Moral88 0.4.0__py3-none-any.whl → 0.6.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Moral88/regression.py CHANGED
@@ -1,145 +1,4 @@
1
1
  import numpy as np
2
-
3
- def validate_inputs(y_true, y_pred):
4
- """
5
- Validate the inputs for type and length.
6
- """
7
- if not isinstance(y_true, (list, tuple, np.ndarray)) or not isinstance(y_pred, (list, tuple, np.ndarray)):
8
- raise TypeError("Both y_true and y_pred must be lists, tuples, or numpy arrays.")
9
-
10
- y_true = np.array(y_true)
11
- y_pred = np.array(y_pred)
12
-
13
- if y_true.shape != y_pred.shape:
14
- raise ValueError("Shapes of y_true and y_pred must be the same.")
15
-
16
- if not np.issubdtype(y_true.dtype, np.number) or not np.issubdtype(y_pred.dtype, np.number):
17
- raise TypeError("All elements in y_true and y_pred must be numeric.")
18
-
19
- def mean_absolute_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
20
- """
21
- Calculate Mean Absolute Error (MAE) for single or multi-dimensional data.
22
- """
23
- validate_inputs(y_true, y_pred)
24
-
25
- # y_true = np.array(y_true)
26
- # y_pred = np.array(y_pred)
27
-
28
- if flatten:
29
- y_true = y_true.ravel()
30
- y_pred = y_pred.ravel()
31
-
32
- if library == 'Moral88':
33
- if threshold is not None:
34
- y_pred = np.clip(y_pred, threshold[0], threshold[1])
35
-
36
- absolute_errors = np.abs(y_true - y_pred)
37
-
38
- if method == 'mean':
39
- result = np.mean(absolute_errors)
40
- elif method == 'sum':
41
- result = np.sum(absolute_errors)
42
- elif method == 'none':
43
- result = absolute_errors
44
- else:
45
- raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
46
-
47
- if normalize and method != 'none':
48
- range_y = np.ptp(y_true)
49
- result = result / max(abs(range_y), 1)
50
-
51
- return result
52
-
53
- elif library == 'sklearn':
54
- from sklearn.metrics import mean_absolute_error as sklearn_mae
55
- return sklearn_mae(y_true, y_pred)
56
-
57
- elif library == 'torch':
58
- import torch
59
- y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
60
- y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
61
- return torch.mean(torch.abs(y_true_tensor - y_pred_tensor)).item()
62
-
63
- elif library == 'tensorflow':
64
- import tensorflow as tf
65
- y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
66
- y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
67
- return tf.reduce_mean(tf.abs(y_true_tensor - y_pred_tensor)).numpy()
68
-
69
- else:
70
- raise ValueError(f"Invalid library: {library}. Choose from {'Moral88', 'sklearn', 'torch', 'tensorflow'}.")
71
-
72
- def mean_squared_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
73
- """
74
- Calculate Mean Squared Error (MSE) for single or multi-dimensional data.
75
- """
76
- validate_inputs(y_true, y_pred)
77
-
78
- # y_true = np.array(y_true)
79
- # y_pred = np.array(y_pred)
80
-
81
- if flatten:
82
- y_true = y_true.ravel()
83
- y_pred = y_pred.ravel()
84
-
85
- if library == 'Moral88':
86
- if threshold is not None:
87
- y_pred = np.clip(y_pred, threshold[0], threshold[1])
88
-
89
- squared_errors = (y_true - y_pred) ** 2
90
-
91
- if method == 'mean':
92
- result = np.mean(squared_errors)
93
- elif method == 'sum':
94
- result = np.sum(squared_errors)
95
- elif method == 'none':
96
- result = squared_errors
97
- else:
98
- raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
99
-
100
- if normalize and method != 'none':
101
- range_y = np.ptp(y_true)
102
- result = result / max(abs(range_y), 1)
103
-
104
- return result
105
-
106
- elif library == 'sklearn':
107
- from sklearn.metrics import mean_squared_error as sklearn_mse
108
- return sklearn_mse(y_true, y_pred)
109
-
110
- elif library == 'torch':
111
- import torch
112
- y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
113
- y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
114
- return torch.mean((y_true_tensor - y_pred_tensor) ** 2).item()
115
-
116
- elif library == 'tensorflow':
117
- import tensorflow as tf
118
- y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
119
- y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
120
- return tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor)).numpy()
121
-
122
- else:
123
- raise ValueError(f"Invalid library: {library}. Choose from {'Moral88', 'sklearn', 'torch', 'tensorflow'}.")
