Mesa 3.2.0__py3-none-any.whl → 3.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of Mesa might be problematic. Click here for more details.

Files changed (40) hide show
  1. mesa/__init__.py +1 -1
  2. mesa/agent.py +3 -3
  3. mesa/datacollection.py +1 -1
  4. mesa/examples/advanced/epstein_civil_violence/app.py +11 -11
  5. mesa/examples/advanced/pd_grid/app.py +10 -11
  6. mesa/examples/advanced/sugarscape_g1mt/app.py +34 -16
  7. mesa/examples/advanced/wolf_sheep/app.py +21 -18
  8. mesa/examples/basic/boid_flockers/app.py +15 -11
  9. mesa/examples/basic/boltzmann_wealth_model/app.py +39 -32
  10. mesa/examples/basic/conways_game_of_life/app.py +13 -16
  11. mesa/examples/basic/schelling/Readme.md +2 -2
  12. mesa/examples/basic/schelling/agents.py +9 -3
  13. mesa/examples/basic/schelling/app.py +50 -3
  14. mesa/examples/basic/schelling/model.py +2 -0
  15. mesa/examples/basic/schelling/resources/blue_happy.png +0 -0
  16. mesa/examples/basic/schelling/resources/blue_unhappy.png +0 -0
  17. mesa/examples/basic/schelling/resources/orange_happy.png +0 -0
  18. mesa/examples/basic/schelling/resources/orange_unhappy.png +0 -0
  19. mesa/examples/basic/virus_on_network/app.py +31 -14
  20. mesa/experimental/continuous_space/continuous_space.py +1 -1
  21. mesa/space.py +4 -1
  22. mesa/visualization/__init__.py +2 -0
  23. mesa/visualization/backends/__init__.py +23 -0
  24. mesa/visualization/backends/abstract_renderer.py +97 -0
  25. mesa/visualization/backends/altair_backend.py +440 -0
  26. mesa/visualization/backends/matplotlib_backend.py +419 -0
  27. mesa/visualization/components/__init__.py +28 -8
  28. mesa/visualization/components/altair_components.py +86 -0
  29. mesa/visualization/components/matplotlib_components.py +4 -2
  30. mesa/visualization/components/portrayal_components.py +120 -0
  31. mesa/visualization/mpl_space_drawing.py +292 -129
  32. mesa/visualization/solara_viz.py +274 -32
  33. mesa/visualization/space_drawers.py +797 -0
  34. mesa/visualization/space_renderer.py +399 -0
  35. {mesa-3.2.0.dist-info → mesa-3.3.0.dist-info}/METADATA +13 -4
  36. {mesa-3.2.0.dist-info → mesa-3.3.0.dist-info}/RECORD +39 -29
  37. mesa/examples/advanced/sugarscape_g1mt/tests.py +0 -69
  38. {mesa-3.2.0.dist-info → mesa-3.3.0.dist-info}/WHEEL +0 -0
  39. {mesa-3.2.0.dist-info → mesa-3.3.0.dist-info}/licenses/LICENSE +0 -0
  40. {mesa-3.2.0.dist-info → mesa-3.3.0.dist-info}/licenses/NOTICE +0 -0
@@ -10,18 +10,19 @@ from mesa.examples.basic.virus_on_network.model import (
10
10
  from mesa.visualization import (
11
11
  Slider,
12
12
  SolaraViz,
13
+ SpaceRenderer,
13
14
  make_plot_component,
14
- make_space_component,
15
15
  )
16
+ from mesa.visualization.components import AgentPortrayalStyle
16
17
 
17
18
 
18
19
  def agent_portrayal(agent):
19
20
  node_color_dict = {
20
- State.INFECTED: "tab:red",
21
- State.SUSCEPTIBLE: "tab:green",
22
- State.RESISTANT: "tab:gray",
21
+ State.INFECTED: "red",
22
+ State.SUSCEPTIBLE: "green",
23
+ State.RESISTANT: "gray",
23
24
  }
24
- return {"color": node_color_dict[agent.state], "size": 10}
25
+ return AgentPortrayalStyle(color=node_color_dict[agent.state], size=20)
25
26
 
26
27
 
27
28
  def get_resistant_susceptible_ratio(model):
@@ -92,24 +93,40 @@ model_params = {
92
