MeUtils 2025.2.14.14.14.57__py3-none-any.whl → 2025.2.20.17.30.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. MeUtils-2025.2.20.17.30.7.dist-info/METADATA +707 -0
  2. {MeUtils-2025.2.14.14.14.57.dist-info → MeUtils-2025.2.20.17.30.7.dist-info}/RECORD +34 -29
  3. examples/_openaisdk/_openai_chatfire.py +42 -0
  4. examples/_openaisdk/openai_chatfire.py +8 -3
  5. examples/_openaisdk/openai_gitee.py +7 -4
  6. examples/_openaisdk/openai_images.py +5 -2
  7. meutils/apis/fal/images.py +83 -19
  8. meutils/apis/fal/pd.py +13 -0
  9. meutils/apis/fal/videos.py +31 -12
  10. meutils/apis/images/edits.py +4 -2
  11. meutils/apis/images/recraft.py +9 -6
  12. meutils/apis/jimeng/common.py +14 -3
  13. meutils/apis/jimeng/images.py +16 -6
  14. meutils/apis/kling/api.py +7 -5
  15. meutils/apis/search/zhipu.py +80 -0
  16. meutils/apis/siliconflow/images.py +17 -15
  17. meutils/apis/vidu/vidu_video.py +2 -1
  18. meutils/caches/acache.py +1 -1
  19. meutils/data/VERSION +1 -1
  20. meutils/decorators/contextmanagers.py +47 -4
  21. meutils/io/files_utils.py +1 -1
  22. meutils/llm/check_utils.py +4 -2
  23. meutils/llm/completions/agents/search.py +1 -0
  24. meutils/llm/completions/gemini.py +69 -0
  25. meutils/llm/prompts/search_prompts.py +18 -0
  26. meutils/schemas/image_types.py +4 -1
  27. meutils/schemas/oneapi/common.py +14 -11
  28. meutils/schemas/vidu_types.py +16 -2
  29. meutils/str_utils/json_utils.py +1 -0
  30. meutils/str_utils/regular_expression.py +7 -2
  31. MeUtils-2025.2.14.14.14.57.dist-info/METADATA +0 -203
  32. {MeUtils-2025.2.14.14.14.57.dist-info → MeUtils-2025.2.20.17.30.7.dist-info}/LICENSE +0 -0
  33. {MeUtils-2025.2.14.14.14.57.dist-info → MeUtils-2025.2.20.17.30.7.dist-info}/WHEEL +0 -0
  34. {MeUtils-2025.2.14.14.14.57.dist-info → MeUtils-2025.2.20.17.30.7.dist-info}/entry_points.txt +0 -0
  35. {MeUtils-2025.2.14.14.14.57.dist-info → MeUtils-2025.2.20.17.30.7.dist-info}/top_level.txt +0 -0
@@ -32,8 +32,7 @@ send_message = partial(
32
32
 
33
33
  @cache(ttl=10 * 60)
34
34
  @retrying()
35
- async def get_access_token(token: Optional[str] = None):
36
- token = token or await get_next_token_for_polling(feishu_url=FEISHU_URL, check_token=check_token)
35
+ async def get_access_token(token: str):
37
36
  headers = {"cookie": token}
38
37
 
39
38
  async with httpx.AsyncClient(base_url="https://www.recraft.ai", headers=headers, timeout=60) as client:
@@ -45,6 +44,8 @@ async def get_access_token(token: Optional[str] = None):
45
44
 
