Mesa 3.0.0b1__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of Mesa might be problematic. Click here for more details.

Files changed (102) hide show
  1. mesa/__init__.py +1 -3
  2. mesa/agent.py +23 -8
  3. mesa/examples/__init__.py +21 -0
  4. {examples → mesa/examples}/advanced/epstein_civil_violence/Readme.md +3 -2
  5. mesa/examples/advanced/epstein_civil_violence/app.py +72 -0
  6. {examples/advanced/epstein_civil_violence → mesa/examples/advanced}/epstein_civil_violence/model.py +4 -4
  7. examples/advanced/pd_grid/readme.md → mesa/examples/advanced/pd_grid/Readme.md +4 -3
  8. mesa/examples/advanced/pd_grid/app.py +50 -0
  9. {examples/advanced/pd_grid → mesa/examples/advanced}/pd_grid/model.py +1 -2
  10. {examples → mesa/examples}/advanced/sugarscape_g1mt/Readme.md +6 -29
  11. examples/advanced/sugarscape_g1mt/sugarscape_g1mt/trader_agents.py → mesa/examples/advanced/sugarscape_g1mt/agents.py +26 -3
  12. {examples → mesa/examples}/advanced/sugarscape_g1mt/app.py +23 -14
  13. {examples/advanced/sugarscape_g1mt → mesa/examples/advanced}/sugarscape_g1mt/model.py +6 -6
  14. {examples → mesa/examples}/advanced/sugarscape_g1mt/tests.py +3 -6
  15. mesa/examples/advanced/wolf_sheep/app.py +77 -0
  16. {examples/advanced/wolf_sheep → mesa/examples/advanced}/wolf_sheep/model.py +9 -8
  17. mesa/examples/basic/boid_flockers/Readme.md +22 -0
  18. {examples → mesa/examples}/basic/boid_flockers/app.py +1 -2
  19. {examples → mesa/examples}/basic/boid_flockers/model.py +1 -2
  20. {examples → mesa/examples}/basic/boltzmann_wealth_model/Readme.md +1 -5
  21. mesa/examples/basic/boltzmann_wealth_model/__init__.py +0 -0
  22. {examples → mesa/examples}/basic/boltzmann_wealth_model/app.py +1 -2
  23. {examples → mesa/examples}/basic/boltzmann_wealth_model/model.py +3 -4
  24. {examples → mesa/examples}/basic/conways_game_of_life/Readme.md +11 -7
  25. mesa/examples/basic/conways_game_of_life/__init__.py +0 -0
  26. {examples → mesa/examples}/basic/conways_game_of_life/agents.py +8 -8
  27. mesa/examples/basic/conways_game_of_life/app.py +39 -0
  28. {examples → mesa/examples}/basic/conways_game_of_life/model.py +3 -4
  29. {examples → mesa/examples}/basic/conways_game_of_life/st_app.py +2 -1
  30. examples/basic/schelling/README.md → mesa/examples/basic/schelling/Readme.md +2 -9
  31. mesa/examples/basic/schelling/__init__.py +0 -0
  32. {examples → mesa/examples}/basic/schelling/app.py +1 -2
  33. {examples → mesa/examples}/basic/schelling/model.py +1 -2
  34. mesa/examples/basic/virus_on_network/__init__.py +0 -0
  35. {examples → mesa/examples}/basic/virus_on_network/app.py +5 -2
  36. {examples → mesa/examples}/basic/virus_on_network/model.py +4 -7
  37. mesa/experimental/cell_space/discrete_space.py +6 -0
  38. mesa/experimental/devs/eventlist.py +6 -0
  39. mesa/model.py +13 -0
  40. mesa/space.py +70 -5
  41. mesa/visualization/components/altair.py +87 -19
  42. mesa/visualization/components/matplotlib.py +55 -11
  43. {mesa-3.0.0b1.dist-info → mesa-3.0.0b2.dist-info}/METADATA +1 -3
  44. mesa-3.0.0b2.dist-info/RECORD +93 -0
  45. examples/advanced/epstein_civil_violence/epstein_civil_violence/portrayal.py +0 -33
  46. examples/advanced/epstein_civil_violence/epstein_civil_violence/server.py +0 -81
  47. examples/advanced/epstein_civil_violence/requirements.txt +0 -3
  48. examples/advanced/epstein_civil_violence/run.py +0 -3
  49. examples/advanced/pd_grid/pd_grid/portrayal.py +0 -19
  50. examples/advanced/pd_grid/pd_grid/server.py +0 -21
  51. examples/advanced/pd_grid/requirements.txt +0 -3
  52. examples/advanced/pd_grid/run.py +0 -3
  53. examples/advanced/sugarscape_g1mt/requirements.txt +0 -6
  54. examples/advanced/sugarscape_g1mt/run.py +0 -105
