MemoryOS 0.0.1__py3-none-any.whl → 0.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of MemoryOS might be problematic. Click here for more details.

Files changed (119) hide show
  1. memoryos-0.1.12.dist-info/METADATA +257 -0
  2. memoryos-0.1.12.dist-info/RECORD +117 -0
  3. memos/__init__.py +20 -1
  4. memos/api/start_api.py +420 -0
  5. memos/chunkers/__init__.py +4 -0
  6. memos/chunkers/base.py +24 -0
  7. memos/chunkers/factory.py +22 -0
  8. memos/chunkers/sentence_chunker.py +35 -0
  9. memos/configs/__init__.py +0 -0
  10. memos/configs/base.py +82 -0
  11. memos/configs/chunker.py +45 -0
  12. memos/configs/embedder.py +53 -0
  13. memos/configs/graph_db.py +45 -0
  14. memos/configs/llm.py +71 -0
  15. memos/configs/mem_chat.py +81 -0
  16. memos/configs/mem_cube.py +89 -0
  17. memos/configs/mem_os.py +70 -0
  18. memos/configs/mem_reader.py +53 -0
  19. memos/configs/mem_scheduler.py +78 -0
  20. memos/configs/memory.py +190 -0
  21. memos/configs/parser.py +38 -0
  22. memos/configs/utils.py +8 -0
  23. memos/configs/vec_db.py +64 -0
  24. memos/deprecation.py +262 -0
  25. memos/embedders/__init__.py +0 -0
  26. memos/embedders/base.py +15 -0
  27. memos/embedders/factory.py +23 -0
  28. memos/embedders/ollama.py +74 -0
  29. memos/embedders/sentence_transformer.py +40 -0
  30. memos/exceptions.py +30 -0
  31. memos/graph_dbs/__init__.py +0 -0
  32. memos/graph_dbs/base.py +215 -0
  33. memos/graph_dbs/factory.py +21 -0
  34. memos/graph_dbs/neo4j.py +827 -0
  35. memos/hello_world.py +97 -0
  36. memos/llms/__init__.py +0 -0
  37. memos/llms/base.py +16 -0
  38. memos/llms/factory.py +25 -0
  39. memos/llms/hf.py +231 -0
  40. memos/llms/ollama.py +82 -0
  41. memos/llms/openai.py +34 -0
  42. memos/llms/utils.py +14 -0
  43. memos/log.py +78 -0
  44. memos/mem_chat/__init__.py +0 -0
  45. memos/mem_chat/base.py +30 -0
  46. memos/mem_chat/factory.py +21 -0
  47. memos/mem_chat/simple.py +200 -0
  48. memos/mem_cube/__init__.py +0 -0
  49. memos/mem_cube/base.py +29 -0
  50. memos/mem_cube/general.py +146 -0
  51. memos/mem_cube/utils.py +24 -0
  52. memos/mem_os/client.py +5 -0
  53. memos/mem_os/core.py +819 -0
  54. memos/mem_os/main.py +12 -0
  55. memos/mem_os/product.py +89 -0
  56. memos/mem_reader/__init__.py +0 -0
  57. memos/mem_reader/base.py +27 -0
  58. memos/mem_reader/factory.py +21 -0
  59. memos/mem_reader/memory.py +298 -0
  60. memos/mem_reader/simple_struct.py +241 -0
  61. memos/mem_scheduler/__init__.py +0 -0
  62. memos/mem_scheduler/base_scheduler.py +164 -0
  63. memos/mem_scheduler/general_scheduler.py +305 -0
  64. memos/mem_scheduler/modules/__init__.py +0 -0
  65. memos/mem_scheduler/modules/base.py +74 -0
  66. memos/mem_scheduler/modules/dispatcher.py +103 -0
  67. memos/mem_scheduler/modules/monitor.py +82 -0
  68. memos/mem_scheduler/modules/redis_service.py +146 -0
  69. memos/mem_scheduler/modules/retriever.py +41 -0
  70. memos/mem_scheduler/modules/schemas.py +146 -0
  71. memos/mem_scheduler/scheduler_factory.py +21 -0
  72. memos/mem_scheduler/utils.py +26 -0
  73. memos/mem_user/user_manager.py +478 -0
  74. memos/memories/__init__.py +0 -0
  75. memos/memories/activation/__init__.py +0 -0
  76. memos/memories/activation/base.py +42 -0
  77. memos/memories/activation/item.py +25 -0
  78. memos/memories/activation/kv.py +232 -0
  79. memos/memories/base.py +19 -0
  80. memos/memories/factory.py +34 -0
  81. memos/memories/parametric/__init__.py +0 -0
  82. memos/memories/parametric/base.py +19 -0
  83. memos/memories/parametric/item.py +11 -0
  84. memos/memories/parametric/lora.py +41 -0
