MemoryOS 0.2.1__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of MemoryOS might be problematic. Click here for more details.
- {memoryos-0.2.1.dist-info → memoryos-1.0.0.dist-info}/METADATA +7 -1
- {memoryos-0.2.1.dist-info → memoryos-1.0.0.dist-info}/RECORD +87 -64
- memos/__init__.py +1 -1
- memos/api/config.py +158 -69
- memos/api/context/context.py +147 -0
- memos/api/context/dependencies.py +101 -0
- memos/api/product_models.py +5 -1
- memos/api/routers/product_router.py +54 -26
- memos/configs/graph_db.py +49 -1
- memos/configs/internet_retriever.py +19 -0
- memos/configs/mem_os.py +5 -0
- memos/configs/mem_reader.py +9 -0
- memos/configs/mem_scheduler.py +54 -18
- memos/configs/mem_user.py +58 -0
- memos/graph_dbs/base.py +38 -3
- memos/graph_dbs/factory.py +2 -0
- memos/graph_dbs/nebular.py +1612 -0
- memos/graph_dbs/neo4j.py +18 -9
- memos/log.py +6 -1
- memos/mem_cube/utils.py +13 -6
- memos/mem_os/core.py +157 -37
- memos/mem_os/main.py +2 -2
- memos/mem_os/product.py +252 -201
- memos/mem_os/utils/default_config.py +1 -1
- memos/mem_os/utils/format_utils.py +281 -70
- memos/mem_os/utils/reference_utils.py +133 -0
- memos/mem_reader/simple_struct.py +13 -5
- memos/mem_scheduler/base_scheduler.py +239 -266
- memos/mem_scheduler/{modules → general_modules}/base.py +4 -5
- memos/mem_scheduler/{modules → general_modules}/dispatcher.py +57 -21
- memos/mem_scheduler/general_modules/misc.py +104 -0
- memos/mem_scheduler/{modules → general_modules}/rabbitmq_service.py +12 -10
- memos/mem_scheduler/{modules → general_modules}/redis_service.py +1 -1
- memos/mem_scheduler/general_modules/retriever.py +199 -0
- memos/mem_scheduler/general_modules/scheduler_logger.py +261 -0
- memos/mem_scheduler/general_scheduler.py +243 -80
- memos/mem_scheduler/monitors/__init__.py +0 -0
- memos/mem_scheduler/monitors/dispatcher_monitor.py +305 -0
- memos/mem_scheduler/{modules/monitor.py → monitors/general_monitor.py} +106 -57
- memos/mem_scheduler/mos_for_test_scheduler.py +23 -20
- memos/mem_scheduler/schemas/__init__.py +0 -0
- memos/mem_scheduler/schemas/general_schemas.py +44 -0
- memos/mem_scheduler/schemas/message_schemas.py +149 -0
- memos/mem_scheduler/schemas/monitor_schemas.py +337 -0
- memos/mem_scheduler/utils/__init__.py +0 -0
- memos/mem_scheduler/utils/filter_utils.py +176 -0
- memos/mem_scheduler/utils/misc_utils.py +102 -0
- memos/mem_user/factory.py +94 -0
- memos/mem_user/mysql_persistent_user_manager.py +271 -0
- memos/mem_user/mysql_user_manager.py +500 -0
- memos/mem_user/persistent_factory.py +96 -0
- memos/mem_user/user_manager.py +4 -4
- memos/memories/activation/item.py +5 -1
- memos/memories/activation/kv.py +20 -8
- memos/memories/textual/base.py +2 -2
- memos/memories/textual/general.py +36 -92
- memos/memories/textual/item.py +5 -33
- memos/memories/textual/tree.py +13 -7
- memos/memories/textual/tree_text_memory/organize/{conflict.py → handler.py} +34 -50
- memos/memories/textual/tree_text_memory/organize/manager.py +8 -96
- memos/memories/textual/tree_text_memory/organize/relation_reason_detector.py +49 -43
- memos/memories/textual/tree_text_memory/organize/reorganizer.py +107 -142
- memos/memories/textual/tree_text_memory/retrieve/bochasearch.py +229 -0
- memos/memories/textual/tree_text_memory/retrieve/internet_retriever.py +6 -3
- memos/memories/textual/tree_text_memory/retrieve/internet_retriever_factory.py +11 -0
- memos/memories/textual/tree_text_memory/retrieve/recall.py +15 -8
- memos/memories/textual/tree_text_memory/retrieve/reranker.py +1 -1
- memos/memories/textual/tree_text_memory/retrieve/retrieval_mid_structs.py +2 -0
- memos/memories/textual/tree_text_memory/retrieve/searcher.py +191 -116