93
  }
93
94
 
94
95
 
95
- def post_process_lineplot(ax):
96
- ax.set_ylim(ymin=0)
97
- ax.set_ylabel("# people")
98
- ax.legend(bbox_to_anchor=(1.05, 1.0), loc="upper left")
96
+ def post_process_lineplot(chart):
97
+ chart = chart.properties(
98
+ width=400,
99
+ height=400,
100
+ ).configure_legend(
101
+ strokeColor="black",
102
+ fillColor="#ECE9E9",
103
+ orient="right",
104
+ cornerRadius=5,
105
+ padding=10,
106
+ strokeWidth=1,
107
+ )
108
+ return chart
109
+
99
110
 
111
+ model1 = VirusOnNetwork()
112
+ renderer = SpaceRenderer(model1, backend="altair")
113
+ renderer.draw_structure(
114
+ node_kwargs={"color": "black", "filled": False, "strokeWidth": 5},
115
+ edge_kwargs={"strokeDash": [6, 1]},
116
+ ) # Do this to draw the underlying network and customize it
117
+ renderer.draw_agents(agent_portrayal)
100
118
 
101
- SpacePlot = make_space_component(agent_portrayal)
119
+ # Plot components can also be in altair and support post_process
102
120
  StatePlot = make_plot_component(
103
- {"Infected": "tab:red", "Susceptible": "tab:green", "Resistant": "tab:gray"},
121
+ {"Infected": "red", "Susceptible": "green", "Resistant": "gray"},
122
+ backend="altair",
104
123
  post_process=post_process_lineplot,
105
124
  )
106
125
 
107
- model1 = VirusOnNetwork()
108
-
109
126
  page = SolaraViz(
110
127
  model1,
128
+ renderer,
111
129
  components=[
112
- SpacePlot,
113
130
  StatePlot,
114
131
  get_resistant_susceptible_ratio,
115
132
  ],
@@ -117,7 +117,7 @@ class ContinuousSpace:
117
117
  if self._agent_positions.shape[0] <= index:
118
118
  # we are out of space
119
119
  fraction = 0.2 # we add 20% Fixme
120
- n = int(round(fraction * self._n_agents))
120
+ n = round(fraction * self._n_agents, None)
121
121
  self._agent_positions = np.vstack(
122
122
  [
123
123
  self._agent_positions,
mesa/space.py CHANGED
@@ -1571,7 +1571,10 @@ class NetworkGrid:
1571
1571
  )
1572
1572
  if not include_center:
1573
1573
  del neighbors_with_distance[node_id]
1574
- neighborhood = sorted(neighbors_with_distance.keys())
1574
+ neighbors_with_distance = sorted(
1575
+ neighbors_with_distance.items(), key=lambda item: item[1]
1576
+ )
1577
+ neighborhood = [node_id for node_id, _ in neighbors_with_distance]
1575
1578
  return neighborhood
1576
1579
 
1577
1580
  def get_neighbors(
@@ -13,6 +13,7 @@ from .command_console import CommandConsole
13
13
  from .components import make_plot_component, make_space_component
14
14
  from .components.altair_components import make_space_altair
15
15
  from .solara_viz import JupyterViz, SolaraViz
16
+ from .space_renderer import SpaceRenderer
16
17
  from .user_param import Slider
17
18
 
18
19
  __all__ = [
@@ -20,6 +21,7 @@ __all__ = [
20
21
  "JupyterViz",
21
22
  "Slider",
22
23
  "SolaraViz",
24
+ "SpaceRenderer",
23
25
  "draw_space",
24
26
  "make_plot_component",
25
27
  "make_space_altair",
@@ -0,0 +1,23 @@
1
+ """Visualization backends for Mesa space rendering.
2
+
3
+ This module provides different backend implementations for visualizing
4
+ Mesa agent-based model spaces and components.
5
+
6
+ Note:
7
+ These backends are used internally by the space renderer and are not intended for
8
+ direct use by end users. See `SpaceRenderer` for actual usage and setting up
9
+ visualizations.