  55. examples/advanced/sugarscape_g1mt/sugarscape_g1mt/resource_agents.py +0 -26
  56. examples/advanced/sugarscape_g1mt/sugarscape_g1mt/server.py +0 -61
  57. examples/advanced/wolf_sheep/requirements.txt +0 -1
  58. examples/advanced/wolf_sheep/run.py +0 -3
  59. examples/advanced/wolf_sheep/wolf_sheep/resources/sheep.png +0 -0
  60. examples/advanced/wolf_sheep/wolf_sheep/resources/wolf.png +0 -0
  61. examples/advanced/wolf_sheep/wolf_sheep/server.py +0 -78
  62. examples/basic/__init__.py +0 -13
  63. examples/basic/boid_flockers/Readme.md +0 -43
  64. examples/basic/conways_game_of_life/portrayal.py +0 -18
  65. examples/basic/conways_game_of_life/requirements.txt +0 -1
  66. examples/basic/conways_game_of_life/server.py +0 -11
  67. mesa/cookiecutter-mesa/cookiecutter.json +0 -8
  68. mesa/cookiecutter-mesa/hooks/post_gen_project.py +0 -13
  69. mesa/cookiecutter-mesa/{{cookiecutter.snake}}/README.md +0 -4
  70. mesa/cookiecutter-mesa/{{cookiecutter.snake}}/app.pytemplate +0 -27
  71. mesa/cookiecutter-mesa/{{cookiecutter.snake}}/setup.pytemplate +0 -11
  72. mesa/cookiecutter-mesa/{{cookiecutter.snake}}/{{cookiecutter.snake}}/__init__.py +0 -1
  73. mesa/cookiecutter-mesa/{{cookiecutter.snake}}/{{cookiecutter.snake}}/model.pytemplate +0 -60
  74. mesa/examples.py +0 -3
  75. mesa/main.py +0 -65
  76. mesa-3.0.0b1.dist-info/RECORD +0 -114
  77. {examples → mesa/examples}/README.md +0 -0
  78. {examples → mesa/examples/advanced}/__init__.py +0 -0
  79. {examples → mesa/examples}/advanced/epstein_civil_violence/Epstein Civil Violence.ipynb +0 -0
  80. {examples/advanced → mesa/examples/advanced/epstein_civil_violence}/__init__.py +0 -0
  81. /examples/advanced/epstein_civil_violence/epstein_civil_violence/agent.py → /mesa/examples/advanced/epstein_civil_violence/agents.py +0 -0
  82. {examples/advanced/epstein_civil_violence/epstein_civil_violence → mesa/examples/advanced/pd_grid}/__init__.py +0 -0
  83. /examples/advanced/pd_grid/pd_grid/agent.py → /mesa/examples/advanced/pd_grid/agents.py +0 -0
  84. {examples → mesa/examples}/advanced/pd_grid/analysis.ipynb +0 -0
  85. {examples/advanced/pd_grid/pd_grid → mesa/examples/advanced/sugarscape_g1mt}/__init__.py +0 -0
  86. {examples/advanced/sugarscape_g1mt → mesa/examples/advanced}/sugarscape_g1mt/sugar-map.txt +0 -0
  87. {examples → mesa/examples}/advanced/wolf_sheep/Readme.md +0 -0
  88. {examples/advanced/sugarscape_g1mt/sugarscape_g1mt → mesa/examples/advanced/wolf_sheep}/__init__.py +0 -0
  89. {examples/advanced/wolf_sheep → mesa/examples/advanced}/wolf_sheep/agents.py +0 -0
  90. {examples/advanced/wolf_sheep → mesa/examples/basic}/__init__.py +0 -0
  91. {examples/advanced/wolf_sheep/wolf_sheep → mesa/examples/basic/boid_flockers}/__init__.py +0 -0
  92. {examples → mesa/examples}/basic/boid_flockers/agents.py +0 -0
  93. {examples → mesa/examples}/basic/boltzmann_wealth_model/agents.py +0 -0
  94. {examples → mesa/examples}/basic/boltzmann_wealth_model/st_app.py +0 -0
  95. {examples → mesa/examples}/basic/schelling/agents.py +0 -0
  96. {examples → mesa/examples}/basic/schelling/analysis.ipynb +0 -0
  97. /examples/basic/virus_on_network/README.md → /mesa/examples/basic/virus_on_network/Readme.md +0 -0
  98. {examples → mesa/examples}/basic/virus_on_network/agents.py +0 -0
  99. {mesa-3.0.0b1.dist-info → mesa-3.0.0b2.dist-info}/WHEEL +0 -0
  100. {mesa-3.0.0b1.dist-info → mesa-3.0.0b2.dist-info}/entry_points.txt +0 -0
  101. {mesa-3.0.0b1.dist-info → mesa-3.0.0b2.dist-info}/licenses/LICENSE +0 -0
  102. {mesa-3.0.0b1.dist-info → mesa-3.0.0b2.dist-info}/licenses/NOTICE +0 -0
@@ -7,8 +7,7 @@ Uses numpy arrays to represent vectors.
7
7
  import numpy as np
8
8
 
