Moral88 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- Moral88/__init__.py +0 -1
- Moral88/regression.py +5 -2
- {Moral88-0.6.0.dist-info → Moral88-0.8.0.dist-info}/METADATA +1 -1
- Moral88-0.8.0.dist-info/RECORD +8 -0
- Moral88-0.6.0.dist-info/RECORD +0 -8
- {Moral88-0.6.0.dist-info → Moral88-0.8.0.dist-info}/LICENSE +0 -0
- {Moral88-0.6.0.dist-info → Moral88-0.8.0.dist-info}/WHEEL +0 -0
- {Moral88-0.6.0.dist-info → Moral88-0.8.0.dist-info}/top_level.txt +0 -0
Moral88/__init__.py
CHANGED
@@ -1 +0,0 @@
|
|
1
|
-
from .regression import mean_absolute_error, mean_squared_error, r_squared
|
Moral88/regression.py
CHANGED
@@ -101,7 +101,9 @@ class DataValidator:
|
|
101
101
|
return y_true, y_pred
|
102
102
|
|
103
103
|
|
104
|
-
class
|
104
|
+
class metrics:
|
105
|
+
def __init__(self):
|
106
|
+
pass
|
105
107
|
def mean_bias_deviation(self, y_true, y_pred, library=None, flatten=True):
|
106
108
|
"""
|
107
109
|
Computes Mean Bias Deviation (MBD).
|
@@ -292,6 +294,7 @@ class Metrics:
|
|
292
294
|
"""
|
293
295
|
y_true, y_pred = self.validator.validate_regression_targets(y_true, y_pred)
|
294
296
|
y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
|
297
|
+
y_true = np.clip(y_true, 1e-8, None)
|
295
298
|
|
296
299
|
if library == 'sklearn':
|
297
300
|
from sklearn.metrics import mean_absolute_percentage_error as sklearn_mape
|
@@ -309,7 +312,7 @@ class Metrics:
|
|
309
312
|
y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
|
310
313
|
return tf.reduce_mean(tf.abs((y_true_tensor - y_pred_tensor) / tf.clip_by_value(y_true_tensor, 1e-8, tf.float32.max))).numpy() * 100
|
311
314
|
|
312
|
-
return np.mean(np.abs((y_true - y_pred) / np.clip(y_true, 1e-8, None))) * 100
|
315
|
+
return np.mean(np.abs((y_true - y_pred) / np.clip(np.abs(y_true), 1e-8, None))) * 100
|
313
316
|
|
314
317
|
def explained_variance_score(self, y_true, y_pred, library=None, flatten=True):
|
315
318
|
"""
|
@@ -0,0 +1,8 @@
|
|
1
|
+
Moral88/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
+
Moral88/regression.py,sha256=V4Iqug1rkACBvHoKZ2-4-CK-XK6VP20qok8rWqWjEdE,17302
|
3
|
+
Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
|
4
|
+
Moral88-0.8.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
|
+
Moral88-0.8.0.dist-info/METADATA,sha256=rlMlw0Mt2e202Je7YqkoWNFNmsieOKfleNM2DcelDGw,407
|
6
|
+
Moral88-0.8.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
7
|
+
Moral88-0.8.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
|
8
|
+
Moral88-0.8.0.dist-info/RECORD,,
|
Moral88-0.6.0.dist-info/RECORD
DELETED
@@ -1,8 +0,0 @@
|
|
1
|
-
Moral88/__init__.py,sha256=vb-aPc9ZbnYNSy9qq2fVESI63E10pYsCrDpnV8OHWkg,74
|
2
|
-
Moral88/regression.py,sha256=0aSRXLWur6tcC4xd806koyB2ktgPJodlOeXYCZZYDzE,17208
|
3
|
-
Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
|
4
|
-
Moral88-0.6.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
|
-
Moral88-0.6.0.dist-info/METADATA,sha256=6Y1H8Qh9wnrZVUr2gnoBYMnF5EsXY6ijMoS9bFZ21bE,407
|
6
|
-
Moral88-0.6.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
7
|
-
Moral88-0.6.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
|
8
|
-
Moral88-0.6.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|