10
+
11
+ Available Backends:
12
+ 1. AltairBackend
13
+ 2. MatplotlibBackend
14
+
15
+ """
16
+
17
+ from .altair_backend import AltairBackend
18
+ from .matplotlib_backend import MatplotlibBackend
19
+
20
+ __all__ = [
21
+ "AltairBackend",
22
+ "MatplotlibBackend",
23
+ ]
@@ -0,0 +1,97 @@
1
+ """Abstract base class for visualization backends in Mesa.
2
+
3
+ This module provides the foundational interface for implementing various
4
+ visualization backends for Mesa agent-based models.
5
+ """
6
+
7
+ from abc import ABC, abstractmethod
8
+
9
+ import mesa
10
+ from mesa.discrete_space import (
11
+ OrthogonalMooreGrid,
12
+ OrthogonalVonNeumannGrid,
13
+ )
14
+ from mesa.space import (
15
+ HexMultiGrid,
16
+ HexSingleGrid,
17
+ MultiGrid,
18
+ NetworkGrid,
19
+ SingleGrid,
20
+ )
21
+
22
+ OrthogonalGrid = SingleGrid | MultiGrid | OrthogonalMooreGrid | OrthogonalVonNeumannGrid
23
+ HexGrid = HexSingleGrid | HexMultiGrid | mesa.discrete_space.HexGrid
24
+ Network = NetworkGrid | mesa.discrete_space.Network
25
+
26
+
27
+ class AbstractRenderer(ABC):
28
+ """Abstract base class for visualization backends.
29
+
30
+ This class defines the interface for rendering Mesa spaces and agents.
31
+ For details on the methods checkout specific backend implementations.
32
+ """
33
+
34
+ def __init__(self, space_drawer):
35
+ """Initialize the renderer.
36
+
37
+ Args:
38
+ space_drawer: Object responsible for drawing space elements. Checkout `SpaceDrawer`
39
+ for more details on the detailed implementations of the drawing functions.
40
+ """
41
+ self.space_drawer = space_drawer
42
+ self._canvas = None
43
+
44
+ def _get_agent_pos(self, agent, space):
45
+ """Get agent position based on space type."""
46
+ if isinstance(space, NetworkGrid):
47
+ return agent.pos, agent.pos
48
+ elif isinstance(space, Network):
49
+ return agent.cell.coordinate, agent.cell.coordinate
50
+ else:
51
+ x = agent.pos[0] if agent.pos is not None else agent.cell.coordinate[0]
52
+ y = agent.pos[1] if agent.pos is not None else agent.cell.coordinate[1]
53
+ return x, y
54
+
55
+ @abstractmethod
56
+ def initialize_canvas(self):
57
+ """Set up the drawing canvas."""
58
+
59
+ @abstractmethod
60
+ def draw_structure(self, **kwargs):
61
+ """Draw the space structure.
62
+
63
+ Args:
64
+ **kwargs: Structure drawing configuration options.
65
+ """
66
+
67
+ @abstractmethod
68
+ def collect_agent_data(self, space, agent_portrayal, default_size=None):
69
+ """Collect plotting data for all agents in the space.
70
+
71
+ Args:
72
+ space: The Mesa space containing agents.
73
+ agent_portrayal (Callable): Function that returns AgentPortrayalStyle for each agent.
74
+ default_size (float, optional): Default marker size if not specified in portrayal.
75
+
76
+ Returns:
77
+ dict: Dictionary containing agent plotting data arrays with keys:
78
+ """
79
+
80
+ @abstractmethod
81
+ def draw_agents(self, arguments, **kwargs):
82
+ """Drawing agents on space.
83
+
84
+ Args:
85
+ arguments (dict): Dictionary containing agent data.
86
+ **kwargs: Additional drawing configuration options.
87
+ """
88
+
89
+ @abstractmethod
90
+ def draw_propertylayer(self, space, property_layers, propertylayer_portrayal):
91
+ """Draw property layers on the visualization.
92
+
93
+ Args:
94
+ space: The model's space object.
95
+ property_layers (dict): Dictionary of property layers to visualize.
96
+ propertylayer_portrayal (Callable): Function that returns PropertyLayerStyle.