- memos/memories/textual/tree_text_memory/retrieve/task_goal_parser.py +47 -15
- memos/memories/textual/tree_text_memory/retrieve/utils.py +11 -7
- memos/memories/textual/tree_text_memory/retrieve/xinyusearch.py +62 -58
- memos/memos_tools/dinding_report_bot.py +422 -0
- memos/memos_tools/lockfree_dict.py +120 -0
- memos/memos_tools/notification_service.py +44 -0
- memos/memos_tools/notification_utils.py +96 -0
- memos/memos_tools/thread_safe_dict.py +288 -0
- memos/settings.py +3 -1
- memos/templates/mem_reader_prompts.py +4 -1
- memos/templates/mem_scheduler_prompts.py +62 -15
- memos/templates/mos_prompts.py +116 -0
- memos/templates/tree_reorganize_prompts.py +24 -17
- memos/utils.py +19 -0
- memos/mem_scheduler/modules/misc.py +0 -39
- memos/mem_scheduler/modules/retriever.py +0 -268
- memos/mem_scheduler/modules/schemas.py +0 -328
- memos/mem_scheduler/utils.py +0 -75
- memos/memories/textual/tree_text_memory/organize/redundancy.py +0 -193
- {memoryos-0.2.1.dist-info → memoryos-1.0.0.dist-info}/LICENSE +0 -0
- {memoryos-0.2.1.dist-info → memoryos-1.0.0.dist-info}/WHEEL +0 -0
- {memoryos-0.2.1.dist-info → memoryos-1.0.0.dist-info}/entry_points.txt +0 -0
- /memos/mem_scheduler/{modules → general_modules}/__init__.py +0 -0
|
@@ -1,328 +0,0 @@
|
|
|
1
|
-
import json
|
|
2
|
-
|
|
3
|
-
from datetime import datetime
|
|
4
|
-
from pathlib import Path
|
|
5
|
-
from typing import ClassVar, NewType, TypeVar
|
|
6
|
-
from uuid import uuid4
|
|
7
|
-
|
|
8
|
-
from pydantic import BaseModel, Field, computed_field
|
|
9
|
-
from typing_extensions import TypedDict
|
|
10
|
-
|
|
11
|
-
from memos.log import get_logger
|
|
12
|
-
from memos.mem_cube.general import GeneralMemCube
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
logger = get_logger(__name__)
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
FILE_PATH = Path(__file__).absolute()
|
|
19
|
-
BASE_DIR = FILE_PATH.parent.parent.parent.parent.parent
|
|
20
|
-
|
|
21
|
-
QUERY_LABEL = "query"
|
|
22
|
-
ANSWER_LABEL = "answer"
|
|
23
|
-
ADD_LABEL = "add"
|
|
24
|
-
|
|
25
|
-
TreeTextMemory_SEARCH_METHOD = "tree_text_memory_search"
|
|
26
|
-
TextMemory_SEARCH_METHOD = "text_memory_search"
|
|
27
|
-
DIRECT_EXCHANGE_TYPE = "direct"
|
|
28
|
-
FANOUT_EXCHANGE_TYPE = "fanout"
|
|
29
|
-
DEFAULT_WORKING_MEM_MONITOR_SIZE_LIMIT = 20
|
|
30
|
-
DEFAULT_ACTIVATION_MEM_MONITOR_SIZE_LIMIT = 5
|
|
31
|
-
DEFAULT_ACT_MEM_DUMP_PATH = f"{BASE_DIR}/outputs/mem_scheduler/mem_cube_scheduler_test.kv_cache"
|
|
32
|
-
DEFAULT_THREAD__POOL_MAX_WORKERS = 5
|
|
33
|
-
DEFAULT_CONSUME_INTERVAL_SECONDS = 3
|
|
34
|
-
NOT_INITIALIZED = -1
|
|
35
|
-
BaseModelType = TypeVar("T", bound="BaseModel")
|
|
36
|
-
|
|
37
|
-
# web log
|
|
38
|
-
LONG_TERM_MEMORY_TYPE = "LongTermMemory"
|
|
39
|
-
USER_MEMORY_TYPE = "UserMemory"
|
|
40
|
-
WORKING_MEMORY_TYPE = "WorkingMemory"
|
|
41
|
-
TEXT_MEMORY_TYPE = "TextMemory"
|
|
42
|
-
ACTIVATION_MEMORY_TYPE = "ActivationMemory"
|
|
43
|
-
PARAMETER_MEMORY_TYPE = "ParameterMemory"
|
|
44
|
-
USER_INPUT_TYPE = "UserInput"
|
|
45
|
-
NOT_APPLICABLE_TYPE = "NotApplicable"
|
|
46
|
-
|
|
47
|
-
# monitors
|
|
48
|
-
MONITOR_WORKING_MEMORY_TYPE = "MonitorWorkingMemoryType"
|
|
49
|
-
MONITOR_ACTIVATION_MEMORY_TYPE = "MonitorActivationMemoryType"
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
# new types
|
|
53
|
-
UserID = NewType("UserID", str)
|
|
54
|
-
MemCubeID = NewType("CubeID", str)
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
# ************************* Public *************************
|
|
58
|
-
class DictConversionMixin:
|
|
59
|
-
def to_dict(self) -> dict:
|
|
60
|
-
"""Convert the instance to a dictionary."""