46
45
  # @retrying()
47
46
  async def generate(request: RecraftImageRequest, token: Optional[str] = None):
47
+ token = token or await get_next_token_for_polling(feishu_url=FEISHU_URL, check_token=check_token, from_redis=True)
48
+
48
49
  token = await get_access_token(token)
49
50
  headers = {"Authorization": f"Bearer {token}"}
50
51
  # params = {"project_id": "26016b99-3ad0-413b-821b-5f884bd9454e"} # project_id 是否是必要的
@@ -109,7 +110,9 @@ async def check_token(token, threshold: float = 1):
109
110
  response = await client.get("/users/me")
110
111
  response.raise_for_status()
111
112
  data = response.json()
113
+ logger.debug(data)
112
114
  logger.debug(data["credits"])
115
+
113
116
  return data["credits"] >= threshold
114
117
  except Exception as e:
115
118
  logger.error(e)
@@ -130,7 +133,7 @@ if __name__ == '__main__':
130
133
  token = "__Host-next-auth.csrf-token=b6b37b10948a6156a1a39d09bd43ab6d0867fcd6001987531fe6f86f802bb0aa%7C3afdfd56119e801c5cb80dc96670031c85a2d9a02e8205f38fc5d6128e1a4075; _gcl_au=1.1.386131236.1736384852; _ga=GA1.1.282109674.1736384854; AMP_MKTG_7268c9db0f=JTdCJTdE; _fbp=fb.1.1736384856672.571916090953259055; _clck=2fa0yj%7C2%7Cfsf%7C0%7C1835; x-recraft-referral-code=1f1xoKVYB9; __Secure-next-auth.callback-url=https%3A%2F%2Fwww.recraft.ai%2Fprojects; _uetsid=1d264620ce2611efaf8a0f99cb3bbb99; _uetvid=1d2649e0ce2611efb597376fda548d79; AMP_7268c9db0f=JTdCJTIyZGV2aWNlSWQlMjIlM0ElMjJlMTcxNjRlMy0xMjU4LTQ3ZTYtYTJmYi1jN2JhM2FmNWRiZWUlMjIlMkMlMjJ1c2VySWQlMjIlM0ElMjJlYTNmNmY4NC0zNzNhLTQ0ODgtYTRjMi1mYjgxMzk1YzNiMzElMjIlMkMlMjJzZXNzaW9uSWQlMjIlM0ExNzM2Mzg0ODU2MzQxJTJDJTIyb3B0T3V0JTIyJTNBZmFsc2UlMkMlMjJsYXN0RXZlbnRUaW1lJTIyJTNBMTczNjM4NTAzMTczNyUyQyUyMmxhc3RFdmVudElkJTIyJTNBNjQlMkMlMjJwYWdlQ291bnRlciUyMiUzQTEzJTdE; _clsk=szrjt7%7C1736385032306%7C11%7C1%7Cq.clarity.ms%2Fcollect; _ga_ME15C3DGRL=GS1.1.1736384853.1.1.1736385032.0.0.0; __Secure-next-auth.session-token.0=eyJhbGciOiJkaXIiLCJlbmMiOiJBMjU2R0NNIn0..SyUWD5O3-8Fu7f9K.jbfQGmUTAstB_wL4cyqA7QcbWKp4AFMnouf-WtJnwaPC4gIfu7iuNkXmrvbfp2YsqFJzSIl-5MvZrXt-bhk-DJtwqAdPzTw6sSa33I3IHWSS3TVlVFc9Ze-HT_6dIeMpIiN-rCSNGdpmtkEJLp_3WrCSGPB0NbJLLL_MGg6cQdS5WYz4trehD8sPSQUgYlTw_VaMImqVZOxKujLLgmGfgYdV8nl9p-JmFHMbpfcgn-yXqLca8E50sQOWldPw0p4RqsYyByUANX1POJAW33rm9fsRDHEKtVxOtlW5Hy1jev__V9UqSrhcvH_OQREngiQGYbtD0qLogeUg-vbL0VUAL-9USzXIn2Una3lP04lp3m_NKldiSShXsHJT8RW8IAl7K28ILGilA1fgx0V09JFIHhM4fX-hrPzqoh-BuxaaiF5czEHTtTPLXmnV1UiQgZVmfgliI2e_r9J3WtF-SgSc1Il2cvwxAsp66p5cjixFbpj7AULPXndQniHhTiU9zgDDdv-fEf0arKzW2w0--zwSmYizXMMpNblgxZ9k51CdOBCAM9YGtzDaB-NSA8I9RuHzmgXMvT5GMZSiezuoLdRRcVpuJBz-XF0v9QoQz7SQt6aMaCCTa-fxee--nfYZELu1Uhh90StcuT84VOAlx-wg6FxPEDI6cjlVtKuzcN_RMVYbWKO2z5xLw4zlqyGBleRjt7hNNt-IeCbGuaDxgbUViwhNr_qdh-_ZjQlz_FL4rzlJwPrl6puOsydFF8NIy0MU9oBdelGTtG8LwzNnOW_hGdqEfhXfDP9mzv4Fs4kqGNQxvT0PU2NQ5hIOTb540yHqTGb3kihXPaZL4YregR2-UPRxOM1qmWwgRZ93d9m0BUplhO9s9U2hYoLhp01ID8kiNi2AWp0hRcalh6PwgqSdzgbif3IH8AcHRJpnV2pRSbD7k883O6ukkItWPE-ysv-ak_Hl8FR046xjDaX1ITtyrJmTzFqQ627PGuOt01RmsVMOb1IFCcx4Fr4AYwOMDY0RDk1YxIUUqU4kyMZMVlMrI_ITcrYshdJwdr4k3hNk51gS3QUrhIDnUq93mvUSidSUy_jX47H-ORf9Al5poN3vNJPye9ogASdqRr2psn1UpceMzrejXz_xDSBllWGlSyAmHDlXniKfzGSbRtqET9xRZfy7X0iOGd0WW2Sb9BkI2OE6h2abFkeSmTXJTMaZXhQ244XkhvDVnps1QX4mdSIa1Js0Pb73DcWLV5TR1sTVxm5h9c1l5r-YxWQ9hjF3A43_V0Jp9ATDlcPIjewTqAcPuuNhcQRR6i7pt2CadiFpfT-h7DA1PvPRo7ReySBzDK9VhnlvodflQugnxj5gsRljH6r43s4OrgpJwCtENl-_yw4jDJCCXkJwHfLpSKhLR6CFSM52vrMa9fWg7iW1C4HIVVqyqIwC98-CTe5jYDMKrX_g40oDZL3XEhFCTfzl5o_UfqXJEWlDKZ0D_Aig7iNLDOEq3cwK9QDiP4-bX6jtM1zkltpCY-HPpwTXbtV4iIP6usg9lSJgCDgJjaS39rpBVYSrj-Y_PtPlPW5rJMVkSnp_f_J7uAwQWnluuEpxrb0Ap-vF4Vk4q9gBESbnk3PBg8wfFPC1GesPI4HyG8Jy3oIss8pDXba6D70soJiozgBcPTSxdeDIP1CXsRN2wiItYHeyslQE-_egn8oezT9__8LyVrY8guv14Nu-WGPx3R9xzpHn4TPY3nJQ6bU9H0PlB0qmJLsSh6tWtJ0Yl8-NMlEKr9WkcjOJB-QpFiDEyw3V7r65U5b_BOaNpzRA5OUJ_ZmCfufmyfnHm8R6mE5wqrwUfmxYBRfP_w8_ix58zwTzFsLe7Fii5_J411vqxFHefcljnpgFgf1UIOoAPBUfygBTVdpdJcWzA2QXNI9lKxUIC6pLme9rpNlXE2bCE1cn74qA974x1gBjZ5B_FVsmkYhFRwSboi8ypRFA1F6EWwSNO-LUQH8uVbrDisjjjAX19xq_Sibwq5P-dZMY6aLCuInQjfWic5NGsjjwh4xtBv3FTyt1nvt9SonxdsJi_wvcjEoCVyP7PfYy5Eo-MkOpznzGYc9slQscUhKPihaB7wlAJZxe99tBUHLJI6XoI1o2Z3G4KGRK6PTO_THOTVFBylKTMbg_jvHw63TL4-LNlhJ2efmSjnEZqpGkgIUb8wYSoG3OR-v3H7WPvvAtJAs-NfvQXSGaFZ3O-LnStvyT869zXwP9U6_NZjml7gB9iA0cZVw4o5tAFI5DPVstJAqSrjIW59cpTxxDo2zeBdl8aq5FoKIZ63w8QebUeibLT8_lejsWQtg8RX4WrSTbuZN-gtCsMY4Q-TY4gJtVygtjz44QMzYDXq0G5mlqnPanLvR9tOfZODm8z87e355KdmD7pI305NimlYjMAFECfAaQN4G3oDZiDb85KkO92JXlVwWbo1xfbx4FTikedjY-BI1ErQB5gxTgPo252aw5r9fItydPBE_nuZU211tc41k8IF2F_cbSZ9tUjZz14yb4Ux4RWUdtHs3y7Jh9_5Pj0dnS3dEgJ-7jlhz-v2tmrcgzcEKqDPQGdhKfLl__AMM_11LqMuvj0boYiiaDx8DHN95J_d48um0YvB5IU3sQucEXiRK2j8FpAXc9ptQqPTGdSzz4VhIE0EIzZIV3QqqaRqH6ZEXcNuV_DXwl6HOjui78yu-rpqz50E9fxePaV5LHPbzXp_ZEOLrWonqo9ZAIHzWhCbVM_vMxK7CnrfmhW4ow8l71maoD0ToyTW7J0KbegCnEVyVhAF-IqYc98gq0vEbfgH42JKk07-8v1gVNQ6TZpAbtgajdrRe9XCuR58f_dt7_y8xWLXw_tINMB-x5MLNbdomfSMsit9Vfl29Yr8yD4KIkYhsfhl-nH-7ntrx4KkkLdLoNhKbhdI7o7NO1zdJ22ur7op4YlAWSNq5q-q2uhF3bKTkYhAIJ2FnPZpYmv7NoldLkAML79C7xtbZTJ0ZgXCjxzbEI50-9qvhEMSNm5AjZLrE3tTp6GVJWfIvjb3HmTvEAxR3rRefzzTaKW-MO9t3OurUPood1vkMR7oQzQY_n6DaZKUcxA6L8sK8s2MfEb78h_ZKeKDRAFsnspHdVTYf4xEu_SbXyDYbx2vBU2beXYdhzcdLWff32f3jioAf_q8hk2wKAcj2Spik7Ng-HPbme3XPD0w1b6d266bJ8GIWCUoGmJ9Wm0UalL-ZnoX16yN9El_wfOEoXBFWRe56Ur1ih6ZwZkcuCMZcnUAlXaL3JGgrxtwQjUtuSPSAo7kBZGIS7xXzFL7aJOi9ctqBAJVH0C3g8TJcW7ilF-qzEwrOoo1zWfLQpxMXhg8XKLDzOPAFBwyEOlDaRdoj20aE6NTeWST-X3QEufdM0PE0uB3FAhYWTPyILrAulrIsMJphGU-9sABotQs9apb8Vvekzou3oQ02Nr8n_CHVdDfE7m9I1lOxnB8Yz78oJhBs0WAbcZL9Vy-c-RVBauUMgceqSyQJ3uHR3iWsze4yeVOb4LE4nUxsfBMHQhW-Via3wFpInCCJxS3je2wtiyDTztuMNN8Mxn_GuTJ1i-KkDdvWiAL9c4zg_6HQfsMpLXQXpJ4Ovk-wUAV_NaW9NnVXHR-ygTcsf-BUHEV6dm0EPEk3tNVdlOTMDzXeYmpXn7xSSPuHglNcLnCzbmiANoqs1N5knV9_gVx49MLkYzE2rK_xdAFZUgiR4uujQ16mWNHtzrUUZOWmPu0HrAt2cJsz0snCfakahNceO3di-MQCDppMUnoSlq2ZnRcsMYu_n7mjOP6suimdawk9Ik1y_RpJ1O92UjKl63SqTtknADbwywiDiLr62V59YEUxKhGIaNrg; __Secure-next-auth.session-token.1=q9Nx6cKkfa0ZpdMRs7aQg5BCEByRK-upafTx1BRw9yA7R30AXoMtQfz6ExKBqsbpyVHqJFnLBQuZqJEi_Bmk34FeYJrUjD1ddsPmEex0ftUACPSugpdrgsTxc8CN0f4a8t_m8wTHxhQWbE5_GT-A4Hb4T68U9pDkzA1kWMVHkQ6h1x7HyW_Ykh1KXejgZFJBhdvv4dAKpv0ckYCNXwJVgVwCKGCNikx-ubtZ-5XDX5ZquUNzVEGpx1cr-F4e0-aw8CDQmdZ0Zh7VHV5DKL7SkQW20FHjpiK-J6gdkkjGFX7EybuEM1KCZ-KI_9hna9JzZc52f_yyoN05hqTzWmfh4aFeQL3j1nErMn23uiava2BfKIoQ59dKWOO5zos66El2TtIFerhUFJDyt8sUOcybCWsmmf05oSeLzHeaJYBA8j7SP.FYyhM198a9ZP-Ep6hZRQNQ"
