Moral88 0.5.0__py3-none-any.whl → 0.7.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Moral88/__init__.py CHANGED
@@ -1 +0,0 @@
1
- from .regression import mean_absolute_error, mean_squared_error, r_squared
Moral88/regression.py CHANGED
@@ -31,6 +31,7 @@ class DataValidator:
31
31
  """
32
32
  Returns the number of samples in the array.
33
33
  """
34
+ array = np.asarray(array)
34
35
  if hasattr(array, 'shape') and len(array.shape) > 0:
35
36
  return array.shape[0]
36
37
  else:
@@ -100,13 +101,17 @@ class DataValidator:
100
101
  return y_true, y_pred
101
102
 
102
103
 
103
- class Metrics:
104
- def mean_bias_deviation(self, y_true, y_pred, library=None):
104
+ class metrics:
105
+ def mean_bias_deviation(self, y_true, y_pred, library=None, flatten=True):
105
106
  """
106
107
  Computes Mean Bias Deviation (MBD).
107
108
  """
108
109
  y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
109
110
 
111
+ if flatten and y_true.ndim > 1:
112
+ y_true = y_true.flatten()
113
+ y_pred = y_pred.flatten()
114
+
110
115
  if library == 'sklearn':
111
116
  # Sklearn does not have a direct implementation for MBD
112
117
  raise NotImplementedError("Mean Bias Deviation is not implemented in sklearn.")
@@ -130,12 +135,16 @@ class Metrics:
130
135
  def __init__(self):
131
136
  self.validator = DataValidator()
132
137
 
133
- def r2_score(self, y_true, y_pred, sample_weight=None, library=None):
138
+ def r2_score(self, y_true, y_pred, sample_weight=None, library=None, flatten=True):
134
139
  """
135
140
  Computes R2 score.
136
141
  """
137
142
  y_true, y_pred, sample_weight = self.validator.validate_r2_score_inputs(y_true, y_pred, sample_weight)
138
143
 
144
+ if flatten and y_true.ndim > 1:
145
+ y_true = y_true.flatten()
146
+ y_pred = y_pred.flatten()
147
+
139
148
  if library == 'sklearn':
140
149
  from sklearn.metrics import r2_score as sklearn_r2
141
150
  return sklearn_r2(y_true, y_pred, sample_weight=sample_weight)
@@ -166,6 +175,9 @@ class Metrics:
166
175
  if threshold is not None:
167
176
  y_pred = np.clip(y_pred, threshold[0], threshold[1])
168
177
 
178
+ if y_true.ndim > 1 and flatten:
179
+ y_true = y_true.flatten()
180
+ y_pred = y_pred.flatten()
169
181
  absolute_errors = np.abs(y_true - y_pred)
170
182
 
171
183
  if method == 'mean':
@@ -177,9 +189,9 @@ class Metrics:
177
189
  else:
178
190
  raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
179
191
 
180
- if normalize and method != 'none':
181
- range_y = np.ptp(y_true)
182
- result = result / max(abs(range_y), 1)
192
+ # if normalize and method != 'none':
193
+ # range_y = np.ptp(y_true)
194
+ # result = result / max(abs(range_y), 1)
183
195
 
184
196
  return result
185
197
 
@@ -213,6 +225,9 @@ class Metrics:
213
225
  if threshold is not None:
214
226
  y_pred = np.clip(y_pred, threshold[0], threshold[1])
215
227
 
228
+ if y_true.ndim > 1 and flatten:
229
+ y_true = y_true.flatten()
230
+ y_pred = y_pred.flatten()
216
231
  squared_errors = (y_true - y_pred) ** 2
217
232
 
218
233
  if method == 'mean':
@@ -224,9 +239,9 @@ class Metrics:
224
239
  else:
225
240
  raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
226
241
 
227
- if normalize and method != 'none':
228
- range_y = np.ptp(y_true)
229
- result = result / max(abs(range_y), 1)
242
+ # if normalize and method != 'none':
243
+ # range_y = np.ptp(y_true)
244
+ # result = result / max(abs(range_y), 1)
230
245
 
231
246
  return result
232
247
 
@@ -277,6 +292,7 @@ class Metrics:
277
292
  """
278
293
  y_true, y_pred = self.validator.validate_regression_targets(y_true, y_pred)
279
294
  y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
295
+ y_true = np.clip(y_true, 1e-8, None)
280
296
 
281
297
  if library == 'sklearn':
282
298
  from sklearn.metrics import mean_absolute_percentage_error as sklearn_mape
@@ -294,9 +310,9 @@ class Metrics:
294
310
  y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
295
311
  return tf.reduce_mean(tf.abs((y_true_tensor - y_pred_tensor) / tf.clip_by_value(y_true_tensor, 1e-8, tf.float32.max))).numpy() * 100
296
312
 
297
- return np.mean(np.abs((y_true - y_pred) / np.clip(y_true, 1e-8, None))) * 100
313
+ return np.mean(np.abs((y_true - y_pred) / np.clip(np.abs(y_true), 1e-8, None))) * 100
298
314
 
299
- def explained_variance_score(self, y_true, y_pred, library=None):
315
+ def explained_variance_score(self, y_true, y_pred, library=None, flatten=True):
300
316
  """
301
317
  Computes Explained Variance Score.
302
318
  """
@@ -326,6 +342,58 @@ class Metrics:
326
342
  denominator = np.var(y_true)
327
343
  return 1 - numerator / denominator if denominator != 0 else 0
328
344
 
