Moral88 0.2.0__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Moral88/regression.py CHANGED
@@ -1,36 +1,51 @@
1
- def mean_absolute_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88'):
1
+ import numpy as np
2
+
3
+ def validate_inputs(y_true, y_pred):
4
+ """
5
+ Validate the inputs for type and length.
6
+ """
7
+ if not isinstance(y_true, (list, tuple, np.ndarray)) or not isinstance(y_pred, (list, tuple, np.ndarray)):
8
+ raise TypeError("Both y_true and y_pred must be lists, tuples, or numpy arrays.")
9
+
10
+ y_true = np.array(y_true)
11
+ y_pred = np.array(y_pred)
12
+
13
+ if y_true.shape != y_pred.shape:
14
+ raise ValueError("Shapes of y_true and y_pred must be the same.")
15
+
16
+ if not np.issubdtype(y_true.dtype, np.number) or not np.issubdtype(y_pred.dtype, np.number):
17
+ raise TypeError("All elements in y_true and y_pred must be numeric.")
18
+
19
+ def mean_absolute_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
2
20
  """
3
- Calculate Mean Absolute Error (MAE) or variants based on method and library.
4
-
5
- Parameters:
6
- - y_true (list or array): True values (required)
7
- - y_pred (list or array): Predicted values (required)
8
- - normalize (bool): If True, normalize the result (default: True)
9
- - threshold (tuple, optional): Apply a threshold to the predictions (default: None)
10
- - method (str): Method of calculation. Options: {'mean', 'sum', 'none'}. Default: 'mean'
11
- - library (str): Library to use for calculations. Options: {'Moral88', 'sklearn', 'torch', 'tensor', 'statsmodel', 'Dask-ML', 'MLlib'}. Default: 'Moral88'.
12
-
13
- Returns:
14
- - float or list: Calculated error based on selected method and library.
21
+ Calculate Mean Absolute Error (MAE) for single or multi-dimensional data.
15
22
  """
23
+ validate_inputs(y_true, y_pred)
24
+
25
+ # y_true = np.array(y_true)
26
+ # y_pred = np.array(y_pred)
27
+
28
+ if flatten:
29
+ y_true = y_true.ravel()
30
+ y_pred = y_pred.ravel()
31
+
16
32
  if library == 'Moral88':
17
- # Original implementation
18
33
  if threshold is not None:
19
- y_pred = [min(max(pred, threshold[0]), threshold[1]) for pred in y_pred]
34
+ y_pred = np.clip(y_pred, threshold[0], threshold[1])
20
35
 
21
- absolute_errors = [abs(y_t - y_p) for y_t, y_p in zip(y_true, y_pred)]
36
+ absolute_errors = np.abs(y_true - y_pred)
22
37
 
23
38
  if method == 'mean':
24
- result = sum(absolute_errors) / len(y_true)
39
+ result = np.mean(absolute_errors)
25
40
  elif method == 'sum':
26
- result = sum(absolute_errors)
41
+ result = np.sum(absolute_errors)
27
42
  elif method == 'none':
28
43
  result = absolute_errors
29
44
  else:
30
45
  raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
31
46
 
32
47
  if normalize and method != 'none':
33
- range_y = max(y_true) - min(y_true)
48
+ range_y = np.ptp(y_true)
34
49
  result = result / max(abs(range_y), 1)
35
50
 
36
51
  return result
@@ -51,52 +66,39 @@ def mean_absolute_error(y_true, y_pred, normalize=True, threshold=None, method='
51
66
  y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
52
67
  return tf.reduce_mean(tf.abs(y_true_tensor - y_pred_tensor)).numpy()
53
68
 
54
- # elif library == 'statsmodel':
55
- # raise NotImplementedError("Statsmodel does not have a built-in MAE implementation.")
56
-
57
- # elif library == 'Dask-ML':
58
- # raise NotImplementedError("Dask-ML support is not implemented yet.")
59
-
60
- # elif library == 'MLlib':
61
- # raise NotImplementedError("MLlib support is not implemented yet.")
62
-
63
69
  else:
64
70
  raise ValueError(f"Invalid library: {library}. Choose from {'Moral88', 'sklearn', 'torch', 'tensorflow'}.")
65
71
 