131
134
  token = "__Host-next-auth.csrf-token=b6b37b10948a6156a1a39d09bd43ab6d0867fcd6001987531fe6f86f802bb0aa%7C3afdfd56119e801c5cb80dc96670031c85a2d9a02e8205f38fc5d6128e1a4075; _gcl_au=1.1.386131236.1736384852; _ga=GA1.1.282109674.1736384854; AMP_MKTG_7268c9db0f=JTdCJTdE; _fbp=fb.1.1736384856672.571916090953259055; _clck=2fa0yj%7C2%7Cfsf%7C0%7C1835; x-recraft-referral-code=1f1xoKVYB9; __Secure-next-auth.callback-url=https%3A%2F%2Fwww.recraft.ai%2Fprojects; _uetsid=1d264620ce2611efaf8a0f99cb3bbb99; _uetvid=1d2649e0ce2611efb597376fda548d79; __Secure-next-auth.session-token.0=eyJhbGciOiJkaXIiLCJlbmMiOiJBMjU2R0NNIn0..WqFwC8QbnjwUkMxi.RYqiKFIQTVwJF5azhoAlOscRiivJrpL5fRaArVfPstl4mOB0YTUtp3l7TMKbGEsM8nV2DW68eRarLqQeVjq0eKzD4MNuvuKy0y0phQTMs7vKlKCM5UgWMxz3Uz30f7GmH6s4D0aFDGbJ6upcsUqZ0BMwY2KkXId5uilh0jrDhinv5ZCIQA0o89Nf_lOcapGVsEi4OdYhe8fDDuhaI8x8TnkTQcDjwijc44WWUQg5vXJusYAVRbXR0-hO_fLl7verrBVKWPKXsP_tbRSk2TIqTavXoP-RcHI55R-vQD0G3lbl0hkjiDhWZ8SG2g3_KkbnF9XovoilxZpguNUSqLLHevldctBrMDG9vnoG6FRVwmPF8T5IxVYnkCb5IiyIJLMAOWlVlcNmKM2n2N-_iW21-skyqq0O0sUpukL0gFLp5UlpKtXUbTOMaD60Ja0D7n2THWO3yWrlTmXJ641igNxsAfb8iMuN9XpVSLTGmSVoojIQkbb41Br5ZmAdlH3D9X2u7cZD756HkOG4LhWp6rjaoUwDY1XBMjSxs9lOOGQGnr7xfmVC7fSWDuRhHxwF0C9PUbndo3zv12A437VASNXzuJ7W-nvBP0i7PUw09bKgYTsUyytFwBiRFW_Lj3l5Fcu0qrXQBosvdZvgS3QNEMqOWPWiyQBI5NatP8ZSQuquzvNDRt4typ5T6YP6NEqqMwSLRL6mwA1_ZquU78kygEUFYq5fUtUoWoW8CdbHsZe8DvN0fIhW2iAguey5hj7Dwg3xstOM-aDyRMbY-ML__zTi0w-TB0XzJ9NSXe8a1b3vvjzNqNWmeUwF4eT2KAloIvKRrlWZRC3OedxI8aRvoVGcnWqpRsvZNgUY3blfxG9lR1KrNgAcDhcRB3Si3APLlUT5Uv0MzfZKwWtZ16lLNmY6bRnlQO_IGRVvGWp0tXiwMAR6vXEhq3FqEOMy9W1JW2MVS9s_mpOrloRr4CIxtDbrE90Pjhm1wPzC43OMGsm2gxU8JTaRtWftnZ6EUlO2rski0Ep2Kl_iTwotDVPZY3RV9B8GWTfmJ8mU2EPTjlKcpeyPGiLdZkI4r5HGT6Bt9sv3JXQeU64ecmhbDEr9zrDVRDJlt3nGsQlDq21xkOsQw6nyFjg0cw_i5sGqkyLEQgkfVHGaNuUy_aP7us-DHeLCgusM0qFjsGh6TqY536AxlecGZr5Xh7FOEgVcNHfmT8gTRGPJuqMU_c8kyWqhihx_vm1dTTkHF0O4LJ3W9c-8sAQhsHvzsGGoEBkCi3TaTlBAcJ1_4ix1ITj21Ix1Udmc4cvNE5NRW_aBiwGQvrKlT7qvpxzzHZd-zpF2jAN78bGm6-jK2WSy59-y4FN9ZUrG1QwG5n-3rFiSl-pqRY3Bybx4ANnEU1cbf-0rnL-R3rcbCOEcMOf3CWc78PraUa7sqoV4tnmJdSwjmpVPmptOs2b9bbg6B7XqAsYX9PlkSAztLJQlVIUD4et0O1MOf5nSCmOG-x4cb1wtw8O2ZKea963732M9MUpiw9jBn2sAQbH5cufD0xlXGuVzn8gkDzOb007V018t--yJmbYcvDgMbp7VPESkQdtVMScn-jcpzNrdqDRIUjehEseVuULZhlv4HKopQjNrnyEenZb7kbeogISNKAa5zVKLKots1L9kTHkyziYdcv8bETD53c1CiIekupheQO32zXFc5KDeoTyQNi0O4KKpSCKSlp8GtmNt1q5--y8z1mmFru0xQeTcFG7rgm-q3u6lIQuxRM5n-hHdosYhRsJmX_AOlzw7UpagoV90hzxfGQwa5Oa9OHfoisF5-ueVsibMe-mqWct6OVV9Rke_7lPfjhVbQUS1-Y73MJJF1H5uW8b88GZqPIFxNTb8P-1ACFCWFpvCJRHjJ2rNP5AF1VtSKIgitmaNVwmqcwCwXOpGO7KqSqfKiIBGgik2t7T_joJjwZetvjpnZ-apNCJpmqtJc1rEfDGDBQvaXEuIJ3aB2nB1f4JNqxUatW9D_QMuLHvKmKPlRBQRtHMA7p-XFaJHQm4U-yhz75eGMCfcT7ik-3i8QNFJwwrZcWVbDNqdExmpV0hiE9fjgbmhU5OkoysPgrZfn0WSfo1Cdccb8WQuR8Kn_xj9cCqUjLm79mrsfUzLDsQOgIRBeiUoAH3oQKfI5Iqp2tquOHWb8SyZwENkpKPnipX_60G7BxcqpB5WI6-3MIilfH9itqdYYKImNncuVEzNZX-b2STHKxX1ESCgeb-Hq6SUuEwQtHK0lFnw_Jom8he6ShB-n4a2s6dBO4zT_awB4LZF42-ri7ewlONh2WzLTGW-lK7JNLPEfeXWR-jye7ALwGA2UEtXisMUhEMpuCt2La5EiCKBaw6deGygVbJ2t6dEbkSSEAoZONHctgqmZ9dNMaXC9Hyyo5sPKZPo8uXtJSslyHJlMvgY4W8Uj41IP3Umw1-j_FjYjWiOc5BFAvSbLczgWoXWqbcDa2plXnUmty9OTHw02dZb4opkhLi43ONSodwHqHGWyTgH3kdRhFYV-2uwkSVF8nZG0RHxEDGB3knN6HoHji2LJcn9TwZzOQDaG5sJzrVI12ZLPUx3KSxrygZ6d7KFJpXmi7jXe2kyExrO_HtpNebKq__h776GvuWsx887t2T-DoA1XFoNxbSWIDBaaRrrrMQnTubI7Dl6gs3ea7z2hmDFYcwrqb0r9bDBgx7yhSPjn3AgoRs43NYRe1gVoURcHduyFS6DM7wncDDMIyz3bgEtvJ4YPI2oPIH74MHDJOR1yUt6OmGMqIs_XbuekM9bi91iNAxwcIgdnYWTGUiR2Vk6O2VqqheOwAXn-_G16oGocsaLoOzu22ywuK6xNcleypBc_vyaPuoDmIlxxNvApurczDFHbTOvlq19G-CcP34gKlW_VLe_1KSA8W5cnH28yllZhzTUs14UpxLC6uV6VarxVqrUCLeWgvJ3Nc0pXiBE4ZwZuwWMzYWGSi2VtPeShJwhYpRlyt-AZLgXmNMpN4cGqxaFLhiD3m3M5r8ZzsBE_krksF4x-dfptxE18DRSZ5mQ9iF8BEl73VX5s88L4hDBZn9up6hAG-rTVVr3JOT85KYhvXfll92al7kgmYxNF3UVsHBTX8XxtiQx14wKm5gRwLtbBxeuD7HdU3cyqZgvrBrQlISH8p5ghqULI_BFIuXEN8uD52RE3vXrb9gUEMSAWeo7CS_xx-XwSVsfbnMBwzqFe7AcYDGfe38zpCi-oh9sCJjAAXN-KD40UZB7ld-kx3DrDjmRLnp1-gO0Sl4CKti9MFZboe_gxODqG070Cok0niSsoxJdLnfhcYw_JN5fWfhJOzTxRP7l4CXq74ji7ltw7N_EgYUzIONC3nAxZrU746soEvWcUNLmXyYEow3XWyTddMcenK7tLkveetyVXrQRnR7-n0y-WHKpA0dN8ZdnCM4j_z7wkoO4FN3GxGAL9Y0hi--9th4XbP8p_r6VLJ4SQNIuIKuyxRB6Y2NPFNnrOLlXuZiM9OUuFGO8Kz2qU0mPswV805wFCNh2bGNnSPOamizz4LernNK84t6_GM4NgoN7yTaBEX-Ng1EvnJhEfcZtwI3oSXBuLn7ufbWupHMJZfggEZ2FV5y3-w6SQymrpUSBnDZh1LpmibK1cGnJjAB7-1sWmTGUnV75j-qWMh97bPqJi8Uty5tYbgpulO-P4n1KTuCqGXbLDwINu_FNcmOEreQYJcEX1i0QOEoVblu5eJqC5kBPkBPEC1bVhNl3D2Ufdd3i2XCbxvfCoyc5eysl35Od1Hxst-KLZ4tmYI_pTNlI-JqwuKC2RUzJXVqiXpmaAk8jT592uFJs28jlLiB4TmWQ3L48kCnLaya0c_AFhGecdHEbbEy; __Secure-next-auth.session-token.1=twI76zjwWsf6cDBVpwTSlQGNTowWAosArlcPKymXnMkcNljStgeFkom9k95zpiXIDpFsiJB-PTLuGBj_3HmZUpEm5MuHUgbQKSFPio2l7wRW6a98uWicEzF4fcCjGz9OrDwBUnUxjcNnXue0alwa6AhF5T1B79ibZHjBtGq4IYsmt_l9mHR4wsRNXV0w_zCOhQfH1R8sczNff7eKcVnDo14FeadzZEqSNoKGU1C_6TZMOa7zzETGQPekh279ylKUaOZ9EshI_P3aRw71XNEdE2C-uOMZPuJIA3zPBvgYxdfppBXENTh8quyQAzHFmIMubPMg2zCNTD6ANvC5eTEH1B675sA9emI9DnC2UJVmNBJQPIpkncxQd98eaeYS0tHaUyzD7HQFJBFQOCmEh-ORdrJVoab1A36idPdzLusO0Tm1e.ZrEoUqMjNICG-4yAF6sAPw; AMP_7268c9db0f=JTdCJTIyZGV2aWNlSWQlMjIlM0ElMjJlMTcxNjRlMy0xMjU4LTQ3ZTYtYTJmYi1jN2JhM2FmNWRiZWUlMjIlMkMlMjJ1c2VySWQlMjIlM0ElMjJlYTNmNmY4NC0zNzNhLTQ0ODgtYTRjMi1mYjgxMzk1YzNiMzElMjIlMkMlMjJzZXNzaW9uSWQlMjIlM0ExNzM2Mzg0ODU2MzQxJTJDJTIyb3B0T3V0JTIyJTNBZmFsc2UlMkMlMjJsYXN0RXZlbnRUaW1lJTIyJTNBMTczNjM4NTAzMDcxOSUyQyUyMmxhc3RFdmVudElkJTIyJTNBNjElMkMlMjJwYWdlQ291bnRlciUyMiUzQTEyJTdE; _clsk=szrjt7%7C1736385030758%7C10%7C1%7Cq.clarity.ms%2Fcollect; _ga_ME15C3DGRL=GS1.1.1736384853.1.1.1736385031.0.0.0"