  85. memos/memories/textual/__init__.py +0 -0
  86. memos/memories/textual/base.py +89 -0
  87. memos/memories/textual/general.py +286 -0
  88. memos/memories/textual/item.py +167 -0
  89. memos/memories/textual/naive.py +185 -0
  90. memos/memories/textual/tree.py +289 -0
  91. memos/memories/textual/tree_text_memory/__init__.py +0 -0
  92. memos/memories/textual/tree_text_memory/organize/__init__.py +0 -0
  93. memos/memories/textual/tree_text_memory/organize/manager.py +305 -0
  94. memos/memories/textual/tree_text_memory/retrieve/__init__.py +0 -0
  95. memos/memories/textual/tree_text_memory/retrieve/reasoner.py +64 -0
  96. memos/memories/textual/tree_text_memory/retrieve/recall.py +158 -0
  97. memos/memories/textual/tree_text_memory/retrieve/reranker.py +111 -0
  98. memos/memories/textual/tree_text_memory/retrieve/retrieval_mid_structs.py +13 -0
  99. memos/memories/textual/tree_text_memory/retrieve/searcher.py +166 -0
  100. memos/memories/textual/tree_text_memory/retrieve/task_goal_parser.py +68 -0
  101. memos/memories/textual/tree_text_memory/retrieve/utils.py +48 -0
  102. memos/parsers/__init__.py +0 -0
  103. memos/parsers/base.py +15 -0
  104. memos/parsers/factory.py +19 -0
  105. memos/parsers/markitdown.py +22 -0
  106. memos/settings.py +8 -0
  107. memos/templates/__init__.py +0 -0
  108. memos/templates/mem_reader_prompts.py +98 -0
  109. memos/templates/mem_scheduler_prompts.py +65 -0
  110. memos/types.py +55 -0
  111. memos/vec_dbs/__init__.py +0 -0
  112. memos/vec_dbs/base.py +105 -0
  113. memos/vec_dbs/factory.py +21 -0
  114. memos/vec_dbs/item.py +43 -0
  115. memos/vec_dbs/qdrant.py +292 -0
  116. memoryos-0.0.1.dist-info/METADATA +0 -53
  117. memoryos-0.0.1.dist-info/RECORD +0 -5
  118. {memoryos-0.0.1.dist-info → memoryos-0.1.12.dist-info}/LICENSE +0 -0
  119. {memoryos-0.0.1.dist-info → memoryos-0.1.12.dist-info}/WHEEL +0 -0
@@ -0,0 +1,289 @@
1
+ import json
2
+ import os
3
+ import shutil
4
+ import tempfile
5
+
6
+ from datetime import datetime
7
+ from pathlib import Path
8
+ from typing import Any
9
+
10
+ from memos.configs.memory import TreeTextMemoryConfig
11
+ from memos.embedders.factory import EmbedderFactory, OllamaEmbedder
12
+ from memos.graph_dbs.factory import GraphStoreFactory, Neo4jGraphDB
13
+ from memos.llms.factory import LLMFactory, OllamaLLM, OpenAILLM
14
+ from memos.log import get_logger
15
+ from memos.memories.textual.base import BaseTextMemory
16
+ from memos.memories.textual.item import TextualMemoryItem, TreeNodeTextualMemoryMetadata
17
+ from memos.memories.textual.tree_text_memory.organize.manager import MemoryManager
18
+ from memos.memories.textual.tree_text_memory.retrieve.searcher import Searcher
19
+ from memos.types import MessageList
20
+
21
+
22
+ logger = get_logger(__name__)
23
+
24
+
25
+ class TreeTextMemory(BaseTextMemory):
26
+ """General textual memory implementation for storing and retrieving memories."""
27
+
28
+ def __init__(self, config: TreeTextMemoryConfig):
29
+ """Initialize memory with the given configuration."""
30
+ self.config: TreeTextMemoryConfig = config
31
+ self.extractor_llm: OpenAILLM | OllamaLLM = LLMFactory.from_config(config.extractor_llm)
32
+ self.dispatcher_llm: OpenAILLM | OllamaLLM = LLMFactory.from_config(config.dispatcher_llm)
33
+ self.embedder: OllamaEmbedder = EmbedderFactory.from_config(config.embedder)
34
+ self.graph_store: Neo4jGraphDB = GraphStoreFactory.from_config(config.graph_db)
35
+ self.memory_manager: MemoryManager = MemoryManager(self.graph_store, self.embedder)
36
+
37
+ def add(self, memories: list[TextualMemoryItem | dict[str, Any]]) -> None:
38
+ """Add memories.
