=3.12 pip
109
+ conda activate <env-name>
110
+ pip install git+https://github.com/ss0832/MultiOptPy.git@v1.20.3
111
+ wget https://github.com/ss0832/MultiOptPy/archive/refs/tags/v1.20.3.zip
112
+ unzip v1.20.3.zip
113
+ cd MultiOptPy-1.20.3
114
+
115
+ ## 💻 Command Line Interface (CLI) Functionality (v1.20.2)
116
+ # The following eight core functionalities are available as direct executable commands in your terminal after installation:
117
+ # optmain (Logic from optmain.py):
118
+ # Function: Executes the Core Geometry Optimization functionality.
119
+ # nebmain (Logic from nebmain.py):
120
+ # Function: Executes the Nudged Elastic Band (NEB) path optimization tool for transition state searches.
121
+ # confsearch (Logic from conformation_search.py):
122
+ # Function: Utilizes the comprehensive Conformational Search routine.
123
+ # run_autots (Logic from run_autots.py):
124
+ # Function: Launches the Automated Transition State (AutoTS) workflow.
125
+ # mdmain (Logic from mdmain.py):
126
+ # Function: Initiates Molecular Dynamics (MD) simulation functionality.
127
+ # relaxedscan (Logic from relaxed_scan.py):
128
+ # Function: Executes the Relaxed Potential Energy Surface (PES) Scanning functionality.
129
+ # orientsearch (Logic from orientation_search.py):
130
+ # Function: Executes the molecular Orientation Sampling and Search utility.
131
+
132
+ ```
133
+
134
+ ## Required Modules
135
+ ```
136
+ cd <directory of repository files>
137
+ pip install -r requirements.txt
138
+ ```
139
+ - psi4 (Official page:https://psicode.org/) or PySCF
140
+ - numpy
141
+ - matplotlib
142
+ - scipy
143
+ - pytorch (for calculating derivatives)
144
+
145
+ Optional
146
+
147
+ - tblite (If you use extended tight binding (xTB) method, this module is required.)
148
+ - dxtb (same as above)
149
+ - ASE
150
+
151
+ ## References
152
+
153
+ References are given in the source code.
154
+
155
+ ## Usage
156
+
157
+ After downloading the repository using git clone or similar commands, move to the generated directory and run the following:
158
+ python command
159
+ ```
160
+ python optmain.py SN2.xyz -ma 150 1 6 -pyscf -elec 0 -spin 0 -opt rsirfo_block_fsb -modelhess
161
+ ```
162
+ CLI command (arbitrary directory)
163
+ ```
164
+ optmain SN2.xyz -ma 150 1 6 -pyscf -elec 0 -spin 0 -opt rsirfo_block_fsb -modelhess
165
+ ```
166
+ python command
167
+ ```
168
+ python optmain.py aldol_rxn.xyz -ma 95 1 5 50 3 11 -pyscf -elec 0 -spin 0 -opt rsirfo_block_fsb -modelhess
169
+ ```
170
+ CLI command (arbitrary directory)
171
+ ```
172
+ optmain aldol_rxn.xyz -ma 95 1 5 50 3 11 -pyscf -elec 0 -spin 0 -opt rsirfo_block_fsb -modelhess
173
+ ```
174
+
175
+ For SADDLE calculation
176
+
177
+ python command
178
+ ```
179
+ python optmain.py aldol_rxn_PT.xyz -xtb GFN2-xTB -opt rsirfo_block_bofill -order 1 -fc 5
180
+ ```
181
+ CLI command (arbitrary directory)
182
+ ```
183
+ optmain aldol_rxn_PT.xyz -xtb GFN2-xTB -opt rsirfo_block_bofill -order 1 -fc 5
184
+ ```
185
+ ##### For NEB method
186
+ python command
187
+ ```
188
+ python nebmain.py aldol_rxn -xtb GFN2-xTB -ns 50 -adpred 1 -nd 0.5
189
+ ```
190
+ CLI command (arbitrary directory)
191
+ ```
192
+ nebmain aldol_rxn -xtb GFN2-xTB -ns 50 -adpred 1 -nd 0.5
193
+ ```
194
+
195
+ ##### For iEIP method
196
+ python command
197
+ ```
198
+ python ieipmain.py ieip_test -xtb GFN2-xTB
199
+ ```
200
+ CLI command (arbitrary directory)
201
+ ```
202
+ ieipmain ieip_test -xtb GFN2-xTB
203
+ ```
204
+ ##### For Molecular Dynamics (MD)
205
+ python command
206
+ ```
207
+ python mdmain.py aldol_rxn_PT.xyz -xtb GFN2-xTB -temp 298 -traj 1 -time 100000
208
+ ```
209
+ CLI command (arbitrary directory)
210
+ ```
211
+ mdmain aldol_rxn_PT.xyz -xtb GFN2-xTB -temp 298 -traj 1 -time 100000
212
+ ```
213
+ (Default deterministic algorithm for MD is Nosé–Hoover thermostat.)