9
9
  import mesa
10
-
11
- from .agents import Boid
10
+ from mesa.examples.basic.boid_flockers.agents import Boid
12
11
 
13
12
 
14
13
  class BoidFlockers(mesa.Model):
@@ -12,11 +12,6 @@ As the model runs, the distribution of wealth among agents goes from being perfe
12
12
 
13
13
  To follow the tutorial example, launch the Jupyter Notebook and run the code in ``Introduction to Mesa Tutorial Code.ipynb`` which you can find in the main mesa repo [here](https://github.com/projectmesa/mesa/blob/main/docs/tutorials/intro_tutorial.ipynb)
14
14
 
15
- Make sure to install the requirements first:
16
-
17
- ```
18
- $ pip install -r requirements.txt
19
- ```
20
15
 
21
16
  To launch the interactive server, as described in the [last section of the tutorial](https://mesa.readthedocs.io/en/latest/tutorials/intro_tutorial.html#adding-visualization), run:
22
17
 
@@ -30,6 +25,7 @@ If your browser doesn't open automatically, point it to [http://127.0.0.1:8765/]
30
25
  ## Files
31
26
 
32
27
  * ``model.py``: Final version of the model.
28
+ * ``agents.py``: Final version of the agent.
33
29
  * ``app.py``: Code for the interactive visualization.
34
30
 
35
31
  ## Optional
File without changes
@@ -1,11 +1,10 @@
1
+ from mesa.examples.basic.boltzmann_wealth_model.model import BoltzmannWealthModel
1
2
  from mesa.visualization import (
2
3
  SolaraViz,
3
4
  make_plot_measure,
4
5
  make_space_matplotlib,
5
6
  )
6
7
 
7
- from .model import BoltzmannWealthModel
8
-
9
8
 
10
9
  def agent_portrayal(agent):
11
10
  size = 10
@@ -1,6 +1,5 @@
1
1
  import mesa
2
-
3
- from .agents import MoneyAgent
2
+ from mesa.examples.basic.boltzmann_wealth_model.agents import MoneyAgent
4
3
 
5
4
 
6
5
  class BoltzmannWealthModel(mesa.Model):
@@ -11,8 +10,8 @@ class BoltzmannWealthModel(mesa.Model):
11
10
  highly skewed distribution of wealth.
12
11
  """
13
12
 
14
- def __init__(self, n=100, width=10, height=10):
15
- super().__init__()
13
+ def __init__(self, n=100, width=10, height=10, seed=None):
14
+ super().__init__(seed=seed)
16
15
  self.num_agents = n
17
16
  self.grid = mesa.space.MultiGrid(width, height, True)
18
17
 
@@ -9,26 +9,30 @@ The "game" is a zero-player game, meaning that its evolution is determined by it
9
9
 
10
10
  ## How to Run
11
11
 
12
- To run the model interactively, run ``mesa runserver`` in this directory. e.g.
12
+ To run the model interactively you can use either the streamlit or solara version. For solara, you use
13
13
 
14
14
  ```
15
- $ mesa runserver
15
+ $ solara run app.py
16
16
  ```
17
17
 
18
- Then open your browser to [http://127.0.0.1:8521/](http://127.0.0.1:8521/) and press ``run``.
18
+ For streamlit, you need
19
+
20
+ ```
21
+ $ streamlit run st_app.py
22
+ ```
23
+
24
+ This will open your browser and show you the controls. You can start the model by hitting the run button.
19
25
 