345
+ def adjusted_r2_score(self, y_true, y_pred, n_features, library=None, flatten=True):
346
+ """
347
+ Computes Adjusted R-Squared Score.
348
+
349
+ Parameters:
350
+ y_true: array-like of shape (n_samples,)
351
+ Ground truth (correct) target values.
352
+
353
+ y_pred: array-like of shape (n_samples,)
354
+ Estimated target values.
355
+
356
+ n_features: int
357
+ Number of independent features in the model.
358
+
359
+ library: str, optional (default=None)
360
+ Library to use for computation. Supports {'sklearn', 'statsmodels', None}.
361
+
362
+ flatten: bool, optional (default=True)
363
+ If True, flattens multidimensional arrays before computation.
364
+ """
365
+ # Validate inputs
366
+ y_true, y_pred, _ = self.validator.validate_r2_score_inputs(y_true, y_pred)
367
+
368
+ # Ensure inputs are 1D arrays
369
+ if y_true.ndim == 0 or y_pred.ndim == 0:
370
+ y_true = np.array([y_true])
371
+ y_pred = np.array([y_pred])
372
+
373
+ if flatten and y_true.ndim > 1:
374
+ y_true = y_true.flatten()
375
+ y_pred = y_pred.flatten()
376
+
377
+ if library == 'sklearn':
378
+ from sklearn.metrics import r2_score
379
+ r2 = r2_score(y_true, y_pred)
380
+ elif library == 'statsmodels':
381
+ import statsmodels.api as sm
382
+ X = sm.add_constant(y_pred)
383
+ model = sm.OLS(y_true, X).fit()
384
+ r2 = model.rsquared
385
+ else:
386
+ numerator = np.sum((y_true - y_pred) ** 2)
387
+ denominator = np.sum((y_true - np.mean(y_true)) ** 2)
388
+ r2 = 1 - (numerator / denominator) if denominator != 0 else 0.0
389
+
390
+ n_samples = len(y_true)
391
+ if n_samples <= n_features + 1:
392
+ raise ValueError("Number of samples must be greater than number of features plus one for adjusted R-squared computation.")
393
+
394
+ adjusted_r2 = 1 - (1 - r2) * (n_samples - 1) / (n_samples - n_features - 1)
395
+ return adjusted_r2
396
+
329
397
  if __name__ == '__main__':
330
398
  # Example usage
331
399
  validator = DataValidator()
@@ -336,11 +404,16 @@ if __name__ == '__main__':
336
404
  print("1D array:", validator.is_1d_array(arr))
337
405
  print("Samples:", validator.check_samples(arr))
338
406
 
339
- # Test R2 score
407
+ # Test MAE, MSE, R2, MBD, EV, MAPE, RMSE
340
408
  y_true = [3, -0.5, 2, 7]
341
409
  y_pred = [2.5, 0.0, 2, 8]
342
- print("R2 Score:", metrics.r2_score(y_true, y_pred))
343
410
 
344
- # Test MAE and MSE
345
411
  print("Mean Absolute Error:", metrics.mean_absolute_error(y_true, y_pred))
346
412
  print("Mean Squared Error:", metrics.mean_squared_error(y_true, y_pred))
413
+ print("R2 Score:", metrics.r2_score(y_true, y_pred))
414
+ print("Mean Bias Deviation: ", metrics.mean_bias_deviation(y_true, y_pred))
415
+ print("Explained Variance Score: ", metrics.explained_variance_score(y_true, y_pred))
416
+ print("Mean Absolute Percentage Error: ", metrics.mean_absolute_percentage_error(y_true, y_pred))
417
+ print("Root Mean Squared Error: ", metrics.root_mean_squared_error(y_true, y_pred))
418
+ print("adjusted_r2_score: ", metrics.adjusted_r2_score(y_true, y_pred, 2))
419
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: Moral88
3
- Version: 0.5.0
3
+ Version: 0.7.0
4
4
  Summary: A library for regression evaluation metrics.
5
5
  Author: Morteza Alizadeh
6
6
  Author-email: alizadeh.c2m@gmail.com
@@ -0,0 +1,8 @@
1
+ Moral88/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ Moral88/regression.py,sha256=yzYuAdGv9IjLpXQ6yhlpC26ZIKcK5Cn3zDY_2N7lRW8,17263
3
+ Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
4
+ Moral88-0.7.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ Moral88-0.7.0.dist-info/METADATA,sha256=WxT0FQzxE2BEhykJCIKSdTkJlwCbb2_-89z3s3BHjZw,407
6
+ Moral88-0.7.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
7
+ Moral88-0.7.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
8
+ Moral88-0.7.0.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- Moral88/__init__.py,sha256=vb-aPc9ZbnYNSy9qq2fVESI63E10pYsCrDpnV8OHWkg,74
2
- Moral88/regression.py,sha256=MjM3R1oqRWdlfo6Goc2NOT0UHeKGcQfdMyriqSvS5q4,14127
3
- Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
4
- Moral88-0.5.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- Moral88-0.5.0.dist-info/METADATA,sha256=7_93ZrGO0rFBargNBBe7qvQzQnFi2BFN7RGss26ux3I,407
6
- Moral88-0.5.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
7
- Moral88-0.5.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
8
- Moral88-0.5.0.dist-info/RECORD,,