|
|
61
|
-
return {
|
|
62
|
-
**self.model_dump(), # 替换 self.dict()
|
|
63
|
-
"timestamp": self.timestamp.isoformat() if hasattr(self, "timestamp") else None,
|
|
64
|
-
}
|
|
65
|
-
|
|
66
|
-
@classmethod
|
|
67
|
-
def from_dict(cls: type[BaseModelType], data: dict) -> BaseModelType:
|
|
68
|
-
"""Create an instance from a dictionary."""
|
|
69
|
-
if "timestamp" in data:
|
|
70
|
-
data["timestamp"] = datetime.fromisoformat(data["timestamp"])
|
|
71
|
-
return cls(**data)
|
|
72
|
-
|
|
73
|
-
def __str__(self) -> str:
|
|
74
|
-
"""Convert the instance to a JSON string with indentation of 4 spaces.
|
|
75
|
-
This will be used when str() or print() is called on the instance.
|
|
76
|
-
|
|
77
|
-
Returns:
|
|
78
|
-
str: A JSON string representation of the instance with 4-space indentation.
|
|
79
|
-
"""
|
|
80
|
-
return json.dumps(
|
|
81
|
-
self.to_dict(),
|
|
82
|
-
indent=4,
|
|
83
|
-
ensure_ascii=False,
|
|
84
|
-
default=str, # 处理无法序列化的对象
|
|
85
|
-
)
|
|
86
|
-
|
|
87
|
-
class Config:
|
|
88
|
-
json_encoders: ClassVar[dict[type, object]] = {datetime: lambda v: v.isoformat()}
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
# ************************* Messages *************************
|
|
92
|
-
class ScheduleMessageItem(BaseModel, DictConversionMixin):
|
|
93
|
-
item_id: str = Field(description="uuid", default_factory=lambda: str(uuid4()))
|
|
94
|
-
user_id: str = Field(..., description="user id")
|
|
95
|
-
mem_cube_id: str = Field(..., description="memcube id")
|
|
96
|
-
label: str = Field(..., description="Label of the schedule message")
|
|
97
|
-
mem_cube: GeneralMemCube | str = Field(..., description="memcube for schedule")
|
|
98
|
-
content: str = Field(..., description="Content of the schedule message")
|
|
99
|
-
timestamp: datetime = Field(
|
|
100
|
-
default_factory=datetime.now, description="submit time for schedule_messages"
|
|
101
|
-
)
|
|
102
|
-
|
|
103
|
-
class Config:
|
|
104
|
-
arbitrary_types_allowed = True
|
|
105
|
-
json_encoders: ClassVar[dict[type, object]] = {
|
|
106
|
-
datetime: lambda v: v.isoformat(),
|
|
107
|
-
GeneralMemCube: lambda v: f"<GeneralMemCube:{id(v)}>",
|
|
108
|
-
}
|
|
109
|
-
|
|
110
|
-
def to_dict(self) -> dict:
|
|
111
|
-
"""Convert model to dictionary suitable for Redis Stream"""
|
|
112
|
-
return {
|
|
113
|
-
"item_id": self.item_id,
|
|
114
|
-
"user_id": self.user_id,
|
|
115
|
-
"cube_id": self.mem_cube_id,
|
|
116
|
-
"label": self.label,
|
|
117
|
-
"cube": "Not Applicable", # Custom cube serialization
|
|
118
|
-
"content": self.content,
|
|
119
|
-
"timestamp": self.timestamp.isoformat(),
|
|
120
|
-
}
|
|
121
|
-
|
|
122
|
-
@classmethod
|
|
123
|
-
def from_dict(cls, data: dict) -> "ScheduleMessageItem":
|
|
124
|
-
"""Create model from Redis Stream dictionary"""
|
|
125
|
-
return cls(
|
|
126
|
-
item_id=data.get("item_id", str(uuid4())),
|
|
127
|
-
user_id=data["user_id"],
|
|
128
|
-
cube_id=data["cube_id"],
|
|
129
|
-
label=data["label"],
|
|
130
|
-
cube="Not Applicable", # Custom cube deserialization
|
|
131
|
-
content=data["content"],
|
|
132
|
-
timestamp=datetime.fromisoformat(data["timestamp"]),
|
|
133
|
-
)
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
class MemorySizes(TypedDict):
|
|
137
|
-
long_term_memory_size: int
|
|
138
|
-
user_memory_size: int
|
|
139
|
-
working_memory_size: int
|
|
140
|
-
transformed_act_memory_size: int
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
class MemoryCapacities(TypedDict):
|
|
144
|
-
long_term_memory_capacity: int
|
|
145
|
-
user_memory_capacity: int
|
|
146
|
-
working_memory_capacity: int
|
|
147
|
-
transformed_act_memory_capacity: int
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
DEFAULT_MEMORY_SIZES = {
|
|
151
|
-
"long_term_memory_size": NOT_INITIALIZED,
|
|
152
|
-
"user_memory_size": NOT_INITIALIZED,
|
|
153
|
-
"working_memory_size": NOT_INITIALIZED,
|
|
154
|
-
"transformed_act_memory_size": NOT_INITIALIZED,
|
|
155
|
-
"parameter_memory_size": NOT_INITIALIZED,
|
|
156
|
-
}
|
|
157
|
-
|
|
158
|
-
DEFAULT_MEMORY_CAPACITIES = {
|
|
159
|
-
"long_term_memory_capacity": 10000,
|
|
160
|
-
"user_memory_capacity": 10000,
|
|
161
|
