Moral88 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Moral88/__init__.py CHANGED
@@ -1 +0,0 @@
1
- from .regression import mean_absolute_error, mean_squared_error, r_squared
Moral88/regression.py CHANGED
@@ -101,7 +101,9 @@ class DataValidator:
101
101
  return y_true, y_pred
102
102
 
103
103
 
104
- class Metrics:
104
+ class metrics:
105
+ def __init__(self):
106
+ pass
105
107
  def mean_bias_deviation(self, y_true, y_pred, library=None, flatten=True):
106
108
  """
107
109
  Computes Mean Bias Deviation (MBD).
@@ -292,6 +294,7 @@ class Metrics:
292
294
  """
293
295
  y_true, y_pred = self.validator.validate_regression_targets(y_true, y_pred)
294
296
  y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
297
+ y_true = np.clip(y_true, 1e-8, None)
295
298
 
296
299
  if library == 'sklearn':
297
300
  from sklearn.metrics import mean_absolute_percentage_error as sklearn_mape
@@ -309,7 +312,7 @@ class Metrics:
309
312
  y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
310
313
  return tf.reduce_mean(tf.abs((y_true_tensor - y_pred_tensor) / tf.clip_by_value(y_true_tensor, 1e-8, tf.float32.max))).numpy() * 100
311
314
 
312
- return np.mean(np.abs((y_true - y_pred) / np.clip(y_true, 1e-8, None))) * 100
315
+ return np.mean(np.abs((y_true - y_pred) / np.clip(np.abs(y_true), 1e-8, None))) * 100
313
316
 
314
317
  def explained_variance_score(self, y_true, y_pred, library=None, flatten=True):
315
318
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: Moral88
3
- Version: 0.6.0
3
+ Version: 0.8.0
4
4
  Summary: A library for regression evaluation metrics.
5
5
  Author: Morteza Alizadeh
6
6
  Author-email: alizadeh.c2m@gmail.com
@@ -0,0 +1,8 @@
1
+ Moral88/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ Moral88/regression.py,sha256=V4Iqug1rkACBvHoKZ2-4-CK-XK6VP20qok8rWqWjEdE,17302
3
+ Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
4
+ Moral88-0.8.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ Moral88-0.8.0.dist-info/METADATA,sha256=rlMlw0Mt2e202Je7YqkoWNFNmsieOKfleNM2DcelDGw,407
6
+ Moral88-0.8.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
7
+ Moral88-0.8.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
8
+ Moral88-0.8.0.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- Moral88/__init__.py,sha256=vb-aPc9ZbnYNSy9qq2fVESI63E10pYsCrDpnV8OHWkg,74
2
- Moral88/regression.py,sha256=0aSRXLWur6tcC4xd806koyB2ktgPJodlOeXYCZZYDzE,17208
3
- Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
4
- Moral88-0.6.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- Moral88-0.6.0.dist-info/METADATA,sha256=6Y1H8Qh9wnrZVUr2gnoBYMnF5EsXY6ijMoS9bFZ21bE,407
6
- Moral88-0.6.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
7
- Moral88-0.6.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
8
- Moral88-0.6.0.dist-info/RECORD,,