132
135
  token = "__Host-next-auth.csrf-token=b6b37b10948a6156a1a39d09bd43ab6d0867fcd6001987531fe6f86f802bb0aa%7C3afdfd56119e801c5cb80dc96670031c85a2d9a02e8205f38fc5d6128e1a4075; _gcl_au=1.1.386131236.1736384852; _ga=GA1.1.282109674.1736384854; AMP_MKTG_7268c9db0f=JTdCJTdE; _fbp=fb.1.1736384856672.571916090953259055; _clck=2fa0yj%7C2%7Cfsf%7C0%7C1835; x-recraft-referral-code=1f1xoKVYB9; __Secure-next-auth.callback-url=https%3A%2F%2Fwww.recraft.ai%2Fprojects; _uetsid=1d264620ce2611efaf8a0f99cb3bbb99; _uetvid=1d2649e0ce2611efb597376fda548d79; AMP_7268c9db0f=JTdCJTIyZGV2aWNlSWQlMjIlM0ElMjJlMTcxNjRlMy0xMjU4LTQ3ZTYtYTJmYi1jN2JhM2FmNWRiZWUlMjIlMkMlMjJ1c2VySWQlMjIlM0ElMjJlYTNmNmY4NC0zNzNhLTQ0ODgtYTRjMi1mYjgxMzk1YzNiMzElMjIlMkMlMjJzZXNzaW9uSWQlMjIlM0ExNzM2Mzg0ODU2MzQxJTJDJTIyb3B0T3V0JTIyJTNBZmFsc2UlMkMlMjJsYXN0RXZlbnRUaW1lJTIyJTNBMTczNjM4NTAzMTczNyUyQyUyMmxhc3RFdmVudElkJTIyJTNBNjQlMkMlMjJwYWdlQ291bnRlciUyMiUzQTEzJTdE; _clsk=szrjt7%7C1736385032306%7C11%7C1%7Cq.clarity.ms%2Fcollect; _ga_ME15C3DGRL=GS1.1.1736384853.1.1.1736385032.0.0.0; __Secure-next-auth.session-token.0=eyJhbGciOiJkaXIiLCJlbmMiOiJBMjU2R0NNIn0..SyUWD5O3-8Fu7f9K.jbfQGmUTAstB_wL4cyqA7QcbWKp4AFMnouf-WtJnwaPC4gIfu7iuNkXmrvbfp2YsqFJzSIl-5MvZrXt-bhk-DJtwqAdPzTw6sSa33I3IHWSS3TVlVFc9Ze-HT_6dIeMpIiN-rCSNGdpmtkEJLp_3WrCSGPB0NbJLLL_MGg6cQdS5WYz4trehD8sPSQUgYlTw_VaMImqVZOxKujLLgmGfgYdV8nl9p-JmFHMbpfcgn-yXqLca8E50sQOWldPw0p4RqsYyByUANX1POJAW33rm9fsRDHEKtVxOtlW5Hy1jev__V9UqSrhcvH_OQREngiQGYbtD0qLogeUg-vbL0VUAL-9USzXIn2Una3lP04lp3m_NKldiSShXsHJT8RW8IAl7K28ILGilA1fgx0V09JFIHhM4fX-hrPzqoh-BuxaaiF5czEHTtTPLXmnV1UiQgZVmfgliI2e_r9J3WtF-SgSc1Il2cvwxAsp66p5cjixFbpj7AULPXndQniHhTiU9zgDDdv-fEf0arKzW2w0--zwSmYizXMMpNblgxZ9k51CdOBCAM9YGtzDaB-NSA8I9RuHzmgXMvT5GMZSiezuoLdRRcVpuJBz-XF0v9QoQz7SQt6aMaCCTa-fxee--nfYZELu1Uhh90StcuT84VOAlx-wg6FxPEDI6cjlVtKuzcN_RMVYbWKO2z5xLw4zlqyGBleRjt7hNNt-IeCbGuaDxgbUViwhNr_qdh-_ZjQlz_FL4rzlJwPrl6puOsydFF8NIy0MU9oBdelGTtG8LwzNnOW_hGdqEfhXfDP9mzv4Fs4kqGNQxvT0PU2NQ5hIOTb540yHqTGb3kihXPaZL4YregR2-UPRxOM1qmWwgRZ93d9m0BUplhO9s9U2hYoLhp01ID8kiNi2AWp0hRcalh6PwgqSdzgbif3IH8AcHRJpnV2pRSbD7k883O6ukkItWPE-ysv-ak_Hl8FR046xjDaX1ITtyrJmTzFqQ627PGuOt01RmsVMOb1IFCcx4Fr4AYwOMDY0RDk1YxIUUqU4kyMZMVlMrI_ITcrYshdJwdr4k3hNk51gS3QUrhIDnUq93mvUSidSUy_jX47H-ORf9Al5poN3vNJPye9ogASdqRr2psn1UpceMzrejXz_xDSBllWGlSyAmHDlXniKfzGSbRtqET9xRZfy7X0iOGd0WW2Sb9BkI2OE6h2abFkeSmTXJTMaZXhQ244XkhvDVnps1QX4mdSIa1Js0Pb73DcWLV5TR1sTVxm5h9c1l5r-YxWQ9hjF3A43_V0Jp9ATDlcPIjewTqAcPuuNhcQRR6i7pt2CadiFpfT-h7DA1PvPRo7ReySBzDK9VhnlvodflQugnxj5gsRljH6r43s4OrgpJwCtENl-_yw4jDJCCXkJwHfLpSKhLR6CFSM52vrMa9fWg7iW1C4HIVVqyqIwC98-CTe5jYDMKrX_g40oDZL3XEhFCTfzl5o_UfqXJEWlDKZ0D_Aig7iNLDOEq3cwK9QDiP4-bX6jtM1zkltpCY-HPpwTXbtV4iIP6usg9lSJgCDgJjaS39rpBVYSrj-Y_PtPlPW5rJMVkSnp_f_J7uAwQWnluuEpxrb0Ap-vF4Vk4q9gBESbnk3PBg8wfFPC1GesPI4HyG8Jy3oIss8pDXba6D70soJiozgBcPTSxdeDIP1CXsRN2wiItYHeyslQE-_egn8oezT9__8LyVrY8guv14Nu-WGPx3R9xzpHn4TPY3nJQ6bU9H0PlB0qmJLsSh6tWtJ0Yl8-NMlEKr9WkcjOJB-QpFiDEyw3V7r65U5b_BOaNpzRA5OUJ_ZmCfufmyfnHm8R6mE5wqrwUfmxYBRfP_w8_ix58zwTzFsLe7Fii5_J411vqxFHefcljnpgFgf1UIOoAPBUfygBTVdpdJcWzA2QXNI9lKxUIC6pLme9rpNlXE2bCE1cn74qA974x1gBjZ5B_FVsmkYhFRwSboi8ypRFA1F6EWwSNO-LUQH8uVbrDisjjjAX19xq_Sibwq5P-dZMY6aLCuInQjfWic5NGsjjwh4xtBv3FTyt1nvt9SonxdsJi_wvcjEoCVyP7PfYy5Eo-MkOpznzGYc9slQscUhKPihaB7wlAJZxe99tBUHLJI6XoI1o2Z3G4KGRK6PTO_THOTVFBylKTMbg_jvHw63TL4-LNlhJ2efmSjnEZqpGkgIUb8wYSoG3OR-v3H7WPvvAtJAs-NfvQXSGaFZ3O-LnStvyT869zXwP9U6_NZjml7gB9iA0cZVw4o5tAFI5DPVstJAqSrjIW59cpTxxDo2zeBdl8aq5FoKIZ63w8QebUeibLT8_lejsWQtg8RX4WrSTbuZN-gtCsMY4Q-TY4gJtVygtjz44QMzYDXq0G5mlqnPanLvR9tOfZODm8z87e355KdmD7pI305NimlYjMAFECfAaQN4G3oDZiDb85KkO92JXlVwWbo1xfbx4FTikedjY-BI1ErQB5gxTgPo252aw5r9fItydPBE_nuZU211tc41k8IF2F_cbSZ9tUjZz14yb4Ux4RWUdtHs3y7Jh9_5Pj0dnS3dEgJ-7jlhz-v2tmrcgzcEKqDPQGdhKfLl__AMM_11LqMuvj0boYiiaDx8DHN95J_d48um0YvB5IU3sQucEXiRK2j8FpAXc9ptQqPTGdSzz4VhIE0EIzZIV3QqqaRqH6ZEXcNuV_DXwl6HOjui78yu-rpqz50E9fxePaV5LHPbzXp_ZEOLrWonqo9ZAIHzWhCbVM_vMxK7CnrfmhW4ow8l71maoD0ToyTW7J0KbegCnEVyVhAF-IqYc98gq0vEbfgH42JKk07-8v1gVNQ6TZpAbtgajdrRe9XCuR58f_dt7_y8xWLXw_tINMB-x5MLNbdomfSMsit9Vfl29Yr8yD4KIkYhsfhl-nH-7ntrx4KkkLdLoNhKbhdI7o7NO1zdJ22ur7op4YlAWSNq5q-q2uhF3bKTkYhAIJ2FnPZpYmv7NoldLkAML79C7xtbZTJ0ZgXCjxzbEI50-9qvhEMSNm5AjZLrE3tTp6GVJWfIvjb3HmTvEAxR3rRefzzTaKW-MO9t3OurUPood1vkMR7oQzQY_n6DaZKUcxA6L8sK8s2MfEb78h_ZKeKDRAFsnspHdVTYf4xEu_SbXyDYbx2vBU2beXYdhzcdLWff32f3jioAf_q8hk2wKAcj2Spik7Ng-HPbme3XPD0w1b6d266bJ8GIWCUoGmJ9Wm0UalL-ZnoX16yN9El_wfOEoXBFWRe56Ur1ih6ZwZkcuCMZcnUAlXaL3JGgrxtwQjUtuSPSAo7kBZGIS7xXzFL7aJOi9ctqBAJVH0C3g8TJcW7ilF-qzEwrOoo1zWfLQpxMXhg8XKLDzOPAFBwyEOlDaRdoj20aE6NTeWST-X3QEufdM0PE0uB3FAhYWTPyILrAulrIsMJphGU-9sABotQs9apb8Vvekzou3oQ02Nr8n_CHVdDfE7m9I1lOxnB8Yz78oJhBs0WAbcZL9Vy-c-RVBauUMgceqSyQJ3uHR3iWsze4yeVOb4LE4nUxsfBMHQhW-Via3wFpInCCJxS3je2wtiyDTztuMNN8Mxn_GuTJ1i-KkDdvWiAL9c4zg_6HQfsMpLXQXpJ4Ovk-wUAV_NaW9NnVXHR-ygTcsf-BUHEV6dm0EPEk3tNVdlOTMDzXeYmpXn7xSSPuHglNcLnCzbmiANoqs1N5knV9_gVx49MLkYzE2rK_xdAFZUgiR4uujQ16mWNHtzrUUZOWmPu0HrAt2cJsz0snCfakahNceO3di-MQCDppMUnoSlq2ZnRcsMYu_n7mjOP6suimdawk9Ik1y_RpJ1O92UjKl63SqTtknADbwywiDiLr62V59YEUxKhGIaNrg; __Secure-next-auth.session-token.1=q9Nx6cKkfa0ZpdMRs7aQg5BCEByRK-upafTx1BRw9yA7R30AXoMtQfz6ExKBqsbpyVHqJFnLBQuZqJEi_Bmk34FeYJrUjD1ddsPmEex0ftUACPSugpdrgsTxc8CN0f4a8t_m8wTHxhQWbE5_GT-A4Hb4T68U9pDkzA1kWMVHkQ6h1x7HyW_Ykh1KXejgZFJBhdvv4dAKpv0ckYCNXwJVgVwCKGCNikx-ubtZ-5XDX5ZquUNzVEGpx1cr-F4e0-aw8CDQmdZ0Zh7VHV5DKL7SkQW20FHjpiK-J6gdkkjGFX7EybuEM1KCZ-KI_9hna9JzZc52f_yyoN05hqTzWmfh4aFeQL3j1nErMn23uiava2BfKIoQ59dKWOO5zos66El2TtIFerhUFJDyt8sUOcybCWsmmf05oSeLzHeaJYBA8j7SP.FYyhM198a9ZP-Ep6hZRQNQ"