-
"working_memory_capacity": 20,
|
|
162
|
-
"transformed_act_memory_capacity": NOT_INITIALIZED,
|
|
163
|
-
"parameter_memory_capacity": NOT_INITIALIZED,
|
|
164
|
-
}
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
class ScheduleLogForWebItem(BaseModel, DictConversionMixin):
|
|
168
|
-
item_id: str = Field(
|
|
169
|
-
description="Unique identifier for the log entry", default_factory=lambda: str(uuid4())
|
|
170
|
-
)
|
|
171
|
-
user_id: str = Field(..., description="Identifier for the user associated with the log")
|
|
172
|
-
mem_cube_id: str = Field(
|
|
173
|
-
..., description="Identifier for the memcube associated with this log entry"
|
|
174
|
-
)
|
|
175
|
-
label: str = Field(..., description="Label categorizing the type of log")
|
|
176
|
-
from_memory_type: str = Field(..., description="Source memory type")
|
|
177
|
-
to_memory_type: str = Field(..., description="Destination memory type")
|
|
178
|
-
log_content: str = Field(..., description="Detailed content of the log entry")
|
|
179
|
-
current_memory_sizes: MemorySizes = Field(
|
|
180
|
-
default_factory=lambda: dict(DEFAULT_MEMORY_SIZES),
|
|
181
|
-
description="Current utilization of memory partitions",
|
|
182
|
-
)
|
|
183
|
-
memory_capacities: MemoryCapacities = Field(
|
|
184
|
-
default_factory=lambda: dict(DEFAULT_MEMORY_CAPACITIES),
|
|
185
|
-
description="Maximum capacities of memory partitions",
|
|
186
|
-
)
|
|
187
|
-
timestamp: datetime = Field(
|
|
188
|
-
default_factory=datetime.now,
|
|
189
|
-
description="Timestamp indicating when the log entry was created",
|
|
190
|
-
)
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
# ************************* Monitor *************************
|
|
194
|
-
class MemoryMonitorItem(BaseModel, DictConversionMixin):
|
|
195
|
-
item_id: str = Field(
|
|
196
|
-
description="Unique identifier for the memory item", default_factory=lambda: str(uuid4())
|
|
197
|
-
)
|
|
198
|
-
memory_text: str = Field(
|
|
199
|
-
...,
|
|
200
|
-
description="The actual content of the memory",
|
|
201
|
-
min_length=1,
|
|
202
|
-
max_length=10000, # Prevent excessively large memory texts
|
|
203
|
-
)
|
|
204
|
-
importance_score: float = Field(
|
|
205
|
-
default=NOT_INITIALIZED,
|
|
206
|
-
description="Numerical score representing the memory's importance",
|
|
207
|
-
ge=NOT_INITIALIZED, # Minimum value of 0
|
|
208
|
-
)
|
|
209
|
-
recording_count: int = Field(
|
|
210
|
-
default=1,
|
|
211
|
-
description="How many times this memory has been recorded",
|
|
212
|
-
ge=1, # Greater than or equal to 1
|
|
213
|
-
)
|
|
214
|
-
|
|
215
|
-
def get_score(self) -> float:
|
|
216
|
-
"""
|
|
217
|
-
Calculate the effective score for the memory item.
|
|
218
|
-
|
|
219
|
-
Returns:
|
|
220
|
-
float: The importance_score if it has been initialized (>=0),
|
|
221
|
-
otherwise the recording_count converted to float.
|
|
222
|
-
|
|
223
|
-
Note:
|
|
224
|
-
This method provides a unified way to retrieve a comparable score
|
|
225
|
-
for memory items, regardless of whether their importance has been explicitly set.
|
|
226
|
-
"""
|
|
227
|
-
if self.importance_score == NOT_INITIALIZED:
|
|
228
|
-
# Return recording_count as float when importance_score is not initialized
|
|
229
|
-
return float(self.recording_count)
|
|
230
|
-
else:
|
|
231
|
-
# Return the initialized importance_score
|
|
232
|
-
return self.importance_score
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
class MemoryMonitorManager(BaseModel, DictConversionMixin):
|
|
236
|
-
user_id: str = Field(..., description="Required user identifier", min_length=1)
|
|
237
|
-
mem_cube_id: str = Field(..., description="Required memory cube identifier", min_length=1)
|
|
238
|
-
memories: list[MemoryMonitorItem] = Field(
|
|
239
|
-
default_factory=list, description="Collection of memory items"
|
|
240
|
-
)
|
|
241
|
-
max_capacity: int | None = Field(
|
|
242
|
-
default=None, description="Maximum number of memories allowed (None for unlimited)", ge=1
|
|
243
|
-
)
|
|
244
|
-
|
|
245
|
-
@computed_field
|
|
246
|
-
@property
|
|
247
|
-
def memory_size(self) -> int:
|
|
248
|
-
"""Automatically calculated count of memory items."""