214
+
215
+ For orientation search
216
+ ```
217
+ python orientation_search.py aldol_rxn.xyz -part 1-4 -ma 95 1 5 50 3 11 -nsample 5 -xtb GFN2-xTB -opt rsirfo_block_fsb -modelhess
218
+ ```
219
+ For conformation search
220
+ ```
221
+ python conformation_search.py s8_for_confomation_search_test.xyz -xtb GFN2-xTB -ns 2000
222
+ ```
223
+ For relaxed scan (Similar to functions implemented in Gaussian)
224
+ ```
225
+ python relaxed_scan.py SN2.xyz -nsample 8 -scan bond 1,2 1.3,2.6 -elec -1 -spin 0 -xtb GFN2-xTB -opt crsirfo_block_fsb -modelhess
226
+ ```
227
+ ## Options
228
+ (optmain.py)
229
+
230
+ **`-opt`**
231
+
232
+ Specify the algorithm to be used for structural optimization.
233
+
234
+ example 1) `-opt FIRE`.
235
+
236
+ Perform structural optimization using the FIRE method.
237
+
238
+
239
+ Available optimization methods:
240
+
241
+ Recommended optimization methods:
242
+
243
+ - FIRE (Robust method)
244
+ - TR_LBFGS (Limited-memory BFGS method with trust radius method, Faster convergence than FIRE without Hessian)
245
+ - rsirfo_block_fsb
246
+ - rsirfo_block_bofill (for calculation of saddle point)
247
+
248
+ `-ma`
249
+
250
+ Add the potential by AFIR function.
251
+ Energy (kJ/mol) Atom 1 or fragment 1 to which potential is added Atom 2 or fragment 2 to which potential is added.
252
+
253
+ Example 1) `-ma 195 1 5`
254
+
255
+ Apply a potential of 195 kJ/mol (pushing force) to the first atom and the fifth atom as a pair.
256
+
257
+ Example 2) `-ma 195 1 5 195 3 11`
258
+
259
+ Multiply the potential of 195 kJ/mol (pushing force) by the pair of the first atom and the fifth atom. Then multiply the potential of 195 kJ/mol (pushing force) by the pair of the third atom and the eleventh atom.
260
+
261
+ Example 3) `-ma -195 1-3 5,6`
262
+
263
+ Multiply the potential of -195 kJ/mol (pulling force) by the fragment consisting of the 1st-3rd atoms paired with the fragments consisting of the 5th and 6th atoms.
264
+
265
+
266
+ `-bs`
267
+
268
+ Specifies the basis function. The default is 6-31G*.
269
+
270
+ Example 1) `-bs 6-31G*`
271
+
272
+ Calculate using 6-31G* as the basis function.
273
+
274
+ Example 2) `-bs sto-3g`
275
+
276
+ Calculate using STO-3G as the basis function.
277
+
278
+ `-func`
279
+
280
+ Specify the functionals in the DFT (specify the calculation method). The default is b3lyp.
281
+
282
+ Example 1) `-func b3lyp`
283
+
284
+ Calculate using B3LYP as the functional.
285
+
286
+ Example 2) `-func hf`
287
+
288
+ Calculate using the Hartree-Fock method.
289
+
290
+ `-sub_bs`
291
+
292
+ Specify a specific basis function for a given atom.
293
+
294
+ Example 1) `-sub_bs I LanL2DZ`
295
+
296
+ Assign the basis function LanL2DZ to the iodine atom, and if -bs is the default, assign 6-31G* to non-iodine atoms for calculation.