133
- token = "_gcl_au=1.1.906962865.1730362257; _ga=GA1.1.435165527.1730362257; _fbp=fb.1.1730362257600.714008794112161913; AMP_MKTG_7268c9db0f=JTdCJTdE; _tt_enable_cookie=1; _pin_unauth=dWlkPU0yWmxPR1JsWkRJdE5qZGlZeTAwTWpNeUxXRmpNVEV0TlRrd1l6RTNZelEwTldZMw; __zlcmid=1OVn8OoYVNvKEWM; __stripe_mid=d21b2291-edb8-4cb1-8fac-05c6a9493ca8d85a3c; _ga_ME15C3DGRL=deleted; _ttp=412qSInHGw3jjdyNR6K4tBIYmNZ.tt.1; __Host-next-auth.csrf-token=5a254fcd5cf01dbe6f4d38ff6653073673eb96145321a4aa4e032c1361db4067%7Cfcc1ced5fcc03aca73a9b3374bfaf0f518079e6802a706311c2428b8b12a5639; _clck=uflztg%7C2%7Cfsf%7C0%7C1765; __Secure-next-auth.callback-url=https%3A%2F%2Fwww.recraft.ai%2F; _ga_ME15C3DGRL=GS1.1.1736384021.94.1.1736384813.0.0.0; _uetsid=3bef14a0cd5c11ef8908d9361f23bf21; _uetvid=a8a766f0975f11ef9b7921e48a0cd258; AMP_7268c9db0f=JTdCJTIyZGV2aWNlSWQlMjIlM0ElMjI2OTE1YzI1My1jMTJjLTQ5ODYtYjM3Ni0xMTI3Y2ZmMTFlMjglMjIlMkMlMjJ1c2VySWQlMjIlM0ElMjJjNDdkY2ZiYi0yOWE5LTQ1Y2EtYWRiZS1hM2ZhYWZiODhkNzQlMjIlMkMlMjJzZXNzaW9uSWQlMjIlM0ExNzM2Mzg0MDIxMjg4JTJDJTIyb3B0T3V0JTIyJTNBZmFsc2UlMkMlMjJsYXN0RXZlbnRUaW1lJTIyJTNBMTczNjM4NDgxNTMzMSUyQyUyMmxhc3RFdmVudElkJTIyJTNBMTQ3JTJDJTIycGFnZUNvdW50ZXIlMjIlM0E0MiU3RA==; _clsk=lpjwif%7C1736384816977%7C21%7C1%7Cq.clarity.ms%2Fcollect; __Secure-next-auth.session-token.0=eyJhbGciOiJkaXIiLCJlbmMiOiJBMjU2R0NNIn0..i9IpV1p6GdtCwBJf.GhX0MZyY886Dpslr3HPr3QQrF4cLCeL14lby_VsLhOfc1VBDE5ZmRX6fYfPtHPJNfYIPlj8U83UVMZyNmiSeRCTLDKKht5oWGdbMS8Q6KCLYzpFtO3wgfROiWTy4Jaq2XdXvTJiFHpHtg4FNsDcKfD-zyCt6-ffuq7gTtKhWl3ie33vu2Y1dBksAadej9hGGsozwQZRju2GaNw2QpWdgbP-cYbojKSFxFkara0-_yZgXYtjlSNXpj-AXI6wmkDi701dyZPHS0i_eNRg4d36SMOLTWqPxtgk-0PjYKGAndHeLlrypt_4HS94WAy5_Ond46YIvFtY6MS5P0wQePXka_kj95uV7_Vj-aBNhcJhOjv7FP2TRvOqjx0aKIS6ilq6ljCIrAp4iC-P-uEpRWxQ7l4VwejsrM1_k8IzatOUFjNxhmTsGQG8t-CaN6zq0GI6SkSXlOj_X6jUIfu7aaT4nvzNM_yDz53P-H90mgl6-6KmHhldPRZPPwA6mOci1sZ2hQp4l4nZCSSXmrJ9KSEIhcqUM599xDL90bBmIyb0LMwa9smXavJFq0dlmjcqGGmfCWmriNf7eSw96ewhOT-bA-yNt7Igmsj0YAV59_FVBicRwPkMSZshfikl0Pxz_pmTQrSllF1WXeyCEflhqncXRXNnl1n23l3rC6XK72fyMX7Q4kB1G3stQpZ8BZ2jaoV4P9RmKWje_ruY30myXj4Kf8Hzh5YjzfxAdVv8aVCOceuAcQCaZzySFSAWV2R7XLONGCOiQqcRyHeP4KzEac-w_w_8AgOpn5Bt0vkzw_roK4WK13mNyrx-sLbAy-Pufuln_6V_hyJiYdPnC3kykTFveaeYNrSTrhOSMSTRWMwbO32apU-6a5l42FWZVQaVRTYw4IN7aOrhbqINzSN-yRlkze_4YfRUqIE6ip6r8OSjsu65WdmA2haUaTlPwSfsJh2zm-SlDRPUlZkUXO1rKlfWccdUarlAyX085fSxs3amQlg5SBe9ziyCH0-1FIY0fJN96dYrNcHXWxUYu01UKbR1IX27OhOj6gmgtUHeZZorJZ_Ce4fnuTfnK65Athovqjy0_U6JXwJoQ9T_we5IlYQ3Rv95ezdbA7HSY49F3PuCxpf_-QujriKIWTGRQ_KbJy3bOxv1dV7mmHvMBumNVOq3VIqyKS3NnjtD2fjGcGWh8sCViU6wOCTERI6lbxMsHL6oMKTvzQuIp80DgKyQOWO5LoIPKtpz4b0mf6A1Xncz0ProBBvL7ZIiFEpiiFztqQJigVTsRirTMOqViOqU4Eht6AIvIczsW6GyuOK7gCgty6RezCHQsSwXD0FfwpvxjCFZQZ4A4ZFatHCirBDv6djBdBJIOJoSVVkoN6_Q2E8U4C7J1J5UQYZZq1fm5xBjEwQBzdP18doD4q7KNsgQIjGU5ZMJsaZgUNAhjU-UyA3BwLXhtmpMGnx9G2Pxf11OgHOUUYKd-DsX4yFrelf0QFe6VI0TMz7V8xpJrW-BTYYmaCupxkyLmwRfTO_HDkbyKoZES2yiCFh-Vfkyxz2gLuBhhryczt4HogMh_CmuHcOWPv6TAuH4QDZpyBWzyThBx3ZKvLfxo87LwbQgRfoediXV2c9DEWTx-pBcMosr1L-GZQ1eTVDVhcmsVshVL9Nb-DYh7C7-d97aq1Wl06Ljsf74xzijQPTgQAMgqwdPOWBg_WvRZP_cxiiz2XsUbbjYW2uQeqFL8dhYmzr8t2ABPpP9_damETeR5bkYA2jOwF6sNwhe0uIXP4xjN2xqzJ4OnSE_zeh1L5bqRajroLnYbRsZ0QwBoqf7am51RFzcyZRvRPKxLbA3rRDqKun41AcC3usyrFw6wX1dBH9IBLfqwP4qVPlwMdpVkQuH6A0rawFDM7ulJ6uYWy5XuiSUGejnBt6LICYki0C3bgOV--932msjQlzwVcWPHGWP634teJ8do0UMDIlII9ogA307POi8j4Ab92QxWLt1DAe3bh-vBkuEvIzmiKvq3RjgP52ysvTlDZtqEi19RkVBJ55aBNAK84oddVNrYIv0-SZ736WxqtpqNQggOkwubG96a9IL2K0nM3lD-IweswFzhd5d2t2GIwDnkRWCn_3sMFblMFGsvof-dbcp2fKgB5BFFtel6DO8cKZiGrFTKNNaTUEIpQYFZueXZMDMhpGFmsbWcABXJAyQk4gl5DR0hY_-zRrEnaBQ5f_wquwpENKFl0tBzVKLi45F3jgrnMYAyyIR4GVrS4x2a3PIBFl2HPwDvPNfuP2lnICf6Bbeh84BhI_V2aCoaxur4OTuc4E1HUM_p0gLq0d3xVpVbmYlDSff7YyrnwP0FdaiTt0dcMKyoGL44W_WdvPete8U6hlNhGSySHp-srMFyl4eMliYAITeiRwwZuYjfnW95-kK1rTm6tiBlpBJcSLEaxe6iZTTJcEAm5MLO07jEny_C6thxrYPug_5Ih8SdM9DOEkqF0slCWne82S8x49dp0pMllCZJAvtdYQbEmtE2KjytyKU5ns6OiraQpFm16fQGpmu7HYQbBU0fwASerwXdMRa6e7lTVGLd2mdDoF9gBdQClA75LyaKdrPg7rkV4x2NOulsFsPSPxhyQl-r0jqc-7qMs0hCbKr8I7O04T5F8Jg0ZWvYvUCvbnfiW767XltnjN_hNy3zQDVjR-4XxlYWmq_wzj7a0U5r9MzISR_DsFEP-mI5qKXfNFUzatM0UmKs-m1YLxm3InlWaA0VH1W5pABHK-npbuHmUlQ5_HBvO0JK84P0iif9M2-KXIEOxzMPLOw9cjs0j98hETINMm2-_6AGcNVrqLAmxrgE9sREJ2YVSweVVxLzi0UvZnjPwOs4qAaM3O2IWy5UZ1cB6bFxAj2HvDBQZ3j04kPxT0Sl33MGQS0Td7J_9ap8r2IBQUof9bOGjjMZHV1YsIcHVC5vCT2EZCovmz1avFFW04o0B2DC-A1kTujPp4SWtxT33470WPSk1CMGK_tKv0w2ou6lTkdGdTWCTDA2uNMVZRGxYwGnGo1q0OkC_a60JlvzPTXbOVcfZu_lcATm-aLt60H9jHuCBmKEvg46B5Qc2TZW3Dwz2T7Tl125jkfPWYEBoVnqB7mNPzhZxaDY3sMd8I0O_FNeNRZ3BEqpJkNWIMOnf8aZ6nCoMw8DdpL1POGvAZ-XhedkAIICUkJ_SYbvho2lZ3oEIAFxl5arPmQPnIpW4Abry_PWYvZx7kVXA0frDjYZv89NlctrGKMBfyYZVKTRnoQkXf-K6JGCZcySJuuWOuADGQfNTarwuy6M9e7k83d-mFZTYHhllPQakN8xXZ2ExTBDIHH7D9y1qKoOwb22Lg8hjv7cD9uq21iZTmD2K45D4W76Yrz1rX3n8t1tv1l1HTSB3UeuoCGaT5LkCSDKsHhM5iTChuIfxVefYBZh9We-TiU8QyHOxud1zOpE8Op6Ky9dUaCnUl5YUxeDntgeceaqP20ZmjlwvADd6P8UOjvvq-uZAhSlJ9Q4rYmO4pP2lfaRuo-thyrowHwOETPC8kmsMcm43MqFCzNNqnyXDHuyggjexTrk8T0swpo-eeBpvElZcP9-U5bFbS5vyb5H4tOLspSo8JcxsRVT4b32plWTRT-EQpAosu5IQNO-MQAGKnwqgzwhiePc8_K-6QbfDaZ7UwvCxJBvp8Ql5NRgMAUiViLuxD4BkUaKXuouXp9UcvyW6qrJFHVzyDVjTKW7oG0lYLhRREePp3OLqLUH-upSEWFMnkOljpn_kE3W_F62fnyC-6YG25kGKhw8bMpIVaKLAfe0SXto8pKrQPb4cLKTTTPHXCz9PKtO1xE2qHIE2Ys1k7-JlkTK6AvoY6sI6t3EPL-1rXPmB8P; __Secure-next-auth.session-token.1=yFjlKz8Sy8-L5993eI09Y6KcuLf5lx4fC99u6YFtWp_BQLG0Mk0GI7RllqeDlxU-5QO9VYeBlTNh-sp8SJ7hkNv5hpMnWaCE-7sPMHLcJAFNA5Sx43a4aJglZFEkCI8RFe4HGAusm9qQG18PBByIKj_ZhLnsS9zXaGQ5YL7eX9QVWrpkowuA35WfksZp3mvwkGR_6LrmpR7kmmK2_C_X5e5SsXTXhUfrBT8r79I39P18D9E1S-hT31ETyajNNgw-u3BHbET4buRhT043W_c3x2RwIc6Fzs5DAeTUFR39e3_jT-ge_RIG5-1YRhvtEXHVUInRVeoYorqzN62JO-8RDeBNry6wUGR9O7QCLOH_a0w.976ySjYDq2pGONqc_zx8Ng"