20
26
  ## Files
21
27
 
22
28
  * ``agents.py``: Defines the behavior of an individual cell, which can be in two states: DEAD or ALIVE.
23
29
  * ``model.py``: Defines the model itself, initialized with a random configuration of alive and dead cells.
24
- * ``portrayal.py``: Describes for the front end how to render a cell.
30
+ * ``app.py``: Defines an interactive visualization using solara.
25
31
  * ``st_app.py``: Defines an interactive visualization using Streamlit.
26
32
 
27
33
  ## Optional
28
34
 
29
- * ``conways_game_of_life/st_app.py``: can be used to run the simulation via the streamlit interface.
30
- * For this some additional packages like ``streamlit`` and ``altair`` needs to be installed.
31
- * Once installed, the app can be opened in the browser using : ``streamlit run st_app.py``
35
+ * For the streamlit version, you need to have streamlit installed (can be done via pip install streamlit)
32
36
 
33
37
 
34
38
  ## Further Reading
File without changes
@@ -12,10 +12,10 @@ class Cell(Agent):
12
12
  super().__init__(model)
13
13
  self.x, self.y = pos
14
14
  self.state = init_state
15
- self._nextState = None
15
+ self._next_state = None
16
16
 
17
17
  @property
18
- def isAlive(self):
18
+ def is_alive(self):
19
19
  return self.state == self.ALIVE
20
20
 
21
21
  @property
@@ -31,17 +31,17 @@ class Cell(Agent):
31
31
  """
32
32
  # Get the neighbors and apply the rules on whether to be alive or dead
33
33
  # at the next tick.
34
- live_neighbors = sum(neighbor.isAlive for neighbor in self.neighbors)
34
+ live_neighbors = sum(neighbor.is_alive for neighbor in self.neighbors)
35
35
 
36
36
  # Assume nextState is unchanged, unless changed below.
37
- self._nextState = self.state
38
- if self.isAlive:
37
+ self._next_state = self.state
38
+ if self.is_alive:
39
39
  if live_neighbors < 2 or live_neighbors > 3:
40
- self._nextState = self.DEAD
40
+ self._next_state = self.DEAD
41
41
  else:
42
42
  if live_neighbors == 3:
43
- self._nextState = self.ALIVE
43
+ self._next_state = self.ALIVE
44
44
 
45
45
  def assume_state(self):
46
46
  """Set the state to the new computed state -- computed in step()."""
47
- self.state = self._nextState
47
+ self.state = self._next_state
@@ -0,0 +1,39 @@
1
+ from mesa.examples.basic.conways_game_of_life.model import ConwaysGameOfLife
2
+ from mesa.visualization import (
3
+ SolaraViz,
4
+ make_space_matplotlib,
5
+ )
6
+
7
+
8
+ def agent_portrayal(agent):
9
+ return {"color": "white" if agent.state == 0 else "black"}
10
+
11
+
12
+ model_params = {
13
+ "width": 50,
14
+ "height": 50,
15
+ }
16
+
17
+ # Create initial model instance
18
+ model1 = ConwaysGameOfLife(50, 50)
19
+
20
+ # Create visualization elements. The visualization elements are solara components
21
+ # that receive the model instance as a "prop" and display it in a certain way.
22
+ # Under the hood these are just classes that receive the model instance.
23
+ # You can also author your own visualization elements, which can also be functions
24
+ # that receive the model instance and return a valid solara component.
25
+ SpaceGraph = make_space_matplotlib(agent_portrayal)
26
+
27
+
28
+ # Create the SolaraViz page. This will automatically create a server and display the
29
+ # visualization elements in a web browser.
30
+ # Display it using the following command in the example directory:
31
+ # solara run app.py
32
+ # It will automatically update and display any changes made to this file
33
+ page = SolaraViz(
34
+ model1,
35
+ components=[SpaceGraph],
36
+ model_params=model_params,
37
+ name="Game of Life",
38
+ )
39
+ page # noqa
@@ -1,15 +1,14 @@
1
1
  from mesa import Model
2
+ from mesa.examples.basic.conways_game_of_life.agents import Cell
2
3
  from mesa.space import SingleGrid
3
4
 