39
+ Args:
40
+ memories: List of TextualMemoryItem objects or dictionaries to add.
41
+ Later:
42
+ memory_items = [TextualMemoryItem(**m) if isinstance(m, dict) else m for m in memories]
43
+ metadata = extract_metadata(memory_items, self.extractor_llm)
44
+ plan = plan_memory_operations(memory_items, metadata, self.graph_store)
45
+ execute_plan(memory_items, metadata, plan, self.graph_store)
46
+ """
47
+ self.memory_manager.add(memories)
48
+
49
+ def replace_working_memory(self, memories: list[TextualMemoryItem]) -> None:
50
+ self.memory_manager.replace_working_memory(memories)
51
+
52
+ def get_working_memory(self) -> list[TextualMemoryItem]:
53
+ working_memories = self.graph_store.get_all_memory_items(scope="WorkingMemory")
54
+ items = [TextualMemoryItem.from_dict(record) for record in (working_memories)]
55
+ # Sort by updated_at in descending order
56
+ sorted_items = sorted(
57
+ items, key=lambda x: x.metadata.updated_at or datetime.min, reverse=True
58
+ )
59
+ return sorted_items
60
+
61
+ def get_current_memory_size(self) -> dict[str, int]:
62
+ """
63
+ Get the current size of each memory type.
64
+ This delegates to the MemoryManager.
65
+ """
66
+ return self.memory_manager.get_current_memory_size()
67
+
68
+ def search(
69
+ self, query: str, top_k: int, info=None, mode: str = "fast", memory_type: str = "All"
70
+ ) -> list[TextualMemoryItem]:
71
+ """Search for memories based on a query.
72
+ User query -> TaskGoalParser -> MemoryPathResolver ->
73
+ GraphMemoryRetriever -> MemoryReranker -> MemoryReasoner -> Final output
74
+ Args:
75
+ query (str): The query to search for.
76
+ top_k (int): The number of top results to return.
77
+ info (dict): Leave a record of memory consumption.
78
+ mode (str, optional): The mode of the search.
79
+ - 'fast': Uses a faster search process, sacrificing some precision for speed.
80
+ - 'fine': Uses a more detailed search process, invoking large models for higher precision, but slower performance.
81
+ memory_type (str): Type restriction for search.
82
+ ['All', 'WorkingMemory', 'LongTermMemory', 'UserMemory']
83
+ Returns:
84
+ list[TextualMemoryItem]: List of matching memories.
85
+ """
86
+ searcher = Searcher(self.dispatcher_llm, self.graph_store, self.embedder)
87
+ return searcher.search(query, top_k, info, mode, memory_type)
88
+
89
+ def get_relevant_subgraph(
90
+ self, query: str, top_k: int = 5, depth: int = 2, center_status: str = "activated"
91
+ ) -> dict[str, Any]:
92
+ """
93
+ Find and merge the local neighborhood sub-graphs of the top-k
94
+ nodes most relevant to the query.
95
+ Process:
96
+ 1. Embed the user query into a vector representation.
97
+ 2. Use vector similarity search to find the top-k similar nodes.
98
+ 3. For each similar node:
99
+ - Ensure its status matches `center_status` (e.g., 'active').
100
+ - Retrieve its local subgraph up to `depth` hops.
101
+ - Collect the center node, its neighbors, and connecting edges.
102
+ 4. Merge all retrieved subgraphs into a single unified subgraph.
103
+ 5. Return the merged subgraph structure.
104
+
105
+ Args:
106
+ query (str): The user input or concept to find relevant memories for.
107
+ top_k (int, optional): How many top similar nodes to retrieve. Default is 5.
108
+ depth (int, optional): The neighborhood depth (number of hops). Default is 2.
109
+ center_status (str, optional): Status condition the center node must satisfy (e.g., 'active').
110
+
111
+ Returns:
112
+ dict[str, Any]: A subgraph dict with:
113
+ - 'core_id': ID of the top matching core node, or None if none found.
114
+ - 'nodes': List of unique nodes (core + neighbors) in the merged subgraph.
115
+ - 'edges': List of unique edges (as dicts with 'from', 'to', 'type') in the merged subgraph.
116
+ """
117
+ # Step 1: Embed query
118
+ query_embedding = self.embedder.embed([query])[0]
119
+
120
+ # Step 2: Get top-1 similar node
121
+ similar_nodes = self.graph_store.search_by_embedding(query_embedding, top_k=top_k)
122
+ if not similar_nodes:
123
+ logger.info("No similar nodes found for query embedding.")