136
+ token= "__Host-next-auth.csrf-token=14ca9d794219c34aca808cdc2a310d73ae76584a7bc746518742db0ac0baadd1%7C74c6e91fc8b1400a4035ce81d78e6a0516c8283e7c2a9104b3d75d93441a83ae; _gcl_au=1.1.526202796.1738463460; _ga=GA1.1.1626801434.1738463460; AMP_MKTG_7268c9db0f=JTdCJTdE; x-recraft-referral-code=7d7RbMefDM; __Secure-next-auth.callback-url=https%3A%2F%2Fwww.recraft.ai%2Fprojects; __Secure-next-auth.session-token.0=eyJhbGciOiJkaXIiLCJlbmMiOiJBMjU2R0NNIn0..GN6pvZZE1X-avzQn.7TBThGPGii6nH6hS8TWazy7XV9Mk22vd2sqPfoHKuEbesS_pITSQc1kUchGlB_HQ_Lx8EldQGvzeVbFil6mBb4tqjNxJFecSHeDgLubqE0u5ueA-ZF4rf6Xz44NGnx-zJr6iA_rD7319KiL4-WWm57Ds5UJ_jo410_018LlUuWme0G2RKMwPySVL3Jg8Zyma5Z-twK50W8WRkwp07xiCZFXIQK6wLu_TvBYBwjVFa0wNJmyRCirM9YHKOsqVMIKP38q679Cd8S9A0s2T7SjLDm_5rme6TtaGq7Xye0cZLuARf_h2oX79Rm3XDPWYXjEJ6OMpNnlB1uvslb8Lbq0GkVAEYJbgc5PgQ2aD7WjqX8omU1uj1HVIXxr3lxDuSyvBPz_16Fkf7wMOI_OVQDCujAh4hdyNGVJ-vBuybQ6yo0vYF0S5X2_lUJqcwchUtwDneBXUUl3kI8JiZf8YF0kROkqkW82bFycQDtaNNFtwdFWyVhC7_L7gYpYpk0QrFJ7MVN25J8xbggLVRKrl-9gZ-55I9IkmM-iAtSuvTzTvqc9NzzRnoRPBDuwPwyKok2TE93QnAPQIzUacXIdZdkjTue-jymc60QrjBRGTIsIC93KD67vYdEH8vb1V0fiiqS4MkGfSpMA4NFaTpRECwqGcNzLj6XTrLGzl8Z2RO9tBWxqtq2Qfggyb8Oxftsab8hTjarw2b8mSSeyy2mnh_sIZiwM5Pl4ZDSYX9TsCdqNnOXyIGEWZCb5fb1rKSALKHrt71QZJXRETZCfJB-ndqw8I3l8rOhKuW0iio58umegRJYyFsJ6UY___fjBLz-0AwqSecklqkt8WDSaymIqR79YiGVjHt_qKLS1M43nVnp5TFneV9yorWPL6Oa2R0TAjU2fWjiaUohlI4XPSNlRXSz9m5EvYKJvKxMdRnZdx7UeZn2rP-C7K5xcjURm0QwXrcWL883DhDiYWrE3Y0IoG-U1n4MhosGeVnJA7FYeOSlpHZs0Re7Aud9nrLo3lWxyRHM9mTjBOTnpRWP5xwAneyM52FT78-RkVBrcaXc60UyK8h1WIxmLDWPIIvDI-W4wlR0SYDRUP7t_8dFXT7NCZXSzskNFa9wmPPWvh4__CXXFWwW2J5X_x_6iLfsBX8C5KsPKeRNplhWJqKM-50Vwk5gM9JtYGjsguKWrAqPbacs-cuexbg-_WwU1trXv6hc28pMU2RJ8FNk4t7OCrhbuwt-PSdAO2bksP8QFKEez8w1mfptn3DN8mFaranAzgwdo-xD0v2Ew2C_oqoYUahxVrKMHqEYSd_bQnLylaftMfYGBNU0WuY7bcvRtJp3DGfQrHTF76ZA5AqgPKFwlmE_5pa-1xb5slX76bFAm1NKhgZZDpGyeqEobp_3u4yXhJTHVHYQuFHNFQm6ZDsepFh8SLR-dWlyrYsu3KHQUcZAMzOW4jiTc7SK37z03ONM5kgw2o_MRcdmvpIMBHCwuGjwLSUxCmora5cDKQY49gKWu778wfeUw-RJIdg4TZzsRM3OV3FnyN7koaWF-D5HdOP0H2v3zre9DtY5N-3_iIo1Fa9F1Pd59X3Oz1wpJ7Yjuam-mboCXgIfQ9q-dn4vGoxdqBqyvDM9IZV8N1MnjxoG6m3BOTdLR90aaYqHKSkDE3ks4oaE2CfGuhK0hHKcnXcEFXm81Mx-eJ90rFTmYOdlId0e19mk5tu-Cbj79MbBpx5cRfojiTqrQH-AIXXRa8aBr4QxAW_p1iDnAQ9owtX8dvbacg_VKhB0IOLlBaDfDmDAwBkvMWwBnaYThOsbIOWQhH-dPBndW8G7ycKJ2xtK0PHApsn0iAujAuPUTYeobNgKdfNHu5eXwaRltkuH8jvDbcxj5m4ajsVX7qA7N8uod6TIVyh_5Hvp1iRQHjtOC6_pI7hCnC_5B9mwaXsYPQqPiP-h7sv8CoG6KQ5UlE7_SkHXpfjEsI9RWETa8YPDTHek4k4bz0Y4VIIov_sBXsqLR3ZnNMdzsbCekfMqXtzgw6I1UqzzPVew4mA0J7qC3WHW6XK2a7sxnO4y-R4njEf7W6a8nEj4n6bwfKeozaQ_mvKVekVUR1ocjD94PYBzGb_DTpToeEz8f5RS6csXMWM1BORz2pF6N-mOH_H4g-0qGdIwh5rdRu2xcZX_VGR3_vVjvm2svnSvdKEsVn4cRcytt10iiDTPw-RQVW_DdkuXOK9CPN2WJDBtSkEEwLlNTHjRxPzamsnKB2fQe02suVPpU2dfF5qy4pKXLeKabT4Ky_Ih4Yb4ez6oy2fUknvKS2JKeorGk6lWrDGlyGX36IJO6fbDQogn5ba98E5IYWCKOknszOtT36QqAywyqja_dBRepAtI1YNN5DNNryH1AnF7d4q38l1O_PPbAXrk_taIAo225y-Cwsdp3f2hOINdAORsRa5GuFXeED1MOsFMpHX7C1atdGaZGi2ypZ6plvG70fxoVw9GLrWItUStCq5i8And6ZKXd815nI7yAW0lQv3RCBRqUuoWX5E3F8-bTv4aBlM4Q3gkh6_H2GhYYmRUwA8ASeCdEeOCw-kZ_wm742k99x2N65uBWLBe7T40zYWPGBafTxcPnBrcLw2xLlEIj2KeyZ7hYDhZdeoC5plS1Qxwxw2m53g8e8K_fOgELtMfB6mr32EdSjNqnx5WNZ7NNqq8ROj6vtfGK7y5cqC7ZkoKOkK6z9KO7pyDxZ9Mj221lQte7h7hzb676GiErrovAu2pCwWT9RVNUntK6mz2W7A97tjyKOz2VuLzhPBE_WAYyYSZ0Ykl4QKAU7cpmoaXNBs58YGm_H7cSOu3_4yEIuKh_O-pggiBfdxKKDiK3Mt7jeNV98-YCUlLmZEv5yWkjBsmm2LUEgX2w6DVUUUJwy5ongmXDktpViHLLMubj9PW5GGfJPsMuXEOfUTTL1C7wnMJzWzco4y11YmzRiSlCuKkPCMcT5_yhZvAZRyyrPUOBUftcOKUbBh4oBYIN3RbT1v4sMTjSGzYez52Sisb18InbQDM0zn0j88HRorWH6bxpKDb_PvmTebrhDIiWXbI3Zlm4NCQm7NZWicEFK-1fR46b5qRD80tp_cq8BWfECvvFfcT2NzO1rMhl6xIY5-TBWXIM6-qd1Pbd3xOdLRQPotxbZimS--dFBsLvrK3Ginax_mqc01AIXcjph23oQbQ9gnQzgtwicPafnQaOEcdR-moB9ca6oEShgymUyy_XcK6UdKpy4xI1yZsQ9omcquT_s8hzVrLEXwlwtUSzfqvH9pMCIjASWqMeRkfEojrjJd4th122hn2al7s2TbmPSXDOn0iHjh8N5aLcZbG_J9x6qwnpjMwDiGpU2Il3AlXuL0IaMFKukUbx_xKz4DoHsnJMMGsJfItAzyFbLPsPlVq3I97qwTZNUHqATjW3U9AO-PntTdK0OOSu3YbbJ2dk_A-SI1oK3O64Ie-u8rS2dFRmyUT_wYOcXL5cJ_-3HPz2xsO2SzRA7c8G-LsNCSSVSv9Vd5HBQhHA5IxsCptmFZ9OIkHFqeA5wcCYuhMHqSaC6kbPClyEExzaPsrJI6-SJUd86psoJn8dmn4I31WNf_5STzPBeii6qBYbLVIfiwXJckk0M-hvDeQfCyzRpKHeCslGkm6kziutEvfS0yZwZgDpBpGevyOcPCxYicpZSzUxEvsVCjtB9NBcIEHmm8Ho_JjiebQ3HcrchWFAYYU8XScsvkpfVqF71lut7ik7VOFcmQ3a35_zEA9kzYLKvmC49nyIMIkWDR5iCKW63rw2-6PzSTzSjf_xb_VADIYdat8a-i96mCbhtah6WH7Y5tTQKUYRWLUYib6kE8hwPy7jyHX0IMebioaklJKaU_G1tBYDsF4Q; __Secure-next-auth.session-token.1=12vFH4Zo9AA6uZzZrVWEaWBTWDlMDYiDUP5HUYoEOv3R3ksn-sPq93b2jISpNOW9RecN5E_5NXB76IfeH-VZauOwKzd4Kc37Mf6EM4gwXALfqMGsvFX8DlW6MkwbNqZ14WbE1pR_KhKVYrdB6ZX6J4ZlscRoqPB-A7GpvOtVPUComrZg00-evxSWcyKvLsCW1NNqqnXA-7J94rJJBdsS6j1c3s5KiCqB1Ptr1eTeWanjxkjNfSewVQqX6WVytsLnsVE9KqmJGZiz0zIFvnLPQwSv1Bg0IFzt8UF4J1PXrQaIbwIvqmNj7BU3589K2Rb58tarZoZ-ogxZG5ZneR1CWLSlRJDhsnOvAXubqD0EuT_POI7EXdrfsNiifr7knH_xxEu7iqxzpXsDMuaO_pxzwkPuKFtcxDkVOJH-TY5njugFS.Jodtt7brKicBj8c26v0T3A; _ga_ME15C3DGRL=GS1.1.1738463460.1.1.1738463490.0.0.0; _clck=1l7d1gy%7C2%7Cft3%7C0%7C1859; _clsk=1uwygz6%7C1738463492407%7C1%7C1%7Co.clarity.ms%2Fcollect; _uetsid=be5a5d90e10d11efbff71f781c6cba79; _uetvid=be5abc90e10d11ef9a96119e1652d011; AMP_7268c9db0f=JTdCJTIyZGV2aWNlSWQlMjIlM0ElMjI2ZTNiMzU3NC1lOThlLTQ2OWEtYWIzOS0xM2ZhM2M4NTdjNDglMjIlMkMlMjJ1c2VySWQlMjIlM0ElMjIyNzA0ZWQ4MC01YWExLTQ3YWUtOTRkYi0wNmQxZWZhODBjYTYlMjIlMkMlMjJzZXNzaW9uSWQlMjIlM0ExNzM4NDYzNDYxMjMzJTJDJTIyb3B0T3V0JTIyJTNBZmFsc2UlMkMlMjJsYXN0RXZlbnRUaW1lJTIyJTNBMTczODQ2MzUyMjQ1NSUyQyUyMmxhc3RFdmVudElkJTIyJTNBMTklMkMlMjJwYWdlQ291bnRlciUyMiUzQTMlN0Q="
134
137
  token = None
135
138
 