97
+ """
@@ -0,0 +1,440 @@
1
+ # noqa: D100
2
+ import warnings
3
+ from collections.abc import Callable
4
+ from dataclasses import fields
5
+ from typing import Any
6
+
7
+ import altair as alt
8
+ import numpy as np
9
+ import pandas as pd
10
+ from matplotlib.colors import to_rgb
11
+
12
+ import mesa
13
+ from mesa.discrete_space import (
14
+ OrthogonalMooreGrid,
15
+ OrthogonalVonNeumannGrid,
16
+ )
17
+ from mesa.space import (
18
+ HexMultiGrid,
19
+ HexSingleGrid,
20
+ MultiGrid,
21
+ NetworkGrid,
22
+ SingleGrid,
23
+ )
24
+ from mesa.visualization.backends.abstract_renderer import AbstractRenderer
25
+
26
+ OrthogonalGrid = SingleGrid | MultiGrid | OrthogonalMooreGrid | OrthogonalVonNeumannGrid
27
+ HexGrid = HexSingleGrid | HexMultiGrid | mesa.discrete_space.HexGrid
28
+ Network = NetworkGrid | mesa.discrete_space.Network
29
+
30
+
31
+ class AltairBackend(AbstractRenderer):
32
+ """Altair-based renderer for Mesa spaces.
33
+
34
+ This module provides an Altair-based renderer for visualizing Mesa model spaces,
35
+ agents, and property layers with interactive charting capabilities.
36
+ """
37
+
38
+ def initialize_canvas(self) -> None:
39
+ """Initialize the Altair canvas."""
40
+ self._canvas = None
41
+
42
+ def draw_structure(self, **kwargs) -> alt.Chart:
43
+ """Draw the space structure using Altair.
44
+
45
+ Args:
46
+ **kwargs: Additional arguments passed to the space drawer.
47
+ Checkout respective `SpaceDrawer` class on details how to pass **kwargs.
48
+
49
+ Returns:
50
+ alt.Chart: The Altair chart representing the space structure.
51
+ """
52
+ return self.space_drawer.draw_altair(**kwargs)
53
+
54
+ def collect_agent_data(
55
+ self, space, agent_portrayal: Callable, default_size: float | None = None
56
+ ):
57
+ """Collect plotting data for all agents in the space for Altair.
58
+
59
+ Args:
60
+ space: The Mesa space containing agents.
61
+ agent_portrayal: Callable that returns AgentPortrayalStyle for each agent.
62
+ default_size: Default marker size if not specified in portrayal.
63
+
64
+ Returns:
65
+ dict: Dictionary containing agent plotting data arrays.
66
+ """
67
+ # Initialize data collection arrays
68
+ arguments = {
69
+ "loc": [],
70
+ "size": [],
71
+ "color": [],
72
+ "shape": [],
73
+ "order": [], # z-order
74
+ "opacity": [],
75
+ "stroke": [], # Stroke color
76
+ "strokeWidth": [],
77
+ "filled": [],
78
+ }
79
+
80
+ # Import here to avoid circular import issues
81
+ from mesa.visualization.components import AgentPortrayalStyle # noqa: PLC0415
82
+
83
+ style_fields = {f.name: f.default for f in fields(AgentPortrayalStyle)}
84
+ class_default_size = style_fields.get("size")
85
+
86
+ # Marker mapping from Matplotlib to Altair
87
+ marker_to_shape_map = {
88
+ "o": "circle",
89
+ "s": "square",
90
+ "D": "diamond",
91
+ "^": "triangle-up",
92
+ "v": "triangle-down",
93
+ "<": "triangle-left",
94
+ ">": "triangle-right",
95
+ "+": "cross",
96
+ "x": "cross", # Both '+' and 'x' map to cross in Altair
97
+ ".": "circle", # Small point becomes circle
98
+ "1": "triangle-down",
99
+ "2": "triangle-up",
100
+ "3": "triangle-left",
101
+ "4": "triangle-right",
102
+ }
103
+
104
+ for agent in space.agents:
105
+ portray_input = agent_portrayal(agent)
106
+ aps: AgentPortrayalStyle
107
+
108
+ if isinstance(portray_input, dict):
109
+ warnings.warn(
110
+ "Returning a dict from agent_portrayal is deprecated. "
111
+ "Please return an AgentPortrayalStyle instance instead.",
112
+ PendingDeprecationWarning,
113
+ stacklevel=2,
114
+ )
115
+ dict_data = portray_input.copy()
116
+ agent_x, agent_y = self._get_agent_pos(agent, space)