|
|
249
|
-
return len(self.memories)
|
|
250
|
-
|
|
251
|
-
def update_memories(
|
|
252
|
-
self, text_working_memories: list[str], partial_retention_number: int
|
|
253
|
-
) -> MemoryMonitorItem:
|
|
254
|
-
"""
|
|
255
|
-
Update memories based on text_working_memories.
|
|
256
|
-
|
|
257
|
-
Args:
|
|
258
|
-
text_working_memories: List of memory texts to update
|
|
259
|
-
partial_retention_number: Number of top memories to keep by recording count
|
|
260
|
-
|
|
261
|
-
Returns:
|
|
262
|
-
List of added or updated MemoryMonitorItem instances
|
|
263
|
-
"""
|
|
264
|
-
|
|
265
|
-
# Validate partial_retention_number
|
|
266
|
-
if partial_retention_number < 0:
|
|
267
|
-
raise ValueError("partial_retention_number must be non-negative")
|
|
268
|
-
|
|
269
|
-
# Create text lookup set
|
|
270
|
-
working_memory_set = set(text_working_memories)
|
|
271
|
-
|
|
272
|
-
# Step 1: Update existing memories or add new ones
|
|
273
|
-
added_or_updated = []
|
|
274
|
-
memory_text_map = {item.memory_text: item for item in self.memories}
|
|
275
|
-
|
|
276
|
-
for text in text_working_memories:
|
|
277
|
-
if text in memory_text_map:
|
|
278
|
-
# Update existing memory
|
|
279
|
-
memory = memory_text_map[text]
|
|
280
|
-
memory.recording_count += 1
|
|
281
|
-
added_or_updated.append(memory)
|
|
282
|
-
else:
|
|
283
|
-
# Add new memory
|
|
284
|
-
new_memory = MemoryMonitorItem(memory_text=text, recording_count=1)
|
|
285
|
-
self.memories.append(new_memory)
|
|
286
|
-
added_or_updated.append(new_memory)
|
|
287
|
-
|
|
288
|
-
# Step 2: Identify memories to remove
|
|
289
|
-
# Sort memories by recording_count in descending order
|
|
290
|
-
sorted_memories = sorted(self.memories, key=lambda item: item.recording_count, reverse=True)
|
|
291
|
-
|
|
292
|
-
# Keep the top N memories by recording_count
|
|
293
|
-
records_to_keep = {
|
|
294
|
-
memory.memory_text for memory in sorted_memories[:partial_retention_number]
|
|
295
|
-
}
|
|
296
|
-
|
|
297
|
-
# Collect memories to remove: not in current working memory and not in top N
|
|
298
|
-
memories_to_remove = [
|
|
299
|
-
memory
|
|
300
|
-
for memory in self.memories
|
|
301
|
-
if memory.memory_text not in working_memory_set
|
|
302
|
-
and memory.memory_text not in records_to_keep
|
|
303
|
-
]
|
|
304
|
-
|
|
305
|
-
# Step 3: Remove identified memories
|
|
306
|
-
for memory in memories_to_remove:
|
|
307
|
-
self.memories.remove(memory)
|
|
308
|
-
|
|
309
|
-
# Step 4: Enforce max_capacity if set
|
|
310
|
-
if self.max_capacity is not None and len(self.memories) > self.max_capacity:
|
|
311
|
-
# Sort by importance and then recording count
|
|
312
|
-
sorted_memories = sorted(
|
|
313
|
-
self.memories,
|
|
314
|
-
key=lambda item: (item.importance_score, item.recording_count),
|
|
315
|
-
reverse=True,
|
|
316
|
-
)
|
|
317
|
-
# Keep only the top max_capacity memories
|
|
318
|
-
self.memories = sorted_memories[: self.max_capacity]
|
|
319
|
-
|
|
320
|
-
# Log the update result
|
|
321
|
-
logger.info(
|
|
322
|
-
f"Updated monitor manager for user {self.user_id}, mem_cube {self.mem_cube_id}: "
|
|
323
|
-
f"Total memories: {len(self.memories)}, "
|
|
324
|
-
f"Added/Updated: {len(added_or_updated)}, "
|
|
325
|
-
f"Removed: {len(memories_to_remove)} (excluding top {partial_retention_number} by recording_count)"
|
|
326
|
-
)
|
|
327
|
-
|
|
328
|
-
return added_or_updated
|
memos/mem_scheduler/utils.py
DELETED
|
@@ -1,75 +0,0 @@
|
|
|
1
|
-
import json
|
|
2
|
-
import re
|
|
3
|
-
|
|
4
|
-
from pathlib import Path
|
|
5
|
-
|
|
6
|
-
import yaml
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
def extract_json_dict(text: str):
|
|
10
|
-
text = text.strip()
|
|
11
|
-
patterns_to_remove = ["json```", "```json", "latex```", "```latex", "```"]
|
|
12
|
-
for pattern in patterns_to_remove:
|
|
13
|
-
text = text.replace(pattern, "")
|
|
14
|
-
res = json.loads(text.strip())
|
|
15
|
-
return res
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
def transform_name_to_key(name):
|
|
19
|
-
"""
|
|
20
|
-
Normalize text by removing all punctuation marks, keeping only letters, numbers, and word characters.