66
-
67
- def mean_squared_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88'):
72
+ def mean_squared_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
68
73
  """
69
- Calculate Mean Squared Error (MSE) or variants based on method and library.
70
-
71
- Parameters:
72
- - y_true (list or array): True values (required)
73
- - y_pred (list or array): Predicted values (required)
74
- - normalize (bool): If True, normalize the result (default: True)
75
- - threshold (tuple, optional): Apply a threshold to the predictions (default: None)
76
- - method (str): Method of calculation. Options: {'mean', 'sum', 'none'}. Default: 'mean'
77
- - library (str): Library to use for calculations. Options: {'Moral88', 'sklearn', 'torch', 'tensor', 'statsmodel', 'Dask-ML', 'MLlib'}. Default: 'Moral88'.
78
-
79
- Returns:
80
- - float or list: Calculated error based on selected method and library.
74
+ Calculate Mean Squared Error (MSE) for single or multi-dimensional data.
81
75
  """
76
+ validate_inputs(y_true, y_pred)
77
+
78
+ # y_true = np.array(y_true)
79
+ # y_pred = np.array(y_pred)
80
+
81
+ if flatten:
82
+ y_true = y_true.ravel()
83
+ y_pred = y_pred.ravel()
84
+
82
85
  if library == 'Moral88':
83
- # Original implementation
84
86
  if threshold is not None:
85
- y_pred = [min(max(pred, threshold[0]), threshold[1]) for pred in y_pred]
87
+ y_pred = np.clip(y_pred, threshold[0], threshold[1])
86
88
 
87
- squared_errors = [(y_t - y_p) ** 2 for y_t, y_p in zip(y_true, y_pred)]
89
+ squared_errors = (y_true - y_pred) ** 2
88
90
 
89
91
  if method == 'mean':
90
- result = sum(squared_errors) / len(y_true)
92
+ result = np.mean(squared_errors)
91
93
  elif method == 'sum':
92
- result = sum(squared_errors)
94
+ result = np.sum(squared_errors)
93
95
  elif method == 'none':
94
96
  result = squared_errors
95
97
  else:
96
98
  raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
97
99
 
98
100
  if normalize and method != 'none':
99
- range_y = max(y_true) - min(y_true)
101
+ range_y = np.ptp(y_true)
100
102
  result = result / max(abs(range_y), 1)
101
103
 
102
104
  return result
@@ -117,23 +119,148 @@ def mean_squared_error(y_true, y_pred, normalize=True, threshold=None, method='m
117
119
  y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
118
120
  return tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor)).numpy()
119
121
 