117
+
118
+ aps = AgentPortrayalStyle(
119
+ x=agent_x,
120
+ y=agent_y,
121
+ size=dict_data.pop("size", style_fields.get("size")),
122
+ color=dict_data.pop("color", style_fields.get("color")),
123
+ marker=dict_data.pop("marker", style_fields.get("marker")),
124
+ zorder=dict_data.pop("zorder", style_fields.get("zorder")),
125
+ alpha=dict_data.pop("alpha", style_fields.get("alpha")),
126
+ edgecolors=dict_data.pop(
127
+ "edgecolors", style_fields.get("edgecolors")
128
+ ),
129
+ linewidths=dict_data.pop(
130
+ "linewidths", style_fields.get("linewidths")
131
+ ),
132
+ )
133
+ if dict_data:
134
+ ignored_keys = list(dict_data.keys())
135
+ warnings.warn(
136
+ f"The following keys were ignored from dict portrayal: {', '.join(ignored_keys)}",
137
+ UserWarning,
138
+ stacklevel=2,
139
+ )
140
+ else:
141
+ aps = portray_input
142
+ if aps.x is None and aps.y is None:
143
+ aps.x, aps.y = self._get_agent_pos(agent, space)
144
+
145
+ arguments["loc"].append((aps.x, aps.y))
146
+
147
+ size_to_collect = aps.size if aps.size is not None else default_size
148
+ if size_to_collect is None:
149
+ size_to_collect = class_default_size
150
+ arguments["size"].append(size_to_collect)
151
+
152
+ arguments["color"].append(
153
+ aps.color if aps.color is not None else style_fields.get("color")
154
+ )
155
+
156
+ # Map marker to Altair shape if defined, else use raw marker
157
+ raw_marker = (
158
+ aps.marker if aps.marker is not None else style_fields.get("marker")
159
+ )
160
+ shape_value = marker_to_shape_map.get(raw_marker, raw_marker)
161
+ if shape_value is None:
162
+ warnings.warn(
163
+ f"Marker '{raw_marker}' is not supported in Altair. "
164
+ "Using 'circle' as default.",
165
+ UserWarning,
166
+ stacklevel=2,
167
+ )
168
+ shape_value = "circle"
169
+ arguments["shape"].append(shape_value)
170
+
171
+ arguments["order"].append(
172
+ aps.zorder if aps.zorder is not None else style_fields.get("zorder")
173
+ )
174
+ arguments["opacity"].append(
175
+ aps.alpha if aps.alpha is not None else style_fields.get("alpha")
176
+ )
177
+ arguments["stroke"].append(aps.edgecolors)
178
+ arguments["strokeWidth"].append(
179
+ aps.linewidths
180
+ if aps.linewidths is not None
181
+ else style_fields.get("linewidths")
182
+ )
183
+
184
+ # FIXME: Make filled user-controllable
185
+ filled_value = True
186
+ arguments["filled"].append(filled_value)
187
+
188
+ final_data = {}
189
+ for k, v in arguments.items():
190
+ if k == "shape":
191
+ # Ensure shape is an object array
192
+ arr = np.empty(len(v), dtype=object)
193
+ arr[:] = v
194
+ final_data[k] = arr
195
+ elif k in ["x", "y", "size", "order", "opacity", "strokeWidth"]:
196
+ final_data[k] = np.asarray(v, dtype=float)
197
+ else:
198
+ final_data[k] = np.asarray(v)
199
+
200
+ return final_data
201
+
202
+ def draw_agents(
203
+ self, arguments, chart_width: int = 450, chart_height: int = 350, **kwargs
204
+ ):
205
+ """Draw agents using Altair backend.
206
+
207
+ Args:
208
+ arguments: Dictionary containing agent data arrays.
209
+ chart_width: Width of the chart.
210
+ chart_height: Height of the chart.
211
+ **kwargs: Additional keyword arguments for customization.
212
+ Checkout respective `SpaceDrawer` class on details how to pass **kwargs.
213
+
214
+ Returns:
215
+ alt.Chart: The Altair chart representing the agents, or None if no agents.
216
+ """
217
+ if arguments["loc"].size == 0:
218
+ return None
219
+
220
+ # To get a continuous scale for color the domain should be between [0, 1]
221
+ # that's why changing the the domain of strokeWidth beforehand.