297
+
298
+ `-ns`
299
+
300
+ Specifies the maximum number of times the gradient is calculated for structural optimization. The default is a maximum of 300 calculations.
301
+
302
+ Example 1) `-ns 400`
303
+
304
+ Calculate gradient up to 400 iterations.
305
+
306
+
307
+
308
+ `-core`
309
+
310
+ Specify the number of CPU cores to be used in the calculation. By default, 8 cores are used. (Adjust according to your own environment.)
311
+
312
+ Example 1) `-core 4`
313
+
314
+ Calculate using 4 CPU cores.
315
+
316
+ `-mem`
317
+
318
+ Specify the memory to be used for calculations. The default is 1GB. (Adjust according to your own environment.)
319
+
320
+ Example 1) `-mem 2GB`
321
+
322
+ Calculate using 2GB of memory.
323
+
324
+ `-d`
325
+
326
+ Specifies the size of the step width after gradient calculation. The larger the value, the faster the convergence, but it is not possible to follow carefully on the potential hypersurface.
327
+
328
+ Example 1) `-d 0.05`
329
+
330
+
331
+
332
+ `-kp`
333
+
334
+ Multiply the potential calculated from the following equation (a potential based on the harmonic approximation) by the two atom pairs. This is used when you want to fix the distance between atoms to some extent.
335
+
336
+ $V(r) = 0.5k(r - r_0)^2$
337
+
338
+ `spring const. k (a.u.) keep distance [$ r_0] (ang.) atom1,atom2 ...`
339
+
340
+ Example 1) `-kp 2.0 1.0 1,2`
341
+
342
+ Apply harmonic approximation potentials to the 1st and 2nd atoms with spring constant 2.0 a.u. and equilibrium distance 1.0 Å.
343
+
344
+ `-akp`
345
+
346
+ The potential (based on anharmonic approximation, Morse potential) calculated from the following equation is applied to two atomic pairs. This is used when you want to fix the distance between atoms to some extent. Unlike -kp, the depth of the potential is adjustable.
347
+
348
+ $V(r) = D_e [1 - exp(- \sqrt(\frac{k}{2D_e})(r - r_0))]^2$
349
+
350
+ `potential well depth (a.u.) spring const.(a.u.) keep distance (ang.) atom1,atom2 ...`
351
+
352
+ Example 1) `-ukp 2.0 2.0 1.0 1,2`
353
+
354
+ Anharmonic approximate potential (Mohs potential) is applied to the first and second atoms as equilibrium distance 1.0 Å with a potential depth of 2.0 a.u. and a spring constant of 2.0 a.u.
355
+
356
+ `-ka`
357
+
358
+ The potential calculated from the following equation (potential based on the harmonic approximation) is applied to a group of three atoms, which is used when you want to fix the angle (bond angle) between the three atoms to some extent.
359
+
360
+ $V(\theta) = 0.5k(\theta - \theta_0)^2$
361
+
362
+ `spring const.(a.u.) keep angle (degrees) atom1,atom2,atom3`
363
+
364
+ Example 1) `-ka 2.0 60 1,2,3`
365
+
366
+ Assuming a spring constant of 2.0 a.u. and an equilibrium angle of 60 degrees, apply a potential so that the angle between the first, second, and third atoms approaches 60 degrees.
367
+
368
+ `-kda`
369
+
370
+ The potential (based on the harmonic approximation) calculated from the following equation is applied to a group of 4 atoms to fix the dihedral angle of the 4 atoms to a certain degree.
371
+
372
+ $V(\phi) = 0.5k(\phi - \phi_0)^2$
373
+
374
+ `spring const.(a.u.) keep dihedral angle (degrees) atom1,atom2,atom3,atom4 ...`
375
+
376
+ Example 1) `-kda 2.0 60 1,2,3,4`
377
+
378
+ With a spring constant of 2.0 a.u. and an equilibrium angle of 60 degrees, apply a potential so that the dihedral angles of the planes formed by the 1st, 2nd, and 3rd atoms and the 2nd, 3rd, and 4th atoms approach 60 degrees.
379
+
380
+ `-xtb`
381
+
382
+ Use extended tight binding method. (It is required tblite (python module).)