124
+ return {"core_id": None, "nodes": [], "edges": []}
125
+
126
+ # Step 3: Fetch neighborhood
127
+ all_nodes = {}
128
+ all_edges = set()
129
+ cores = []
130
+
131
+ for node in similar_nodes:
132
+ core_id = node["id"]
133
+ score = node["score"]
134
+
135
+ subgraph = self.graph_store.get_subgraph(
136
+ center_id=core_id, depth=depth, center_status=center_status
137
+ )
138
+
139
+ if not subgraph["core_node"]:
140
+ logger.info(f"Skipping node {core_id} (inactive or not found).")
141
+ continue
142
+
143
+ core_node = subgraph["core_node"]
144
+ neighbors = subgraph["neighbors"]
145
+ edges = subgraph["edges"]
146
+
147
+ # Collect nodes
148
+ all_nodes[core_node["id"]] = core_node
149
+ for n in neighbors:
150
+ all_nodes[n["id"]] = n
151
+
152
+ # Collect edges
153
+ for e in edges:
154
+ all_edges.add((e["source"], e["target"], e["type"]))
155
+
156
+ cores.append(
157
+ {"id": core_id, "score": score, "core_node": core_node, "neighbors": neighbors}
158
+ )
159
+
160
+ top_core = cores[0]
161
+ return {
162
+ "core_id": top_core["id"],
163
+ "nodes": list(all_nodes.values()),
164
+ "edges": [{"source": f, "target": t, "type": ty} for (f, t, ty) in all_edges],
165
+ }
166
+
167
+ def extract(self, messages: MessageList) -> list[TextualMemoryItem]:
168
+ raise NotImplementedError
169
+
170
+ def update(self, memory_id: str, new_memory: TextualMemoryItem | dict[str, Any]) -> None:
171
+ raise NotImplementedError
172
+
173
+ def get(self, memory_id: str) -> TextualMemoryItem:
174
+ """Get a memory by its ID."""
175
+ result = self.graph_store.get_node(memory_id)
176
+ if result is None:
177
+ raise ValueError(f"Memory with ID {memory_id} not found")
178
+ metadata_dict = result.get("metadata", {})
179
+ return TextualMemoryItem(
180
+ id=result["id"],
181
+ memory=result["memory"],
182
+ metadata=TreeNodeTextualMemoryMetadata(**metadata_dict),
183
+ )
184
+
185
+ def get_by_ids(self, memory_ids: list[str]) -> list[TextualMemoryItem]:
186
+ raise NotImplementedError
187
+
188
+ def get_all(self) -> dict:
189
+ """Get all memories.
190
+ Returns:
191
+ list[TextualMemoryItem]: List of all memories.
192
+ """
193
+ all_items = self.graph_store.export_graph()
194
+ return all_items
195
+
196
+ def delete(self, memory_ids: list[str]) -> None:
197
+ raise NotImplementedError
198
+
199
+ def delete_all(self) -> None:
200
+ """Delete all memories and their relationships from the graph store."""
201
+ try:
202
+ self.graph_store.clear()
203
+ logger.info("All memories and edges have been deleted from the graph.")
204
+ except Exception as e:
205
+ logger.error(f"An error occurred while deleting all memories: {e}")
206
+ raise
207
+
208
+ def load(self, dir: str) -> None:
209
+ try:
210
+ memory_file = os.path.join(dir, self.config.memory_filename)
211
+
212
+ if not os.path.exists(memory_file):
213
+ logger.warning(f"Memory file not found: {memory_file}")
214
+ return
215
+
216
+ with open(memory_file, encoding="utf-8") as f:
217
+ memories = json.load(f)
218
+
219
+ self.graph_store.import_graph(memories)
220
+ logger.info(f"Loaded {len(memories)} memories from {memory_file}")
221
+
222
+ except FileNotFoundError:
223
+ logger.error(f"Memory file not found in directory: {dir}")
224
+ except json.JSONDecodeError as e:
225
+ logger.error(f"Error decoding JSON from memory file: {e}")
226
+ except Exception as e:
227
+ logger.error(f"An error occurred while loading memories: {e}")
228
+
229
+ def dump(self, dir: str) -> None:
230
+ """Dump memories to os.path.join(dir, self.config.memory_filename)"""
231
+ try:
232
+ json_memories = self.graph_store.export_graph()
233
+
234
+ os.makedirs(dir, exist_ok=True)
235
+ memory_file = os.path.join(dir, self.config.memory_filename)
236
+ with open(memory_file, "w", encoding="utf-8") as f:
237
+ json.dump(json_memories, f, indent=4, ensure_ascii=False)
238
+
239
+ logger.info(f"Dumped {len(json_memories.get('nodes'))} memories to {memory_file}")
240
+
241
+ except Exception as e:
242
+ logger.error(f"An error occurred while dumping memories: {e}")
243
+ raise
244
+
245
+ def drop(self, keep_last_n: int = 30) -> None:
246
+ """
247
+ Export all memory data to a versioned backup dir and drop the Neo4j database.