136
139
  # arun(get_access_token())
@@ -140,7 +143,7 @@ if __name__ == '__main__':
140
143
  "style": "any",
141
144
  "response_format": "url",
142
145
  "size": "1152x2048",
143
- "n": 2,
146
+ "n": 1,
144
147
  }
145
148
  request = RecraftImageRequest(
146
149
  # prompt='一条猫',
@@ -153,5 +156,5 @@ if __name__ == '__main__':
153
156
  # tokens = [token]
154
157
 
155
158
  # tokens = list(arun(aget_spreadsheet_values(feishu_url=FEISHU_URL, to_dataframe=True))[0]) | xfilter_
156
- #
157
- # r = arun(check_token(tokens))
159
+ # #
160
+ # r = arun(check_token(tokens[0]))
@@ -13,7 +13,7 @@ from meutils.pipe import *
13
13
  from meutils.hash_utils import md5
14
14
  from meutils.schemas.openai_types import TTSRequest
15
15
 
16
- from meutils.schemas.jimeng_types import BASE_URL, MODELS_MAP
16
+ from meutils.schemas.jimeng_types import BASE_URL, MODELS_MAP, FEISHU_URL
17
17
  from meutils.caches.redis_cache import cache
18
18
 
19
19
  from fake_useragent import UserAgent
@@ -88,6 +88,8 @@ async def check_token(token, threshold: int = 1):
88
88
  try:
89
89
  response = await get_credit(token)
90
90
  logger.debug(bjson(response))
91
+ # logger.error(f"{token}")
92
+
91
93
  credits = sum(response['data']['credit'].values())
92
94
  return credits >= threshold
93
95
  except Exception as e:
@@ -168,16 +170,25 @@ def create_photo_lip_sync(request: TTSRequest):
168
170
 