4
- from .agents import Cell
5
-
6
5
 
7
6
  class ConwaysGameOfLife(Model):
8
7
  """Represents the 2-dimensional array of cells in Conway's Game of Life."""
9
8
 
10
- def __init__(self, width=50, height=50):
9
+ def __init__(self, width=50, height=50, seed=None):
11
10
  """Create a new playing area of (width, height) cells."""
12
- super().__init__()
11
+ super().__init__(seed=seed)
13
12
  # Use a simple grid, where edges wrap around.
14
13
  self.grid = SingleGrid(width, height, torus=True)
15
14
 
@@ -4,7 +4,8 @@ import altair as alt
4
4
  import numpy as np
5
5
  import pandas as pd
6
6
  import streamlit as st
7
- from model import ConwaysGameOfLife
7
+
8
+ from mesa.examples.basic.conways_game_of_life.model import ConwaysGameOfLife
8
9
 
9
10
  model = st.title("Conway's Game of Life")
10
11
  num_ticks = st.slider("Select number of Steps", min_value=1, max_value=100, value=50)
@@ -6,14 +6,6 @@ The Schelling segregation model is a classic agent-based model, demonstrating ho
6
6
 
7
7
  By default, the number of similar neighbors the agents need to be happy is set to 3. That means the agents would be perfectly happy with a majority of their neighbors being of a different color (e.g. a Blue agent would be happy with five Red neighbors and three Blue ones). Despite this, the model consistently leads to a high degree of segregation, with most agents ending up with no neighbors of a different color.
8
8
 
9
- ## Installation
10
-
11
- To install the dependencies use pip and the requirements.txt in this directory. e.g.
12
-
13
- ```
14
- $ pip install -r requirements.txt
15
- ```
16
-
17
9
  ## How to Run
18
10
 
19
11
  To run the model interactively, in this directory, run the following command
@@ -32,8 +24,9 @@ To run the model with the grid displayed as an ASCII text, run `python run_ascii
32
24
 
33
25
  ## Files
34
26
 
27
+ * ``model.py``: Contains the Schelling model class
28
+ * ``agents.py``: Contains the Schelling agent class
35
29
  * ``app.py``: Code for the interactive visualization.
36
- * ``schelling.py``: Contains the agent class, and the overall model class.
37
30
  * ``analysis.ipynb``: Notebook demonstrating how to run experiments and parameter sweeps on the model.
38
31
 
39
32
  ## Further Reading
File without changes
@@ -1,5 +1,6 @@
1
1
  import solara
2
2
 
3
+ from mesa.examples.basic.schelling.model import Schelling
3
4
  from mesa.visualization import (
4
5
  Slider,
5
6
  SolaraViz,
@@ -7,8 +8,6 @@ from mesa.visualization import (
7
8
  make_space_matplotlib,
8
9
  )
9
10
 
10
- from .model import Schelling
11
-
12
11
 
13
12
  def get_happy_agents(model):
14
13
  """Display a text count of how many happy agents there are."""
@@ -1,7 +1,6 @@
1
1
  import mesa
2
2
  from mesa import Model
3
-
4
- from .agents import SchellingAgent
3
+ from mesa.examples.basic.schelling.agents import SchellingAgent
5
4
 
6
5
 
7
6
  class Schelling(Model):
File without changes
@@ -4,10 +4,13 @@ import solara
4
4
  from matplotlib.figure import Figure
5
5
  from matplotlib.ticker import MaxNLocator
6
6
 
7
+ from mesa.examples.basic.virus_on_network.model import (
8
+ State,
9
+ VirusOnNetwork,
10
+ number_infected,
11
+ )
7
12
  from mesa.visualization import Slider, SolaraViz, make_space_matplotlib
8
13
 
9
- from .model import State, VirusOnNetwork, number_infected
10
-
11
14
 
12
15
  def agent_portrayal(graph):
13
16
  def get_agent(node):
@@ -4,8 +4,7 @@ import networkx as nx
4
4
 
5
5
  import mesa
6
6
  from mesa import Model
7
-
8
- from .agents import State, VirusAgent
7
+ from mesa.examples.basic.virus_on_network.agents import State, VirusAgent
9
8
 