248
+ Only the latest `keep_last_n` backups will be retained.
249
+ """
250
+ try:
251
+ backup_root = Path(tempfile.gettempdir()) / "memos_backups"
252
+ backup_root.mkdir(parents=True, exist_ok=True)
253
+
254
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
255
+ backup_dir = backup_root / f"memos_backup_{timestamp}"
256
+ backup_dir.mkdir()
257
+
258
+ logger.info(f"Exporting memory to backup dir: {backup_dir}")
259
+ self.dump(str(backup_dir))
260
+
261
+ # Clean up old backups
262
+ self._cleanup_old_backups(backup_root, keep_last_n)
263
+
264
+ self.graph_store.drop_database()
265
+ logger.info(f"Database '{self.graph_store.db_name}' dropped after backup.")
266
+
267
+ except Exception as e:
268
+ logger.error(f"Error in drop(): {e}")
269
+ raise
270
+
271
+ @staticmethod
272
+ def _cleanup_old_backups(root_dir: Path, keep_last_n: int) -> None:
273
+ """
274
+ Keep only the latest `keep_last_n` backup directories under `root_dir`.
275
+ Older ones will be deleted.
276
+ """
277
+ backups = sorted(
278
+ [d for d in root_dir.iterdir() if d.is_dir() and d.name.startswith("memos_backup_")],
279
+ key=lambda p: p.name, # name includes timestamp
280
+ reverse=True,
281
+ )
282
+
283
+ to_delete = backups[keep_last_n:]
284
+ for old_dir in to_delete:
285
+ try:
286
+ shutil.rmtree(old_dir)
287
+ logger.info(f"Deleted old backup directory: {old_dir}")
288
+ except Exception as e:
289
+ logger.warning(f"Failed to delete backup {old_dir}: {e}")
File without changes
@@ -0,0 +1,305 @@
1
+ import uuid
2
+
3
+ from concurrent.futures import ThreadPoolExecutor, as_completed
4
+ from datetime import datetime
5
+
6
+ from memos.embedders.factory import OllamaEmbedder
7
+ from memos.graph_dbs.neo4j import Neo4jGraphDB
8
+ from memos.log import get_logger
9
+ from memos.memories.textual.item import TextualMemoryItem, TreeNodeTextualMemoryMetadata
10
+
11
+
12
+ logger = get_logger(__name__)
13
+
14
+
15
+ class MemoryManager:
16
+ def __init__(
17
+ self,
18
+ graph_store: Neo4jGraphDB,
19
+ embedder: OllamaEmbedder,
20
+ memory_size: dict | None = None,
21
+ threshold: float | None = 0.80,
22
+ merged_threshold: float | None = 0.92,
23
+ ):
24
+ self.graph_store = graph_store
25
+ self.embedder = embedder
26
+ self.memory_size = memory_size
27
+ self.current_memory_size = {
28
+ "WorkingMemory": 0,
29
+ "LongTermMemory": 0,
30
+ "UserMemory": 0,
31
+ }
32
+ if not memory_size:
33
+ self.memory_size = {
34
+ "WorkingMemory": 20,
35
+ "LongTermMemory": 10000,
36
+ "UserMemory": 10000,
37
+ }
38
+ self._threshold = threshold
39
+ self._merged_threshold = merged_threshold
40
+
41
+ def add(self, memories: list[TextualMemoryItem]) -> None:
42
+ """
43
+ Add new memories in parallel to different memory types (WorkingMemory, LongTermMemory, UserMemory).