124
-
125
- def r_squared(y_true, y_pred, flatten=True):
126
- """
127
- Compute R-Squared for single or multi-dimensional data.
128
- """
129
- validate_inputs(y_true, y_pred)
130
-
131
- y_true = np.array(y_true)
132
- y_pred = np.array(y_pred)
133
-
134
- if flatten:
135
- y_true = y_true.ravel()
136
- y_pred = y_pred.ravel()
137
-
138
- ss_total = np.sum((y_true - np.mean(y_true)) ** 2)
139
- ss_residual = np.sum((y_true - y_pred) ** 2)
140
- return 1 - (ss_residual / ss_total)
141
-
142
- import numpy as np
143
2
  import warnings
144
3
  from typing import Union, List, Tuple
145
4
  from scipy import sparse
@@ -172,6 +31,7 @@ class DataValidator:
172
31
  """
173
32
  Returns the number of samples in the array.
174
33
  """
34
+ array = np.asarray(array)
175
35
  if hasattr(array, 'shape') and len(array.shape) > 0:
176
36
  return array.shape[0]
177
37
  else:
@@ -231,17 +91,69 @@ class DataValidator:
231
91
  sample_weight = self.is_1d_array(sample_weight)
232
92
  return y_true, y_pred, sample_weight
233
93
 
94
+ def validate_mae_mse_inputs(self, y_true, y_pred, library=None):
95
+ """
96
+ Ensures inputs for MAE and MSE computation are valid.
97
+ """
98
+ y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
99
+ if library not in {None, 'sklearn', 'torch', 'tensorflow', 'Moral88'}:
100
+ raise ValueError(f"Invalid library: {library}. Choose from {{'Moral88', 'sklearn', 'torch', 'tensorflow'}}.")
101
+ return y_true, y_pred
102
+
234
103
 
235
104
  class Metrics:
105
+ def mean_bias_deviation(self, y_true, y_pred, library=None, flatten=True):
106
+ """
107
+ Computes Mean Bias Deviation (MBD).
108
+ """
109
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
110
+
111
+ if flatten and y_true.ndim > 1:
112
+ y_true = y_true.flatten()
113
+ y_pred = y_pred.flatten()
114
+
115
+ if library == 'sklearn':
116
+ # Sklearn does not have a direct implementation for MBD
117
+ raise NotImplementedError("Mean Bias Deviation is not implemented in sklearn.")
118
+
119
+ if library == 'torch':
120
+ import torch
121
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
122
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
123
+ bias = torch.mean(y_pred_tensor - y_true_tensor).item()
124
+ return bias
125
+
126
+ if library == 'tensorflow':
127
+ import tensorflow as tf
128
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
129
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
130
+ bias = tf.reduce_mean(y_pred_tensor - y_true_tensor).numpy()
131
+ return bias
132
+
133
+ # Default implementation
134
+ return np.mean(y_pred - y_true)
236
135
  def __init__(self):
237
136
  self.validator = DataValidator()
238
137
 
239
- def r2_score(self, y_true, y_pred, sample_weight=None):
138
+ def r2_score(self, y_true, y_pred, sample_weight=None, library=None, flatten=True):
240
139
  """
241
140
  Computes R2 score.