10
9
 
11
10
  def number_state(model, state):
@@ -36,8 +35,9 @@ class VirusOnNetwork(Model):
36
35
  virus_check_frequency=0.4,
37
36
  recovery_chance=0.3,
38
37
  gain_resistance_chance=0.5,
38
+ seed=None,
39
39
  ):
40
- super().__init__()
40
+ super().__init__(seed=seed)
41
41
  self.num_nodes = num_nodes
42
42
  prob = avg_node_degree / self.num_nodes
43
43
  self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
@@ -56,6 +56,7 @@ class VirusOnNetwork(Model):
56
56
  "Infected": number_infected,
57
57
  "Susceptible": number_susceptible,
58
58
  "Resistant": number_resistant,
59
+ "R over S": self.resistant_susceptible_ratio,
59
60
  }
60
61
  )
61
62
 
@@ -93,7 +94,3 @@ class VirusOnNetwork(Model):
93
94
  self.agents.shuffle_do("step")
94
95
  # collect data
95
96
  self.datacollector.collect(self)
96
-
97
- def run_model(self, n):
98
- for _ in range(n):
99
- self.step()
@@ -7,6 +7,7 @@ from functools import cached_property
7
7
  from random import Random
8
8
  from typing import Any, Generic, TypeVar
9
9
 
10
+ from mesa.agent import AgentSet
10
11
  from mesa.experimental.cell_space.cell import Cell
11
12
  from mesa.experimental.cell_space.cell_collection import CellCollection
12
13
  from mesa.space import PropertyLayer
@@ -55,6 +56,11 @@ class DiscreteSpace(Generic[T]):
55
56
  def cutoff_empties(self): # noqa
56
57
  return 7.953 * len(self._cells) ** 0.384
57
58
 
59
+ @property
60
+ def agents(self) -> AgentSet:
61
+ """Return an AgentSet with the agents in the space."""
62
+ return AgentSet(self.all_cells.agents, random=self.random)
63
+
58
64
  def _connect_cells(self): ...
59
65
  def _connect_single_cell(self, cell: T): ...
60
66
 
@@ -33,6 +33,12 @@ class SimulationEvent:
33
33
  function_args (list[Any]): Argument for the function
34
34
  function_kwargs (Dict[str, Any]): Keyword arguments for the function
35
35
 
36
+
37
+ Notes:
38
+ simulation events use a weak reference to the callable. Therefore, you cannot pass a lambda function in fn.
39
+ A simulation event where the callable no longer exists (e.g., because the agent has been removed from the model)
40
+ will fail silently.
41
+
36
42
  """
37
43
 
38
44
  _ids = itertools.count()
mesa/model.py CHANGED
@@ -276,3 +276,16 @@ class Model:
276
276
  )
277
277
  # Collect data for the first time during initialization.
278
278
  self.datacollector.collect(self)
279
+
280
+ def remove_all_agents(self):
281
+ """Remove all agents from the model.
282
+
283
+ Notes:
284
+ This method calls agent.remove for all agents in the model. If you need to remove agents from
285
+ e.g., a SingleGrid, you can either explicitly implement your own agent.remove method or clean this up
286
+ near where you are calling this method.
287
+
288
+ """
289
+ # we need to wrap keys in a list to avoid a RunTimeError: dictionary changed size during iteration
290
+ for agent in list(self._agents.keys()):
291
+ agent.remove()
mesa/space.py CHANGED
@@ -2,10 +2,21 @@
2
2
 
3
3
  Objects used to add a spatial component to a model.
4
4
 
5
- * Grid: base grid, which creates a rectangular grid.
6
- * SingleGrid: extension to Grid which strictly enforces one agent per cell.
7
- * MultiGrid: extension to Grid where each cell can contain a set of agents.
8
- * HexGrid: extension to Grid to handle hexagonal neighbors.
5
+ .. note::
6
+ All Grid classes (:class:`_Grid`, :class:`SingleGrid`, :class:`MultiGrid`,
7
+ :class:`HexGrid`, etc.) are now in maintenance-only mode. While these classes remain
8
+ fully supported, new development occurs in the experimental cell space module
9
+ (:mod:`mesa.experimental.cell_space`).
10
+
11
+ The :class:`PropertyLayer` and :class:`ContinuousSpace` classes remain fully supported
12
+ and actively developed.
13
+
14
+ Classes
15
+ -------
16
+ * PropertyLayer: A data layer that can be added to Grids to store cell properties
17
+ * SingleGrid: a Grid which strictly enforces one agent per cell.
18
+ * MultiGrid: a Grid where each cell can contain a set of agents.
19
+ * HexGrid: a Grid to handle hexagonal neighbors.
9
20
  * ContinuousSpace: a two-dimensional space where each agent has an arbitrary position of `float`'s.
10
21
  * NetworkGrid: a network where each node contains zero or more agents.
11
22
  """
@@ -32,7 +43,7 @@ import numpy as np
32
43
  import numpy.typing as npt
33
44
 