44
+ """
45
+ with ThreadPoolExecutor(max_workers=8) as executor:
46
+ futures = [executor.submit(self._process_memory, memory) for memory in memories]
47
+ for future in as_completed(futures):
48
+ try:
49
+ future.result()
50
+ except Exception as e:
51
+ logger.exception("Memory processing error: ", exc_info=e)
52
+
53
+ self.graph_store.remove_oldest_memory(
54
+ memory_type="WorkingMemory", keep_latest=self.memory_size["WorkingMemory"]
55
+ )
56
+ self.graph_store.remove_oldest_memory(
57
+ memory_type="LongTermMemory", keep_latest=self.memory_size["LongTermMemory"]
58
+ )
59
+ self.graph_store.remove_oldest_memory(
60
+ memory_type="UserMemory", keep_latest=self.memory_size["UserMemory"]
61
+ )
62
+
63
+ self._refresh_memory_size()
64
+
65
+ def replace_working_memory(self, memories: list[TextualMemoryItem]) -> None:
66
+ """
67
+ Replace WorkingMemory
68
+ """
69
+ working_memory_top_k = memories[: self.memory_size["WorkingMemory"]]
70
+ with ThreadPoolExecutor(max_workers=8) as executor:
71
+ futures = [
72
+ executor.submit(self._add_memory_to_db, memory, "WorkingMemory")
73
+ for memory in working_memory_top_k
74
+ ]
75
+ for future in as_completed(futures):
76
+ try:
77
+ future.result()
78
+ except Exception as e:
79
+ logger.exception("Memory processing error: ", exc_info=e)
80
+
81
+ self.graph_store.remove_oldest_memory(
82
+ memory_type="WorkingMemory", keep_latest=self.memory_size["WorkingMemory"]
83
+ )
84
+ self._refresh_memory_size()
85
+
86
+ def get_current_memory_size(self) -> dict[str, int]:
87
+ """
88
+ Return the cached memory type counts.
89
+ """
90
+ return self.current_memory_size
91
+
92
+ def _refresh_memory_size(self) -> None:
93
+ """
94
+ Query the latest counts from the graph store and update internal state.
95
+ """
96
+ results = self.graph_store.get_grouped_counts(group_fields=["memory_type"])
97
+ self.current_memory_size = {record["memory_type"]: record["count"] for record in results}
98
+ logger.info(f"[MemoryManager] Refreshed memory sizes: {self.current_memory_size}")
99
+
100
+ def _process_memory(self, memory: TextualMemoryItem):
101
+ """
102
+ Process and add memory to different memory types (WorkingMemory, LongTermMemory, UserMemory).
103
+ This method runs asynchronously to process each memory item.
104
+ """
105
+ # Add to WorkingMemory
106
+ self._add_memory_to_db(memory, "WorkingMemory")
107
+
108
+ # Add to LongTermMemory and UserMemory
109
+ if memory.metadata.memory_type in ["LongTermMemory", "UserMemory"]:
110
+ self._add_to_graph_memory(
111
+ memory=memory,
112
+ memory_type=memory.metadata.memory_type,
113
+ )
114
+
115
+ def _add_memory_to_db(self, memory: TextualMemoryItem, memory_type: str):
116
+ """
117
+ Add a single memory item to the graph store, with FIFO logic for WorkingMemory.
118
+ """
119
+ metadata = memory.metadata.model_copy(update={"memory_type": memory_type}).model_dump(
120
+ exclude_none=True
121
+ )
122
+ metadata["updated_at"] = datetime.now().isoformat()
123
+ working_memory = TextualMemoryItem(memory=memory.memory, metadata=metadata)
124
+
125
+ # Insert node into graph
126
+ self.graph_store.add_node(working_memory.id, working_memory.memory, metadata)
127
+
128
+ def _add_to_graph_memory(self, memory: TextualMemoryItem, memory_type: str):
129
+ """
130
+ Generalized method to add memory to a graph-based memory type (e.g., LongTermMemory, UserMemory).
131
+
132
+ Parameters:
133
+ - memory: memory item to insert
134
+ - memory_type: "LongTermMemory" | "UserMemory"
135
+ - similarity_threshold: deduplication threshold
136
+ - topic_summary_prefix: summary node id prefix if applicable
137
+ - enable_summary_link: whether to auto-link to a summary node
138
+ """
139
+ embedding = memory.metadata.embedding
140
+
141
+ # Step 1: Find similar nodes for possible merging
142
+ similar_nodes = self.graph_store.search_by_embedding(
143
+ vector=embedding,
144
+ top_k=3,
145
+ scope=memory_type,
146
+ threshold=self._threshold,
147
+ status="activated",
148
+ )
149
+
150
+ if similar_nodes and similar_nodes[0]["score"] > self._merged_threshold:
151
+ self._merge(memory, similar_nodes)
152
+ else:
153
+ node_id = str(uuid.uuid4())
154
+ # Step 2: Add new node to graph
155
+ self.graph_store.add_node(
156
+ node_id, memory.memory, memory.metadata.model_dump(exclude_none=True)
157
+ )
158
+
159
+ # Step 3: Optionally link to a summary node based on topic
160
+ if memory.metadata.tags:
161
+ parent_id = self._ensure_structure_path(
162
+ memory_type=memory_type, metadata=memory.metadata
163
+ )
164
+ if parent_id:
165
+ self.graph_store.add_edge(parent_id, node_id, "PARENT")
166
+
167
+ def _merge(self, source_node: TextualMemoryItem, similar_nodes: list[dict]) -> None:
168
+ """
169
+ TODO: Add node traceability support by optionally preserving source nodes and linking them with MERGED_FROM edges.