|
|
21
|
-
|
|
22
|
-
Args:
|
|
23
|
-
name (str): Input text to be processed
|
|
24
|
-
|
|
25
|
-
Returns:
|
|
26
|
-
str: Processed text with all punctuation removed
|
|
27
|
-
"""
|
|
28
|
-
# Match all characters that are NOT:
|
|
29
|
-
# \w - word characters (letters, digits, underscore)
|
|
30
|
-
# \u4e00-\u9fff - Chinese/Japanese/Korean characters
|
|
31
|
-
# \s - whitespace
|
|
32
|
-
pattern = r"[^\w\u4e00-\u9fff\s]"
|
|
33
|
-
|
|
34
|
-
# Substitute all matched punctuation marks with empty string
|
|
35
|
-
# re.UNICODE flag ensures proper handling of Unicode characters
|
|
36
|
-
normalized = re.sub(pattern, "", name, flags=re.UNICODE)
|
|
37
|
-
|
|
38
|
-
# Optional: Collapse multiple whitespaces into single space
|
|
39
|
-
normalized = "_".join(normalized.split())
|
|
40
|
-
|
|
41
|
-
normalized = normalized.lower()
|
|
42
|
-
|
|
43
|
-
return normalized
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
def parse_yaml(yaml_file):
|
|
47
|
-
yaml_path = Path(yaml_file)
|
|
48
|
-
yaml_path = Path(yaml_file)
|
|
49
|
-
if not yaml_path.is_file():
|
|
50
|
-
raise FileNotFoundError(f"No such file: {yaml_file}")
|
|
51
|
-
|
|
52
|
-
with yaml_path.open("r", encoding="utf-8") as fr:
|
|
53
|
-
data = yaml.safe_load(fr)
|
|
54
|
-
|
|
55
|
-
return data
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
def is_all_english(input_string: str) -> bool:
|
|
59
|
-
"""Determine if the string consists entirely of English characters (including spaces)"""
|
|
60
|
-
return all(char.isascii() or char.isspace() for char in input_string)
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
def is_all_chinese(input_string: str) -> bool:
|
|
64
|
-
"""Determine if the string consists entirely of Chinese characters (including Chinese punctuation and spaces)"""
|
|
65
|
-
return all(
|
|
66
|
-
("\u4e00" <= char <= "\u9fff") # Basic Chinese characters
|
|
67
|
-
or ("\u3400" <= char <= "\u4dbf") # Extension A
|
|
68
|
-
or ("\u20000" <= char <= "\u2a6df") # Extension B
|
|
69
|
-
or ("\u2a700" <= char <= "\u2b73f") # Extension C
|
|
70
|
-
or ("\u2b740" <= char <= "\u2b81f") # Extension D
|
|
71
|
-
or ("\u2b820" <= char <= "\u2ceaf") # Extension E
|
|
72
|
-
or ("\u2f800" <= char <= "\u2fa1f") # Extension F
|
|
73
|
-
or char.isspace() # Spaces
|
|
74
|
-
for char in input_string
|
|
75
|
-
)
|
|
@@ -1,193 +0,0 @@
|
|
|
1
|
-
import json
|
|
2
|
-
import re
|
|
3
|
-
|
|
4
|
-
from datetime import datetime
|
|
5
|
-
|
|
6
|
-
from memos.embedders.base import BaseEmbedder
|
|
7
|
-
from memos.graph_dbs.neo4j import Neo4jGraphDB
|
|
8
|
-
from memos.llms.base import BaseLLM
|
|
9
|
-
from memos.log import get_logger
|
|
10
|
-
from memos.memories.textual.item import TextualMemoryItem, TreeNodeTextualMemoryMetadata
|
|
11
|
-
from memos.templates.tree_reorganize_prompts import (
|
|
12
|
-
REDUNDANCY_DETECTOR_PROMPT,
|
|
13
|
-
REDUNDANCY_MERGE_PROMPT,
|
|
14
|
-
REDUNDANCY_RESOLVER_PROMPT,
|
|
15
|
-
)
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
logger = get_logger(__name__)
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
class RedundancyHandler:
|
|
22
|
-
EMBEDDING_THRESHOLD: float = 0.8 # Threshold for embedding similarity to consider redundancy
|
|
23
|
-
|
|
24
|
-
def __init__(self, graph_store: Neo4jGraphDB, llm: BaseLLM, embedder: BaseEmbedder):
|
|
25
|
-
self.graph_store = graph_store
|
|
26
|
-
self.llm = llm
|
|
27
|
-
self.embedder = embedder
|
|
28
|
-
|
|
29
|
-
def detect(
|
|
30
|
-
self, memory: TextualMemoryItem, top_k: int = 5, scope: str | None = None
|
|
31
|
-
) -> list[tuple[TextualMemoryItem, TextualMemoryItem]]:
|
|
32
|
-
"""
|
|
33
|
-
Detect redundancy by finding the most similar items in the graph database based on embedding, then use LLM to judge redundancy.