120
- # elif library == 'statsmodel':
121
- # raise NotImplementedError("Statsmodel does not have a built-in MSE implementation.")
122
-
123
- # elif library == 'Dask-ML':
124
- # raise NotImplementedError("Dask-ML support is not implemented yet.")
125
-
126
- # elif library == 'MLlib':
127
- # raise NotImplementedError("MLlib support is not implemented yet.")
128
-
129
122
  else:
130
123
  raise ValueError(f"Invalid library: {library}. Choose from {'Moral88', 'sklearn', 'torch', 'tensorflow'}.")
131
- def r_squared(y_true, y_pred):
124
+
125
+ def r_squared(y_true, y_pred, flatten=True):
132
126
  """
133
- Compute R-Squared
127
+ Compute R-Squared for single or multi-dimensional data.
134
128
  """
135
- import numpy as np
136
- y_true, y_pred = np.array(y_true), np.array(y_pred)
129
+ validate_inputs(y_true, y_pred)
130
+
131
+ y_true = np.array(y_true)
132
+ y_pred = np.array(y_pred)
133
+
134
+ if flatten:
135
+ y_true = y_true.ravel()
136
+ y_pred = y_pred.ravel()
137
+
137
138
  ss_total = np.sum((y_true - np.mean(y_true)) ** 2)
138
139
  ss_residual = np.sum((y_true - y_pred) ** 2)
139
- return 1 - (ss_residual / ss_total)
140
+ return 1 - (ss_residual / ss_total)
141
+
142
+ import numpy as np
143
+ import warnings
144
+ from typing import Union, List, Tuple
145
+ from scipy import sparse
146
+
147
+ class DataValidator:
148
+ def __init__(self):
149
+ pass
150
+
151
+ def check_device_cpu(self, device):
152
+ if device not in {"cpu", None}:
153
+ raise ValueError(f"Unsupported device: {device!r}. Only 'cpu' is supported.")
154
+
155
+ def is_1d_array(self, array: Union[np.ndarray, list], warn: bool = False) -> np.ndarray:
156
+ """
157
+ Ensures input is a 1D array. Raises an error if it's not 1D or convertible to 1D.
158
+ """
159
+ array = np.asarray(array)
160
+ shape = array.shape
161
+
162
+ if len(shape) == 1:
163
+ return array
164
+ elif len(shape) == 2 and shape[1] == 1:
165
+ if warn:
166
+ warnings.warn("Input is 2D but will be converted to 1D.", UserWarning)
167
+ return array.ravel()
168
+ else:
169
+ raise ValueError(f"Input must be 1D. Found shape {shape}.")
170
+
171
+ def check_samples(self, array: Union[np.ndarray, list]) -> int:
172
+ """
173
+ Returns the number of samples in the array.
174
+ """
175
+ if hasattr(array, 'shape') and len(array.shape) > 0:
176
+ return array.shape[0]
177
+ else:
178
+ raise TypeError("Input must be an array-like object with at least one dimension.")
179
+
180
+ def check_consistent_length(self, *arrays: Union[np.ndarray, list]):
181
+ """
182
+ Ensures all input arrays have the same length.
183
+ """
184
+ lengths = [self.check_samples(arr) for arr in arrays]
185
+ if len(set(lengths)) > 1:
186
+ raise ValueError(f"Inconsistent lengths: {lengths}")
187
+
188
+ def validate_regression_targets(self, y_true, y_pred, dtype=np.float64):
189
+ """
190
+ Ensures regression target values are consistent and converted to the specified dtype.
191
+ """
192
+ y_true = np.asarray(y_true, dtype=dtype)
193
+ y_pred = np.asarray(y_pred, dtype=dtype)
194
+
195
+ if y_true.shape != y_pred.shape:
196
+ raise ValueError(f"Shapes of y_true {y_true.shape} and y_pred {y_pred.shape} do not match.")
197
+
198
+ return y_true, y_pred
199
+
200
+ def check_array(self, array, ensure_2d: bool = True, dtype=np.float64, allow_nan: bool = False):
201
+ """
202
+ Validates input array and converts it to specified dtype.
203
+ """
204
+ array = np.asarray(array, dtype=dtype)
205
+
206
+ if ensure_2d and array.ndim == 1:
207
+ array = array.reshape(-1, 1)
208
+
209
+ if not allow_nan and np.isnan(array).any():
210
+ raise ValueError("Input contains NaN values, which are not allowed.")
211
+
212
+ return array
213
+
214
+ def check_sparse(self, array, accept_sparse: Tuple[str] = ('csr', 'csc')):
215
+ """
216
+ Validates sparse matrices and converts to an acceptable format.
217
+ """
218
+ if sparse.issparse(array):
219
+ if array.format not in accept_sparse:
220
+ return array.asformat(accept_sparse[0])
221
+ return array
222
+ else:
223