242
141
  """
243
142
  y_true, y_pred, sample_weight = self.validator.validate_r2_score_inputs(y_true, y_pred, sample_weight)
244
143
 
144
+ if flatten and y_true.ndim > 1:
145
+ y_true = y_true.flatten()
146
+ y_pred = y_pred.flatten()
147
+
148
+ if library == 'sklearn':
149
+ from sklearn.metrics import r2_score as sklearn_r2
150
+ return sklearn_r2(y_true, y_pred, sample_weight=sample_weight)
151
+
152
+ if library == 'statsmodels':
153
+ import statsmodels.api as sm
154
+ model = sm.OLS(y_true, sm.add_constant(y_pred)).fit()
155
+ return model.rsquared
156
+
245
157
  numerator = np.sum((y_true - y_pred) ** 2)
246
158
  denominator = np.sum((y_true - np.mean(y_true)) ** 2)
247
159
 
@@ -249,6 +161,237 @@ class Metrics:
249
161
  return 0.0
250
162
  return 1 - (numerator / denominator)
251
163
 
164
+ def mean_absolute_error(self, y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
165
+ """
166
+ Computes Mean Absolute Error (MAE).
167
+ """
168
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
169
+
170
+ if flatten:
171
+ y_true = y_true.ravel()
172
+ y_pred = y_pred.ravel()
173
+
174
+ if library == 'Moral88':
175
+ if threshold is not None:
176
+ y_pred = np.clip(y_pred, threshold[0], threshold[1])
177
+
178
+ if y_true.ndim > 1 and flatten:
179
+ y_true = y_true.flatten()
180
+ y_pred = y_pred.flatten()
181
+ absolute_errors = np.abs(y_true - y_pred)
182
+
183
+ if method == 'mean':
184
+ result = np.mean(absolute_errors)
185
+ elif method == 'sum':
186
+ result = np.sum(absolute_errors)
187
+ elif method == 'none':
188
+ result = absolute_errors
189
+ else:
190
+ raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
191
+
192
+ # if normalize and method != 'none':
193
+ # range_y = np.ptp(y_true)
194
+ # result = result / max(abs(range_y), 1)
195
+
196
+ return result
197
+
198
+ elif library == 'sklearn':
199
+ from sklearn.metrics import mean_absolute_error as sklearn_mae
200
+ return sklearn_mae(y_true, y_pred)
201
+
202
+ elif library == 'torch':
203
+ import torch
204
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
205
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
206
+ return torch.mean(torch.abs(y_true_tensor - y_pred_tensor)).item()
207
+
208
+ elif library == 'tensorflow':
209
+ import tensorflow as tf
210
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
211
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
212
+ return tf.reduce_mean(tf.abs(y_true_tensor - y_pred_tensor)).numpy()
213
+
214
+ def mean_squared_error(self, y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
215
+ """
216
+ Computes Mean Squared Error (MSE).
217
+ """
218
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
219
+
220
+ if flatten:
221
+ y_true = y_true.ravel()
222
+ y_pred = y_pred.ravel()
223
+
224
+ if library == 'Moral88':
225
+ if threshold is not None:
226
+ y_pred = np.clip(y_pred, threshold[0], threshold[1])
227
+
228
+ if y_true.ndim > 1 and flatten:
229
+ y_true = y_true.flatten()
230
+ y_pred = y_pred.flatten()
231
+ squared_errors = (y_true - y_pred) ** 2
232
+
233
+ if method == 'mean':
234
+ result = np.mean(squared_errors)
235
+ elif method == 'sum':
236
+ result = np.sum(squared_errors)
237
+ elif method == 'none':
238
+ result = squared_errors
239
+ else:
240
+ raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
241
+
242
+ # if normalize and method != 'none':
243
+ # range_y = np.ptp(y_true)
244
+ # result = result / max(abs(range_y), 1)
245
+
246
+ return result
247
+
248
+ elif library == 'sklearn':
249
+ from sklearn.metrics import mean_squared_error as sklearn_mse
250
+ return sklearn_mse(y_true, y_pred)
251
+
252
+ elif library == 'torch':
253
+ import torch
254
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
255
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
256
+ return torch.mean((y_true_tensor - y_pred_tensor) ** 2).item()
257
+
258
+ elif library == 'tensorflow':
259
+ import tensorflow as tf
260
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
261
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
262
+ return tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor)).numpy()
263
+
264
+ def root_mean_squared_error(self, y_true, y_pred, library=None):
265
+ """
266
+ Computes Root Mean Squared Error (RMSE).