|
|
34
|
-
Args:
|
|
35
|
-
memory: The memory item (should have an embedding attribute or field).
|
|
36
|
-
top_k: Number of top similar nodes to retrieve.
|
|
37
|
-
scope: Optional memory type filter.
|
|
38
|
-
Returns:
|
|
39
|
-
List of redundancy pairs (each pair is a tuple: (memory, candidate)).
|
|
40
|
-
"""
|
|
41
|
-
# 1. Search for similar memories based on embedding
|
|
42
|
-
embedding = memory.metadata.embedding
|
|
43
|
-
embedding_candidates_info = self.graph_store.search_by_embedding(
|
|
44
|
-
embedding, top_k=top_k, scope=scope
|
|
45
|
-
)
|
|
46
|
-
# 2. Filter based on similarity threshold
|
|
47
|
-
embedding_candidates_ids = [
|
|
48
|
-
info["id"]
|
|
49
|
-
for info in embedding_candidates_info
|
|
50
|
-
if info["score"] >= self.EMBEDDING_THRESHOLD and info["id"] != memory.id
|
|
51
|
-
]
|
|
52
|
-
# 3. Judge redundancys using LLM
|
|
53
|
-
embedding_candidates = self.graph_store.get_nodes(embedding_candidates_ids)
|
|
54
|
-
redundant_pairs = []
|
|
55
|
-
for embedding_candidate in embedding_candidates:
|
|
56
|
-
embedding_candidate = TextualMemoryItem.from_dict(embedding_candidate)
|
|
57
|
-
prompt = [
|
|
58
|
-
{
|
|
59
|
-
"role": "system",
|
|
60
|
-
"content": "You are a redundancy detector for memory items.",
|
|
61
|
-
},
|
|
62
|
-
{
|
|
63
|
-
"role": "user",
|
|
64
|
-
"content": REDUNDANCY_DETECTOR_PROMPT.format(
|
|
65
|
-
statement_1=memory.memory,
|
|
66
|
-
statement_2=embedding_candidate.memory,
|
|
67
|
-
),
|
|
68
|
-
},
|
|
69
|
-
]
|
|
70
|
-
result = self.llm.generate(prompt).strip()
|
|
71
|
-
if "yes" in result.lower():
|
|
72
|
-
redundant_pairs.append([memory, embedding_candidate])
|
|
73
|
-
if len(redundant_pairs):
|
|
74
|
-
redundant_text = "\n".join(
|
|
75
|
-
f'"{pair[0].memory!s}" <==REDUNDANCY==> "{pair[1].memory!s}"'
|
|
76
|
-
for pair in redundant_pairs
|
|
77
|
-
)
|
|
78
|
-
logger.warning(
|
|
79
|
-
f"Detected {len(redundant_pairs)} redundancies for memory {memory.id}\n {redundant_text}"
|
|
80
|
-
)
|
|
81
|
-
return redundant_pairs
|
|
82
|
-
|
|
83
|
-
def resolve_two_nodes(self, memory_a: TextualMemoryItem, memory_b: TextualMemoryItem) -> None:
|
|
84
|
-
"""
|
|
85
|
-
Resolve detected redundancies between two memory items using LLM fusion.
|
|
86
|
-
Args:
|
|
87
|
-
memory_a: The first redundant memory item.
|
|
88
|
-
memory_b: The second redundant memory item.
|
|
89
|
-
Returns:
|
|
90
|
-
A fused TextualMemoryItem representing the resolved memory.
|
|
91
|
-
"""
|
|
92
|
-
return # waiting for implementation
|
|
93
|
-
# ———————————— 1. LLM generate fused memory ————————————
|
|
94
|
-
metadata_for_resolve = ["key", "background", "confidence", "updated_at"]
|
|
95
|
-
metadata_1 = memory_a.metadata.model_dump_json(include=metadata_for_resolve)
|
|
96
|
-
metadata_2 = memory_b.metadata.model_dump_json(include=metadata_for_resolve)
|
|
97
|
-
prompt = [
|
|
98
|
-
{
|
|
99
|
-
"role": "system",
|
|
100
|
-
"content": "",
|
|
101
|
-
},
|
|
102
|
-
{
|
|
103
|
-
"role": "user",
|
|
104
|
-
"content": REDUNDANCY_RESOLVER_PROMPT.format(
|
|
105
|
-
statement_1=memory_a.memory,
|
|
106
|
-
metadata_1=metadata_1,
|
|
107
|
-
statement_2=memory_b.memory,
|
|
108
|
-
metadata_2=metadata_2,
|
|
109
|
-
),
|
|
110
|
-
},
|
|
111
|
-
]
|
|
112
|
-
response = self.llm.generate(prompt).strip()
|
|
113
|
-
|
|
114
|
-
# ———————————— 2. Parse the response ————————————
|
|
115
|
-
try:
|
|
116
|
-
answer = re.search(r"<answer>(.*?)</answer>", response, re.DOTALL)
|
|
117
|
-
answer = answer.group(1).strip()
|
|
118
|
-