222
+ stroke_width = [data / 10 for data in arguments["strokeWidth"]]
223
+
224
+ # Agent data preparation
225
+ df_data = {
226
+ "x": arguments["loc"][:, 0],
227
+ "y": arguments["loc"][:, 1],
228
+ "size": arguments["size"],
229
+ "shape": arguments["shape"],
230
+ "opacity": arguments["opacity"],
231
+ "strokeWidth": stroke_width,
232
+ "original_color": arguments["color"],
233
+ "is_filled": arguments["filled"],
234
+ "original_stroke": arguments["stroke"],
235
+ }
236
+ df = pd.DataFrame(df_data)
237
+
238
+ # To ensure distinct shapes according to agent portrayal
239
+ unique_shape_names_in_data = df["shape"].unique().tolist()
240
+
241
+ fill_colors = []
242
+ stroke_colors = []
243
+ for i in range(len(df)):
244
+ filled = df["is_filled"][i]
245
+ main_color = df["original_color"][i]
246
+ stroke_spec = (
247
+ df["original_stroke"][i]
248
+ if isinstance(df["original_stroke"][i], str)
249
+ else None
250
+ )
251
+ if filled:
252
+ fill_colors.append(main_color)
253
+ stroke_colors.append(stroke_spec)
254
+ else:
255
+ fill_colors.append(None)
256
+ stroke_colors.append(main_color)
257
+ df["viz_fill_color"] = fill_colors
258
+ df["viz_stroke_color"] = stroke_colors
259
+
260
+ # Extract additional parameters from kwargs
261
+ # FIXME: Add more parameters to kwargs
262
+ title = kwargs.pop("title", "")
263
+ xlabel = kwargs.pop("xlabel", "")
264
+ ylabel = kwargs.pop("ylabel", "")
265
+
266
+ # Tooltip list for interactivity
267
+ # FIXME: Add more fields to tooltip (preferably from agent_portrayal)
268
+ tooltip_list = ["x", "y"]
269
+
270
+ # Handle custom colormapping
271
+ cmap = kwargs.pop("cmap", "viridis")
272
+ vmin = kwargs.pop("vmin", None)
273
+ vmax = kwargs.pop("vmax", None)
274
+
275
+ color_is_numeric = np.issubdtype(df["original_color"].dtype, np.number)
276
+ if color_is_numeric:
277
+ color_min = vmin if vmin is not None else df["original_color"].min()
278
+ color_max = vmax if vmax is not None else df["original_color"].max()
279
+
280
+ fill_encoding = alt.Fill(
281
+ "original_color:Q",
282
+ scale=alt.Scale(scheme=cmap, domain=[color_min, color_max]),
283
+ )
284
+ else:
285
+ fill_encoding = alt.Fill(
286
+ "viz_fill_color:N",
287
+ scale=None,
288
+ title="Color",
289
+ )
290
+
291
+ # Determine space dimensions
292
+ xmin, xmax, ymin, ymax = self.space_drawer.get_viz_limits()
293
+
294
+ chart = (
295
+ alt.Chart(df)
296
+ .mark_point()
297
+ .encode(
298
+ x=alt.X(
299
+ "x:Q",
300
+ title=xlabel,
301
+ scale=alt.Scale(type="linear", domain=[xmin, xmax]),
302
+ axis=None,
303
+ ),
304
+ y=alt.Y(
305
+ "y:Q",
306
+ title=ylabel,
307
+ scale=alt.Scale(type="linear", domain=[ymin, ymax]),
308
+ axis=None,
309
+ ),
310
+ size=alt.Size("size:Q", legend=None, scale=alt.Scale(domain=[0, 50])),
311
+ shape=alt.Shape(
312
+ "shape:N",
313
+ scale=alt.Scale(
314
+ domain=unique_shape_names_in_data,
315
+ range=unique_shape_names_in_data,
316
+ ),
317
+ title="Shape",
318
+ ),
319
+ opacity=alt.Opacity(
320
+ "opacity:Q",
321
+ title="Opacity",
322
+ scale=alt.Scale(domain=[0, 1], range=[0, 1]),
323
+ ),
324
+ fill=fill_encoding,
325
+ stroke=alt.Stroke("viz_stroke_color:N", scale=None),
326
+ strokeWidth=alt.StrokeWidth(
327
+ "strokeWidth:Q", scale=alt.Scale(domain=[0, 1])
328
+ ),
329
+ tooltip=tooltip_list,
330
+ )
331
+ .properties(title=title, width=chart_width, height=chart_height)
332
+ )
333
+
334
+ return chart
335
+
336
+ def draw_propertylayer(
337
+ self,
338
+ space,
339
+ property_layers: dict[str, Any],
340
+ propertylayer_portrayal: Callable,
341
+ chart_width: int = 450,
342
+ chart_height: int = 350,
343
+ ):
344
+ """Draw property layers using Altair backend.