34
45
  # For Mypy
35
- from .agent import Agent
46
+ from .agent import Agent, AgentSet
36
47
 
37
48
  # for better performance, we calculate the tuple to use in the is_integer function
38
49
  _types_integer = (int, np.integer)
@@ -153,6 +164,26 @@ class _Grid:
153
164
  @overload
154
165
  def __getitem__(self, index: int | Sequence[Coordinate]) -> list[GridContent]: ...
155
166
 
167
+ @property
168
+ def agents(self) -> AgentSet:
169
+ """Return an AgentSet with the agents in the space."""
170
+ agents = []
171
+ for entry in self:
172
+ if not entry:
173
+ continue
174
+ if not isinstance(entry, list):
175
+ entry = [entry] # noqa PLW2901
176
+ for agent in entry:
177
+ agents.append(agent)
178
+
179
+ # getting the rng is a bit hacky because old style spaces don't have the rng
180
+ try:
181
+ rng = agents[0].random
182
+ except IndexError:
183
+ # there are no agents in the space
184
+ rng = None
185
+ return AgentSet(agents, random=rng)
186
+
156
187
  @overload
157
188
  def __getitem__(
158
189
  self, index: tuple[int | slice, int | slice]
@@ -1333,6 +1364,19 @@ class ContinuousSpace:
1333
1364
  self._index_to_agent: dict[int, Agent] = {}
1334
1365
  self._agent_to_index: dict[Agent, int | None] = {}
1335
1366
 
1367
+ @property
1368
+ def agents(self) -> AgentSet:
1369
+ """Return an AgentSet with the agents in the space."""
1370
+ agents = list(self._agent_to_index)
1371
+
1372
+ # getting the rng is a bit hacky because old style spaces don't have the rng
1373
+ try:
1374
+ rng = agents[0].random
1375
+ except IndexError:
1376
+ # there are no agents in the space
1377
+ rng = None
1378
+ return AgentSet(agents, random=rng)
1379
+
1336
1380
  def _build_agent_cache(self):
1337
1381
  """Cache agents positions to speed up neighbors calculations."""
1338
1382
  self._index_to_agent = {}
@@ -1506,6 +1550,27 @@ class NetworkGrid:
1506
1550
  for node_id in self.G.nodes:
1507
1551
  g.nodes[node_id]["agent"] = self.default_val()
1508
1552
 
1553
+ @property
1554
+ def agents(self) -> AgentSet:
1555
+ """Return an AgentSet with the agents in the space."""
1556
+ agents = []
1557
+ for node_id in self.G.nodes:
1558
+ entry = self.G.nodes[node_id]["agent"]
1559
+ if not entry:
1560
+ continue
1561
+ if not isinstance(entry, list):
1562
+ entry = [entry]
1563
+ for agent in entry:
1564
+ agents.append(agent)
1565
+
1566
+ # getting the rng is a bit hacky because old style spaces don't have the rng
1567
+ try:
1568
+ rng = agents[0].random
1569
+ except IndexError:
1570
+ # there are no agents in the space
1571
+ rng = None
1572
+ return AgentSet(agents, random=rng)
1573
+
1509
1574
  @staticmethod
1510
1575
  def default_val() -> list:
1511
1576
  """Default value for a new node."""
@@ -7,6 +7,8 @@ import solara
7
7
  with contextlib.suppress(ImportError):
8
8
  import altair as alt
9
9
 
10
+ from mesa.experimental.cell_space import DiscreteSpace, Grid
11
+ from mesa.space import ContinuousSpace, _Grid
10
12
  from mesa.visualization.utils import update_counter
11
13
 
12
14
 
@@ -29,35 +31,101 @@ def SpaceAltair(model, agent_portrayal, dependencies: list[any] | None = None):
29
31
  if space is None:
30
32
  # Sometimes the space is defined as model.space instead of model.grid
31
33
  space = model.space
34
+
32
35
  chart = _draw_grid(space, agent_portrayal)
33
36
  solara.FigureAltair(chart)
34
37
 