fixed_metadata = self._merge_metadata(answer, memory_a.metadata, memory_b.metadata)
|
|
119
|
-
merged_memory = TextualMemoryItem(memory=answer, metadata=fixed_metadata)
|
|
120
|
-
logger.info(f"Resolved result: {merged_memory}")
|
|
121
|
-
self._resolve_in_graph(memory_a, memory_b, merged_memory)
|
|
122
|
-
except json.decoder.JSONDecodeError:
|
|
123
|
-
logger.error(f"Failed to parse LLM response: {response}")
|
|
124
|
-
|
|
125
|
-
def resolve_one_node(self, memory: TextualMemoryItem) -> None:
|
|
126
|
-
prompt = [
|
|
127
|
-
{
|
|
128
|
-
"role": "user",
|
|
129
|
-
"content": REDUNDANCY_MERGE_PROMPT.format(merged_text=memory.memory),
|
|
130
|
-
},
|
|
131
|
-
]
|
|
132
|
-
response = self.llm.generate(prompt)
|
|
133
|
-
memory.memory = response.strip()
|
|
134
|
-
self.graph_store.update_node(
|
|
135
|
-
memory.id,
|
|
136
|
-
{"memory": memory.memory, **memory.metadata.model_dump(exclude_none=True)},
|
|
137
|
-
)
|
|
138
|
-
logger.debug(f"Merged memory: {memory.memory}")
|
|
139
|
-
|
|
140
|
-
def _resolve_in_graph(
|
|
141
|
-
self,
|
|
142
|
-
redundant_a: TextualMemoryItem,
|
|
143
|
-
redundant_b: TextualMemoryItem,
|
|
144
|
-
merged: TextualMemoryItem,
|
|
145
|
-
):
|
|
146
|
-
edges_a = self.graph_store.get_edges(redundant_a.id, type="ANY", direction="ANY")
|
|
147
|
-
edges_b = self.graph_store.get_edges(redundant_b.id, type="ANY", direction="ANY")
|
|
148
|
-
all_edges = edges_a + edges_b
|
|
149
|
-
|
|
150
|
-
self.graph_store.add_node(
|
|
151
|
-
merged.id, merged.memory, merged.metadata.model_dump(exclude_none=True)
|
|
152
|
-
)
|
|
153
|
-
|
|
154
|
-
for edge in all_edges:
|
|
155
|
-
new_from = (
|
|
156
|
-
merged.id if edge["from"] in (redundant_a.id, redundant_b.id) else edge["from"]
|
|
157
|
-
)
|
|
158
|
-
new_to = merged.id if edge["to"] in (redundant_a.id, redundant_b.id) else edge["to"]
|
|
159
|
-
if new_from == new_to:
|
|
160
|
-
continue
|
|
161
|
-
# Check if the edge already exists before adding
|
|
162
|
-
if not self.graph_store.edge_exists(new_from, new_to, edge["type"], direction="ANY"):
|
|
163
|
-
self.graph_store.add_edge(new_from, new_to, edge["type"])
|
|
164
|
-
|
|
165
|
-
self.graph_store.update_node(redundant_a.id, {"status": "archived"})
|
|
166
|
-
self.graph_store.update_node(redundant_b.id, {"status": "archived"})
|
|
167
|
-
self.graph_store.add_edge(redundant_a.id, merged.id, type="MERGED_TO")
|
|
168
|
-
self.graph_store.add_edge(redundant_b.id, merged.id, type="MERGED_TO")
|
|
169
|
-
logger.debug(
|
|
170
|
-
f"Archive {redundant_a.id} and {redundant_b.id}, and inherit their edges to {merged.id}."
|
|
171
|
-
)
|
|
172
|
-
|
|
173
|
-
def _merge_metadata(
|
|
174
|
-
self,
|
|
175
|
-
memory: str,
|
|
176
|
-
metadata_a: TreeNodeTextualMemoryMetadata,
|
|
177
|
-
metadata_b: TreeNodeTextualMemoryMetadata,
|
|
178
|
-
) -> TreeNodeTextualMemoryMetadata:
|
|
179
|
-
metadata_1 = metadata_a.model_dump()
|
|
180
|
-
metadata_2 = metadata_b.model_dump()
|
|
181
|
-
merged_metadata = {
|
|
182
|
-
"sources": (metadata_1["sources"] or []) + (metadata_2["sources"] or []),
|
|
183
|
-
"embedding": self.embedder.embed([memory])[0],
|
|
184
|
-
"update_at": datetime.now().isoformat(),
|
|
185
|
-
"created_at": datetime.now().isoformat(),
|
|
186
|
-
}
|
|
187
|
-
for key in metadata_1:
|
|
188
|
-
if key in merged_metadata:
|
|
189
|
-
continue
|
|
190
|
-
merged_metadata[key] = (
|
|
191
|
-
metadata_1[key] if metadata_1[key] is not None else metadata_2[key]
|
|
192
|
-
)
|
|
193
|
-
return TreeNodeTextualMemoryMetadata.model_validate(merged_metadata)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|