383
+
384
+ Example 1) `-xtb GFN2-xTB`
385
+
386
+ Use GFN2-xTB method to optimize molecular structure.
387
+
388
+ - Other options are experimental.
389
+
390
+
391
+ ## Author
392
+
393
+ Author of this program is ss0832.
394
+
395
+ ## License
396
+
397
+ GNU Affero General Public License v3.0
398
+
399
+
400
+ ## Contact
401
+
402
+ highlighty876[at]gmail.com
403
+
404
+ ## Citation
405
+
406
+ If you use MultiOptPy in your research, please cite it as follows:
407
+
408
+ ```bibtex
409
+ @software{ss0832_multioptpy_2025,
410
+ author = {ss0832},
411
+ title = {MultiOptPy: Multifunctional geometry optimization tools for quantum chemical calculations},
412
+ month = dec,
413
+ year = 2025,
414
+ publisher = {Zenodo},
415
+ version = {v1.20.2},
416
+ doi = {10.5281/zenodo.17839100},
417
+ url = {[https://doi.org/10.5281/zenodo.17839100](https://doi.org/10.5281/zenodo.17839100)}
418
+ }
419
+ ```
420
+ ```
421
+ ss0832. (2025). MultiOptPy: Multifunctional geometry optimization tools for quantum chemical calculations (v1.20.2). Zenodo. https://doi.org/10.5281/zenodo.17839100
422
+ ```
423
+
424
+ ## Setting Up an Environment for Using NNP(UMA) on Windows 11
425
+
426
+ ### 1. Install Anaconda
427
+
428
+ Download and install **Anaconda3-2025.06-1-Windows-x86_64.exe** from:
429
+
430
+ [https://repo.anaconda.com/archive/](https://repo.anaconda.com/archive/)
431
+
432
+ ### 2. Launch the Anaconda PowerShell Prompt
433
+
434
+ Open **"Anaconda PowerShell Prompt"** from the Windows Start menu.
435
+
436
+ ### 3. Create a New Virtual Environment
437
+
438
+ ```
439
+ conda create -n <env_name> python=3.12.7
440
+ ```
441
+
442
+ ### 4. Activate the Environment
443
+
444
+ ```
445
+ conda activate <env_name>
446
+ ```
447
+
448
+ ### 5. Install Required Libraries
449
+
450
+ ```
451
+ pip install ase==3.26.0 fairchem-core==2.7.1 torch==2.6.0
452
+ ```
453
+
454
+ * **fairchem-core**: Required for running NNP models provided by FAIR Chemistry.
455
+ * **ase**: Interface for passing molecular structures to the NNP.
456
+ * **torch**: PyTorch library for neural network execution.
457
+
458
+ ---
459
+
460
+ ## Setting Up the Model File (.pt) for Your NNP Library
461
+
462
+ ### 1. Download the Model File
463
+
464
+ Download **uma-s-1p1.pt** from the following page:
465
+
466
+ [https://huggingface.co/facebook/UMA](https://huggingface.co/facebook/UMA)
467
+
468
+ (Ensure that you have permission to use the file.)
469
+
470
+ ### 2. Add the Model Path to MultiOptPy
471
+
472
+ Open the file `software_path.conf` inside the **MultiOptPy** directory.
473
+
474
+ Add the following line using the absolute path to the model file:
475
+
476
+ ```
477
+ uma-s-1p1::<absolute_path_to/uma-s-1p1.pt>
478
+ ```
479
+
480
+ This enables **MultiOptPy** to use the **uma-s-1p1 NNP model**.
481
+
482
+ ### references of UMA
483
+ - arXiv preprint arXiv:2505.08762 (2025).
484
+ - https://github.com/facebookresearch/fairchem
485
+
486
+ ## Create environment for Win11 / UMA(NNP) using conda
487
+
488
+ ```
489
+ conda env create -f environment_win11uma.yml
490
+ conda activate test_mop_win11_uma
491
+ ```
492
+
493
+
494
+ ---
495
+
496
+ > **Status: Maintenance Mode / Frozen**
497
+ > *This project has reached its initial stability goals (v1.20.2) and is currently frozen. No new features are planned by the original author, but the codebase remains open for the community to fork and explore the roadmap above.*