35
38
 
39
+ def _get_agent_data_old__discrete_space(space, agent_portrayal):
40
+ """Format agent portrayal data for old-style discrete spaces.
41
+
42
+ Args:
43
+ space: the mesa.space._Grid instance
44
+ agent_portrayal: the agent portrayal callable
45
+
46
+ Returns:
47
+ list of dicts
48
+
49
+ """
50
+ all_agent_data = []
51
+ for content, (x, y) in space.coord_iter():
52
+ if not content:
53
+ continue
54
+ if not hasattr(content, "__iter__"):
55
+ # Is a single grid
56
+ content = [content] # noqa: PLW2901
57
+ for agent in content:
58
+ # use all data from agent portrayal, and add x,y coordinates
59
+ agent_data = agent_portrayal(agent)
60
+ agent_data["x"] = x
61
+ agent_data["y"] = y
62
+ all_agent_data.append(agent_data)
63
+ return all_agent_data
64
+
65
+
66
+ def _get_agent_data_new_discrete_space(space: DiscreteSpace, agent_portrayal):
67
+ """Format agent portrayal data for new-style discrete spaces.
68
+
69
+ Args:
70
+ space: the mesa.experiment.cell_space.Grid instance
71
+ agent_portrayal: the agent portrayal callable
72
+
73
+ Returns:
74
+ list of dicts
75
+
76
+ """
77
+ all_agent_data = []
78
+
79
+ for cell in space.all_cells:
80
+ for agent in cell.agents:
81
+ agent_data = agent_portrayal(agent)
82
+ agent_data["x"] = cell.coordinate[0]
83
+ agent_data["y"] = cell.coordinate[1]
84
+ all_agent_data.append(agent_data)
85
+ return all_agent_data
86
+
87
+
88
+ def _get_agent_data_continuous_space(space: ContinuousSpace, agent_portrayal):
89
+ """Format agent portrayal data for continuous space.
90
+
91
+ Args:
92
+ space: the ContinuousSpace instance
93
+ agent_portrayal: the agent portrayal callable
94
+
95
+ Returns:
96
+ list of dicts
97
+ """
98
+ all_agent_data = []
99
+ for agent in space._agent_to_index:
100
+ agent_data = agent_portrayal(agent)
101
+ agent_data["x"] = agent.pos[0]
102
+ agent_data["y"] = agent.pos[1]
103
+ all_agent_data.append(agent_data)
104
+ return all_agent_data
105
+
106
+
36
107
  def _draw_grid(space, agent_portrayal):
37
- def portray(g):
38
- all_agent_data = []
39
- for content, (x, y) in g.coord_iter():
40
- if not content:
41
- continue
42
- if not hasattr(content, "__iter__"):
43
- # Is a single grid
44
- content = [content] # noqa: PLW2901
45
- for agent in content:
46
- # use all data from agent portrayal, and add x,y coordinates
47
- agent_data = agent_portrayal(agent)
48
- agent_data["x"] = x
49
- agent_data["y"] = y
50
- all_agent_data.append(agent_data)
51
- return all_agent_data
52
-
53
- all_agent_data = portray(space)
108
+ match space:
109
+ case Grid():
110
+ all_agent_data = _get_agent_data_new_discrete_space(space, agent_portrayal)
111
+ case _Grid():
112
+ all_agent_data = _get_agent_data_old__discrete_space(space, agent_portrayal)
113
+ case ContinuousSpace():
114
+ all_agent_data = _get_agent_data_continuous_space(space, agent_portrayal)
115
+ case _:
116
+ raise NotImplementedError(
117
+ f"visualizing {type(space)} is currently not supported through altair"
118
+ )
119
+
54
120
  invalid_tooltips = ["color", "size", "x", "y"]
55
121
 
122
+ x_y_type = "ordinal" if not isinstance(space, ContinuousSpace) else "nominal"
123
+
56
124
  encoding_dict = {
57
125
  # no x-axis label
58
- "x": alt.X("x", axis=None, type="ordinal"),
126
+ "x": alt.X("x", axis=None, type=x_y_type),
59
127
  # no y-axis label
60
- "y": alt.Y("y", axis=None, type="ordinal"),
128
+ "y": alt.Y("y", axis=None, type=x_y_type),
61
129
  "tooltip": [
62
130
  alt.Tooltip(key, type=alt.utils.infer_vegalite_type([value]))
63
131
  for key, value in all_agent_data[0].items()