267
+ """
268
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
269
+
270
+ if library == 'sklearn':
271
+ from sklearn.metrics import mean_squared_error as sklearn_mse
272
+ return np.sqrt(sklearn_mse(y_true, y_pred))
273
+
274
+ if library == 'torch':
275
+ import torch
276
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
277
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
278
+ return torch.sqrt(torch.mean((y_true_tensor - y_pred_tensor) ** 2)).item()
279
+
280
+ if library == 'tensorflow':
281
+ import tensorflow as tf
282
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
283
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
284
+ return tf.sqrt(tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor))).numpy()
285
+
286
+ mse = self.mean_squared_error(y_true, y_pred)
287
+ return np.sqrt(mse)
288
+
289
+ def mean_absolute_percentage_error(self, y_true, y_pred, library=None):
290
+ """
291
+ Computes Mean Absolute Percentage Error (MAPE).
292
+ """
293
+ y_true, y_pred = self.validator.validate_regression_targets(y_true, y_pred)
294
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
295
+
296
+ if library == 'sklearn':
297
+ from sklearn.metrics import mean_absolute_percentage_error as sklearn_mape
298
+ return sklearn_mape(y_true, y_pred) * 100
299
+
300
+ if library == 'torch':
301
+ import torch
302
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
303
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
304
+ return torch.mean(torch.abs((y_true_tensor - y_pred_tensor) / torch.clamp(y_true_tensor, min=1e-8))).item() * 100
305
+
306
+ if library == 'tensorflow':
307
+ import tensorflow as tf
308
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
309
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
310
+ return tf.reduce_mean(tf.abs((y_true_tensor - y_pred_tensor) / tf.clip_by_value(y_true_tensor, 1e-8, tf.float32.max))).numpy() * 100
311
+
312
+ return np.mean(np.abs((y_true - y_pred) / np.clip(y_true, 1e-8, None))) * 100
313
+
314
+ def explained_variance_score(self, y_true, y_pred, library=None, flatten=True):
315
+ """
316
+ Computes Explained Variance Score.
317
+ """
318
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
319
+
320
+ if library == 'sklearn':
321
+ from sklearn.metrics import explained_variance_score as sklearn_evs
322
+ return sklearn_evs(y_true, y_pred)
323
+
324
+ if library == 'torch':
325
+ import torch
326
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
327
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
328
+ variance_residual = torch.var(y_true_tensor - y_pred_tensor)
329
+ variance_y = torch.var(y_true_tensor)
330
+ return 1 - variance_residual / variance_y if variance_y != 0 else 0
331
+
332
+ if library == 'tensorflow':
333
+ import tensorflow as tf
334
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
335
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
336
+ variance_residual = tf.math.reduce_variance(y_true_tensor - y_pred_tensor)
337
+ variance_y = tf.math.reduce_variance(y_true_tensor)
338
+ return 1 - variance_residual / variance_y if variance_y != 0 else 0
339
+
340
+ numerator = np.var(y_true - y_pred)
341
+ denominator = np.var(y_true)
342
+ return 1 - numerator / denominator if denominator != 0 else 0
343
+
344
+ def adjusted_r2_score(self, y_true, y_pred, n_features, library=None, flatten=True):
345
+ """
346
+ Computes Adjusted R-Squared Score.
347
+
348
+ Parameters:
349
+ y_true: array-like of shape (n_samples,)
350
+ Ground truth (correct) target values.
351
+
352
+ y_pred: array-like of shape (n_samples,)
353
+ Estimated target values.
354
+
355
+ n_features: int
356
+ Number of independent features in the model.
357
+
358
+ library: str, optional (default=None)
359
+ Library to use for computation. Supports {'sklearn', 'statsmodels', None}.
360
+
361
+ flatten: bool, optional (default=True)
362
+ If True, flattens multidimensional arrays before computation.