+ raise ValueError("Input is not a sparse matrix.")
224
+
225
+ def validate_r2_score_inputs(self, y_true, y_pred, sample_weight=None):
226
+ """
227
+ Ensures inputs for R2 score computation are valid.
228
+ """
229
+ y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
230
+ if sample_weight is not None:
231
+ sample_weight = self.is_1d_array(sample_weight)
232
+ return y_true, y_pred, sample_weight
233
+
234
+
235
+ class Metrics:
236
+ def __init__(self):
237
+ self.validator = DataValidator()
238
+
239
+ def r2_score(self, y_true, y_pred, sample_weight=None):
240
+ """
241
+ Computes R2 score.
242
+ """
243
+ y_true, y_pred, sample_weight = self.validator.validate_r2_score_inputs(y_true, y_pred, sample_weight)
244
+
245
+ numerator = np.sum((y_true - y_pred) ** 2)
246
+ denominator = np.sum((y_true - np.mean(y_true)) ** 2)
247
+
248
+ if denominator == 0:
249
+ return 0.0
250
+ return 1 - (numerator / denominator)
251
+
252
+
253
+ if __name__ == '__main__':
254
+ # Example usage
255
+ validator = DataValidator()
256
+ metrics = Metrics()
257
+
258
+ # Test validation
259
+ arr = [[1], [2], [3]]
260
+ print("1D array:", validator.is_1d_array(arr))
261
+ print("Samples:", validator.check_samples(arr))
262
+
263
+ # Test R2 score
264
+ y_true = [3, -0.5, 2, 7]
265
+ y_pred = [2.5, 0.0, 2, 8]
266
+ print("R2 Score:", metrics.r2_score(y_true, y_pred))
@@ -0,0 +1,38 @@
1
+ def validate_segmentation_inputs(y_true, y_pred):
2
+ """
3
+ Validate the inputs for type and shape.
4
+ """
5
+ if not isinstance(y_true, (list, tuple)) or not isinstance(y_pred, (list, tuple)):
6
+ raise TypeError("Both y_true and y_pred must be lists or tuples.")
7
+
8
+ if len(y_true) != len(y_pred):
9
+ raise ValueError("Length of y_true and y_pred must be the same.")
10
+
11
+ if not all(isinstance(x, (int, float)) for x in y_true + y_pred):
12
+ raise TypeError("All elements in y_true and y_pred must be numeric.")
13
+
14
+ def dice_score(y_true, y_pred, threshold=0.5):
15
+ """
16
+ Compute the Dice Score.
17
+
18
+ Args:
19
+ y_true (list or tuple): Ground truth binary values.
20
+ y_pred (list or tuple): Predicted values (probabilities or binary).
21
+ threshold (float): Threshold to binarize y_pred if necessary.
22
+
23
+ Returns:
24
+ float: Dice Score.
25
+ """
26
+ validate_segmentation_inputs(y_true, y_pred)
27
+
28
+ # Binarize predictions based on threshold
29
+ y_pred = [1 if p >= threshold else 0 for p in y_pred]
30
+
31
+ # Calculate intersection and union
32
+ intersection = sum(yt * yp for yt, yp in zip(y_true, y_pred))
33
+ total = sum(y_true) + sum(y_pred)
34
+
35
+ if total == 0:
36
+ return 1.0 # Perfect match if both are completely empty
37
+
38
+ return 2 * intersection / total
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: Moral88
3
- Version: 0.2.0
3
+ Version: 0.3.0
4
4
  Summary: A library for regression evaluation metrics.
5
5
  Author: Morteza Alizadeh
6
6
  Author-email: alizadeh.c2m@gmail.com
@@ -0,0 +1,8 @@
1
+ Moral88/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ Moral88/regression.py,sha256=kfWQcdtdZVlHW_iIRbS9_rNrKJOYNiT9RaeYpVIvl7I,9355
3
+ Moral88/segmentation.py,sha256=v0yqxdrKbM9LM7wVKLjJ4HrhrSrilNNeWS6-oK_27Ag,1363
4
+ Moral88-0.3.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ Moral88-0.3.0.dist-info/METADATA,sha256=rKJtI5aX0pT3DSORLtFmsMPYB8fiAbGNQKmEndRNPtI,407
6
+ Moral88-0.3.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
7
+ Moral88-0.3.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
8
+ Moral88-0.3.0.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- Moral88/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- Moral88/regression.py,sha256=W_galfrJHIbyP8S1YL0_GMBCKVKfbI2uJfI1PRsAaOk,5939
3
- Moral88-0.2.0.dist-info/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- Moral88-0.2.0.dist-info/METADATA,sha256=L3o3beMiux_cQtS6PE8sWQbC6Q2K4RuId_n6X7-tEtg,407
5
- Moral88-0.2.0.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
6
- Moral88-0.2.0.dist-info/top_level.txt,sha256=-dyn5iTprnSUHbtMpvRO-prJsIoaRxao7wlfCHLSsv4,8
7
- Moral88-0.2.0.dist-info/RECORD,,