170
+
171
+ Merge the source memory into the most similar existing node (only one),
172
+ and establish a MERGED_FROM edge in the graph.
173
+
174
+ Parameters:
175
+ source_node: The new memory item (not yet in the graph)
176
+ similar_nodes: A list of dicts returned by search_by_embedding(), ordered by similarity
177
+ """
178
+ original_node = similar_nodes[0]
179
+ original_id = original_node["id"]
180
+ original_data = self.graph_store.get_node(original_id)
181
+
182
+ target_text = original_data.get("memory", "")
183
+ merged_text = f"{target_text}\n⟵MERGED⟶\n{source_node.memory}"
184
+
185
+ original_meta = TreeNodeTextualMemoryMetadata(**original_data["metadata"])
186
+ source_meta = source_node.metadata
187
+
188
+ merged_key = source_meta.key or original_meta.key
189
+ merged_tags = list(set((original_meta.tags or []) + (source_meta.tags or [])))
190
+ merged_sources = list(set((original_meta.sources or []) + (source_meta.sources or [])))
191
+ merged_background = f"{original_meta.background}\n⟵MERGED⟶\n{source_meta.background}"
192
+ merged_embedding = self.embedder.embed([merged_text])[0]
193
+
194
+ merged_confidence = float((original_meta.confidence + source_meta.confidence) / 2)
195
+ merged_usage = list(set((original_meta.usage or []) + (source_meta.usage or [])))
196
+
197
+ # Create new merged node
198
+ merged_id = str(uuid.uuid4())
199
+ merged_metadata = source_meta.model_copy(
200
+ update={
201
+ "embedding": merged_embedding,
202
+ "updated_at": datetime.now().isoformat(),
203
+ "key": merged_key,
204
+ "tags": merged_tags,
205
+ "sources": merged_sources,
206
+ "background": merged_background,
207
+ "confidence": merged_confidence,
208
+ "usage": merged_usage,
209
+ }
210
+ )
211
+
212
+ self.graph_store.add_node(
213
+ merged_id, merged_text, merged_metadata.model_dump(exclude_none=True)
214
+ )
215
+
216
+ # Add traceability edges: both original and new point to merged node
217
+ self.graph_store.add_edge(original_id, merged_id, type="MERGED_TO")
218
+ self.graph_store.update_node(original_id, {"status": "archived"})
219
+ source_id = str(uuid.uuid4())
220
+ source_metadata = source_node.metadata.model_copy(update={"status": "archived"})
221
+ self.graph_store.add_node(source_id, source_node.memory, source_metadata.model_dump())
222
+ self.graph_store.add_edge(source_id, merged_id, type="MERGED_TO")
223
+ # After creating merged node and tracing lineage
224
+ self._inherit_edges(original_id, merged_id)
225
+
226
+ # Relate other similar nodes to merged if needed
227
+ for related_node in similar_nodes[1:]:
228
+ if not self.graph_store.edge_exists(
229
+ merged_id, related_node["id"], type="ANY", direction="ANY"
230
+ ):
231
+ self.graph_store.add_edge(merged_id, related_node["id"], type="RELATE")
232
+
233
+ def _inherit_edges(self, from_id: str, to_id: str) -> None:
234
+ """
235
+ Migrate all non-lineage edges from `from_id` to `to_id`,
236
+ and remove them from `from_id` after copying.
237
+ """
238
+ edges = self.graph_store.get_edges(from_id, type="ANY", direction="ANY")
239
+
240
+ for edge in edges:
241
+ if edge["type"] == "MERGED_TO":
242
+ continue # Keep lineage edges
243
+
244
+ new_from = to_id if edge["from"] == from_id else edge["from"]
245
+ new_to = to_id if edge["to"] == from_id else edge["to"]
246
+
247
+ if new_from == new_to:
248
+ continue
249
+
250
+ # Add edge to merged node if it doesn't already exist
251
+ if not self.graph_store.edge_exists(new_from, new_to, edge["type"], direction="ANY"):
252
+ self.graph_store.add_edge(new_from, new_to, edge["type"])
253
+
254
+ # Remove original edge if it involved the archived node
255
+ self.graph_store.delete_edge(edge["from"], edge["to"], edge["type"])
256
+
257
+ def _ensure_structure_path(
258
+ self, memory_type: str, metadata: TreeNodeTextualMemoryMetadata
259
+ ) -> str:
260
+ """
261
+ Ensure structural path exists (ROOT → ... → final node), return last node ID.