363
+ """
364
+ # Validate inputs
365
+ y_true, y_pred, _ = self.validator.validate_r2_score_inputs(y_true, y_pred)
366
+
367
+ # Ensure inputs are 1D arrays
368
+ if y_true.ndim == 0 or y_pred.ndim == 0:
369
+ y_true = np.array([y_true])
370
+ y_pred = np.array([y_pred])
371
+
372
+ if flatten and y_true.ndim > 1:
373
+ y_true = y_true.flatten()
374
+ y_pred = y_pred.flatten()
375
+
376
+ if library == 'sklearn':
377
+ from sklearn.metrics import r2_score
378
+ r2 = r2_score(y_true, y_pred)
379
+ elif library == 'statsmodels':
380
+ import statsmodels.api as sm
381
+ X = sm.add_constant(y_pred)
382
+ model = sm.OLS(y_true, X).fit()
383
+ r2 = model.rsquared
384
+ else:
385
+ numerator = np.sum((y_true - y_pred) ** 2)
386
+ denominator = np.sum((y_true - np.mean(y_true)) ** 2)
387
+ r2 = 1 - (numerator / denominator) if denominator != 0 else 0.0
388
+
389
+ n_samples = len(y_true)
390
+ if n_samples <= n_features + 1:
391
+ raise ValueError("Number of samples must be greater than number of features plus one for adjusted R-squared computation.")
392
+
393
+ adjusted_r2 = 1 - (1 - r2) * (n_samples - 1) / (n_samples - n_features - 1)
394
+ return adjusted_r2
252
395
 
253
396
  if __name__ == '__main__':
254
397
  # Example usage
@@ -260,7 +403,16 @@ if __name__ == '__main__':
260
403
  print("1D array:", validator.is_1d_array(arr))
261
404
  print("Samples:", validator.check_samples(arr))
262
405
 
263
- # Test R2 score
406
+ # Test MAE, MSE, R2, MBD, EV, MAPE, RMSE
264
407
  y_true = [3, -0.5, 2, 7]
265
408
  y_pred = [2.5, 0.0, 2, 8]
409
+
410
+ print("Mean Absolute Error:", metrics.mean_absolute_error(y_true, y_pred))
411
+ print("Mean Squared Error:", metrics.mean_squared_error(y_true, y_pred))
266
412
  print("R2 Score:", metrics.r2_score(y_true, y_pred))
413
+ print("Mean Bias Deviation: ", metrics.mean_bias_deviation(y_true, y_pred))
414
+ print("Explained Variance Score: ", metrics.explained_variance_score(y_true, y_pred))
415
+ print("Mean Absolute Percentage Error: ", metrics.mean_absolute_percentage_error(y_true, y_pred))
416
+ print("Root Mean Squared Error: ", metrics.root_mean_squared_error(y_true, y_pred))
417
+ print("adjusted_r2_score: ", metrics.adjusted_r2_score(y_true, y_pred, 2))
418
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: Moral88
3
- Version: 0.4.0
3
+ Version: 0.6.0
4
4
  Summary: A library for regression evaluation metrics.
5
5
  Author: Morteza Alizadeh
6
6
  Author-email: alizadeh.c2m@gmail.com
@@ -0,0 +1,8 @@
1
+ Moral88/__init__.py,sha256=vb-aPc9ZbnYNSy9qq2fVESI63E10pYsCrDpnV8OHWkg,74
2
+ Moral88/regression.py,sha256=0aSRXLWur6tcC4xd806koyB2ktgPJodlOeXYCZZYDzE,17208
3
+ Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
4
+ Moral88-0.6.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ Moral88-0.6.0.dist-info/METADATA,sha256=6Y1H8Qh9wnrZVUr2gnoBYMnF5EsXY6ijMoS9bFZ21bE,407
6
+ Moral88-0.6.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
7
+ Moral88-0.6.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
8
+ Moral88-0.6.0.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- Moral88/__init__.py,sha256=vb-aPc9ZbnYNSy9qq2fVESI63E10pYsCrDpnV8OHWkg,74
2
- Moral88/regression.py,sha256=kfWQcdtdZVlHW_iIRbS9_rNrKJOYNiT9RaeYpVIvl7I,9355
3
- Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
4
- Moral88-0.4.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- Moral88-0.4.0.dist-info/METADATA,sha256=TITXx4rc91SXkAwwDXu2mW-FbV1xQukBXEFiVfgRXMY,407
6
- Moral88-0.4.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
7
- Moral88-0.4.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
8
- Moral88-0.4.0.dist-info/RECORD,,