345
+
346
+ Args:
347
+ space: The Mesa space object containing the property layers.
348
+ property_layers: A dictionary of property layers to draw.
349
+ propertylayer_portrayal: A function that returns PropertyLayerStyle
350
+ that contains the visualization parameters.
351
+ chart_width: The width of the chart.
352
+ chart_height: The height of the chart.
353
+
354
+ Returns:
355
+ alt.Chart: A tuple containing the base chart and the color bar chart.
356
+ """
357
+ main_charts = []
358
+
359
+ for layer_name in property_layers:
360
+ if layer_name == "empty":
361
+ continue
362
+
363
+ layer = property_layers.get(layer_name)
364
+ portrayal = propertylayer_portrayal(layer)
365
+
366
+ if portrayal is None:
367
+ continue
368
+
369
+ data = layer.data.astype(float) if layer.data.dtype == bool else layer.data
370
+
371
+ # Check dimensions
372
+ if (space.width, space.height) != data.shape:
373
+ warnings.warn(
374
+ f"Layer {layer_name} dimensions ({data.shape}) "
375
+ f"don't match space dimensions ({space.width}, {space.height})",
376
+ UserWarning,
377
+ stacklevel=2,
378
+ )
379
+ continue
380
+
381
+ # Get portrayal parameters
382
+ color = portrayal.color
383
+ colormap = portrayal.colormap
384
+ alpha = portrayal.alpha
385
+ vmin = portrayal.vmin if portrayal.vmin is not None else np.min(data)
386
+ vmax = portrayal.vmax if portrayal.vmax is not None else np.max(data)
387
+
388
+ df = pd.DataFrame(
389
+ {
390
+ "x": np.repeat(np.arange(data.shape[0]), data.shape[1]),
391
+ "y": np.tile(np.arange(data.shape[1]), data.shape[0]),
392
+ "value": data.flatten(),
393
+ }
394
+ )
395
+
396
+ if color:
397
+ # For a single color gradient, we define the range from transparent to solid.
398
+ rgb = to_rgb(color)
399
+ r, g, b = (int(c * 255) for c in rgb)
400
+
401
+ min_color = f"rgba({r},{g},{b},0)"
402
+ max_color = f"rgba({r},{g},{b},{alpha})"
403
+ opacity = 1
404
+ color_scale = alt.Scale(
405
+ range=[min_color, max_color], domain=[vmin, vmax]
406
+ )
407
+
408
+ elif colormap:
409
+ cmap = colormap
410
+ color_scale = alt.Scale(scheme=cmap, domain=[vmin, vmax])
411
+ opacity = alpha
412
+
413
+ else:
414
+ raise ValueError(
415
+ f"PropertyLayer {layer_name} portrayal must include 'color' or 'colormap'."
416
+ )
417
+
418
+ current_chart = (
419
+ alt.Chart(df)
420
+ .mark_rect(opacity=opacity)
421
+ .encode(
422
+ x=alt.X("x:O", axis=None),
423
+ y=alt.Y("y:O", axis=None),
424
+ color=alt.Color(
425
+ "value:Q",
426
+ scale=color_scale,
427
+ title=layer_name,
428
+ legend=alt.Legend(title=layer_name, orient="bottom")
429
+ if portrayal.colorbar
430
+ else None,
431
+ ),
432
+ )
433
+ .properties(width=chart_width, height=chart_height)
434
+ )
435
+
436
+ if current_chart is not None:
437
+ main_charts.append(current_chart)
438
+
439
+ base = alt.layer(*main_charts).resolve_scale(color="independent")
440
+ return base