262
+
263
+ Args:
264
+ path: like ["hobby", "photography"]
265
+
266
+ Returns:
267
+ Final node ID of the structure path.
268
+ """
269
+ # Step 1: Try to find an existing memory node with content == tag
270
+ existing = self.graph_store.get_by_metadata(
271
+ [
272
+ {"field": "memory", "op": "=", "value": metadata.key},
273
+ {"field": "memory_type", "op": "=", "value": memory_type},
274
+ ]
275
+ )
276
+ if existing:
277
+ node_id = existing[0] # Use the first match
278
+ else:
279
+ # Step 2: If not found, create a new structure node
280
+ new_node = TextualMemoryItem(
281
+ memory=metadata.key,
282
+ metadata=TreeNodeTextualMemoryMetadata(
283
+ user_id=metadata.user_id,
284
+ session_id=metadata.session_id,
285
+ memory_type=memory_type,
286
+ status="activated",
287
+ tags=[],
288
+ key=metadata.key,
289
+ embedding=self.embedder.embed([metadata.key])[0],
290
+ usage=[],
291
+ sources=[],
292
+ confidence=0.99,
293
+ background="",
294
+ ),
295
+ )
296
+
297
+ self.graph_store.add_node(
298
+ id=new_node.id,
299
+ memory=new_node.memory,
300
+ metadata=new_node.metadata.model_dump(exclude_none=True),
301
+ )
302
+ node_id = new_node.id
303
+
304
+ # Step 3: Return this structure node ID as the parent_id
305
+ return node_id
@@ -0,0 +1,64 @@
1
+ import json
2
+ import re
3
+
4
+ from string import Template
5
+
6
+ from memos.memories.textual.item import TextualMemoryItem
7
+ from memos.memories.textual.tree_text_memory.retrieve.retrieval_mid_structs import ParsedTaskGoal
8
+ from memos.memories.textual.tree_text_memory.retrieve.utils import REASON_PROMPT
9
+
10
+
11
+ class MemoryReasoner:
12
+ """
13
+ Memory reasoner that performs reasoning and knowledge synthesis
14
+ over retrieved memory items using a language model.
15
+ """
16
+
17
+ def __init__(self, llm):
18
+ self.llm = llm
19
+
20
+ def reason(
21
+ self, query: str, ranked_memories: list, parsed_goal: ParsedTaskGoal
22
+ ) -> list[TextualMemoryItem]:
23
+ """
24
+ Reason across multiple retrieved memory items and synthesize
25
+ a response or knowledge structure based on query objective.
26
+
27
+ Args:
28
+ query (str): Original user query description.
29
+ ranked_memories (list): List of relevant memory items.
30
+ parsed_goal (dict): Structured topic/concept/fact from TaskGoalParser.
31
+
32
+ Returns:
33
+ List of TextualMemoryItem: Refined memory items.
34
+ """
35
+ prompt_template = Template(REASON_PROMPT)
36
+ memory_detailed_str = "\n".join(
37
+ [
38
+ f"[{m.id}] ({m.metadata.hierarchy_level}) {m.metadata.key}: {m.memory}"
39
+ for m in ranked_memories
40
+ ]
41
+ )
42
+ prompt = prompt_template.substitute(task=query, detailed_memory_list=memory_detailed_str)
43
+
44
+ response = self.llm.generate([{"role": "user", "content": prompt}])
45
+ content = response.content if hasattr(response, "content") else response
46
+
47
+ # Step 1: Extract selected IDs
48
+ selected_ids = self._parse_selected_ids(content)
49
+ id_set = set(selected_ids)
50
+
51
+ return [m for m in ranked_memories if m.id in id_set]
52
+
53
+ def _parse_selected_ids(self, response_text: str) -> list[str]:
54
+ """
55
+ Extracts memory IDs from model response. Supports both simple text list and JSON.
56
+ """
57
+ try:
58
+ parsed = json.loads(response_text)
59
+ if isinstance(parsed, dict) and "selected_ids" in parsed:
60
+ return parsed["selected_ids"]
61
+ except json.JSONDecodeError:
62
+ pass
63
+
64
+ return re.findall(r"[a-f0-9\-]{36}", response_text) # UUID pattern fallback