169
171
 
170
172
  if __name__ == '__main__':
173
+ from meutils.config_utils.lark_utils import aget_spreadsheet_values, get_series
171
174
  token = "693701c43e477b7c405cc7e2fef0ddbd"
172
175
  token = "eb4d120829cfd3ee957943f63d6152ed"
173
176
  token = "dcf7bbc31faed9740b0bf748cd4d2c74"
174
177
  token = "38d7d300b5e0a803431ef88d8d2acfef"
175
178
  token = "916fed81175f5186a2c05375699ea40d"
176
179
  token = "7c5e148d9fa858e3180c42f843c20454"
180
+ token = "eb4d120829cfd3ee957943f63d6152ed"
181
+ # arun(check_token(token))
182
+
183
+ # print(arun(aget_spreadsheet_values(feishu_url=FEISHU_URL, to_dataframe=True))[0].tolist())
184
+ tokens = arun(get_series(FEISHU_URL))
177
185
  # arun(get_credit(token))
178
- arun(check_token(token))
186
+ # arun(check_token(token))
187
+ for token in tokens:
188
+ if not arun(check_token(token)):
189
+ logger.debug(f"无效 {token}")
179
190
 
180
- # arun(get_upload_token(token))
191
+ # arun(get_upload_token(token))
181
192
  #
182
193
  # request = ImageRequest(prompt='https://oss.ffire.cc/files/kling_watermark.png笑起来')
183
194
  # arun(create_draft_content(request, token))
@@ -7,9 +7,14 @@
7
7
  # @WeChat : meutils
8
8
  # @Software : PyCharm
9
9
  # @Description :
10
+ """
11
+ guidance 控制精细度 => sample_strength 0-1 数值越大生成的效果质量越好,耗时会更久
12
+
13
+ """
10
14
 
11
15
  from meutils.pipe import *
12
16
  from meutils.caches.redis_cache import cache
17
+ from meutils.decorators.retry import retrying
13
18
 
14
19
  from meutils.schemas.jimeng_types import BASE_URL, MODELS_MAP, FEISHU_URL
15
20
  from meutils.schemas.image_types import ImageRequest
@@ -137,7 +142,7 @@ async def create_draft_content(request: ImageRequest, token: str):
137
142
  "prompt": request.prompt,
138
143
  "negative_prompt": request.negative_prompt or "",
139
144
  "seed": request.seed or 426999300,
140
- "sample_strength": 0.5,
145
+ "sample_strength": request.guidance or 0.5, # 精细度
141
146
  "image_ratio": 1,
142
147
  "large_image_info": {
143
148
  "type": "",
@@ -170,6 +175,7 @@ async def create_draft_content(request: ImageRequest, token: str):
170
175
  return draft_content
171
176
 
172
177
 
178
+ @retrying(max_retries=3)
173
179
  async def create_task(request: ImageRequest, token: Optional[str] = None):
174
180
  token = token or await get_next_token_for_polling(FEISHU_URL, check_token)
175
181
 
@@ -221,6 +227,7 @@ async def create_task(request: ImageRequest, token: Optional[str] = None):
221
227
  )
222
228
 
223
229
 
230
+ @retrying()
224
231
  async def get_task(task_id, token):
225
232
  url = "/mweb/v1/get_history_by_ids"
226
233
  headers = get_headers(url, token)
@@ -270,11 +277,14 @@ async def get_task(task_id, token):
270
277
  # @cache: todo: cache 积分异常消耗
271
278
  # @cache(ttl=3600)
272
279
  async def generate(request: ImageRequest):
280
+ # logger.debug(request)
281
+
273
282
  task_response = await create_task(request)
274
283
 
275
- for i in range(1, 10):
276
- await asyncio.sleep(max(10 / i, 1))
284
+ for i in range(1, 15):
285
+ await asyncio.sleep(max(15 / i, 5))
277
286
  response = await get_task(task_response.task_id, task_response.system_fingerprint)
287
+ logger.debug(f"{task_response.task_id, task_response.system_fingerprint}")
278
288
  logger.debug(response)
279
289
  if response.status.lower().startswith("fail"):
280
290
  raise HTTPException(
@@ -320,11 +330,11 @@ if __name__ == '__main__':
320
330
  data = {
321
331
  "model": "seededit",
322
332
  "prompt": "https://oss.ffire.cc/files/kling_watermark.png 让这个女人带上墨镜,衣服换个颜色",
323
- "size": "1024x1024"
333
+ "size": "1024x1024",
324
334
  }
325
- # arun(generate(ImageRequest(**data)))
335
+ arun(generate(ImageRequest(**data)))
326
336
 
327
- arun(generate(ImageRequest(prompt="做一个圣诞节的海报")))
337
+ # arun(generate(ImageRequest(prompt="做一个圣诞节的海报")))
328
338
  # prompt = "A plump Chinese beauty wearing a wedding dress revealing her skirt and underwear is swinging on the swing,Happy smile,cleavage,Exposed thighs,Spread your legs open,Extend your leg,panties,upskirt,Barefoot,sole"
329
339
  # request = ImageRequest(prompt=prompt)
330
340
  # task = arun(create_task(request))
meutils/apis/kling/api.py CHANGED
@@ -32,9 +32,9 @@ def encode_jwt_token(ak, sk):
32
32
  return token
33
33
 
34
34
 
35
- async def create_task(request: VideoRequest, token: Optional[str] = None):
36
- token = token or await get_next_token_for_polling(API_FEISHU_URL)
37
- token = "ee6503baf0e447d59a3812fb2a344570|da8322347a7b4d5a9c04a088427883f7"
35
+ async def create_task(request: BaseModel, token: Optional[str] = None):
36
+ # token = token or await get_next_token_for_polling(API_FEISHU_URL)
37
+ token = "f042ce272aa7423d93dda0599bc5f332|e272cf7fe95145ec90ca947b8e29ef4c"
38
38
  ak, sk = token.split("|")
39
39
 
40
40
  headers = {
@@ -43,7 +43,8 @@ async def create_task(request: VideoRequest, token: Optional[str] = None):
43
43
  }
44
44
  payload = request.model_dump(exclude_none=True)
45
45
  async with httpx.AsyncClient(base_url=API_BASE_URL, headers=headers, timeout=60) as client:
46
- response = await client.post("/v1/videos/text2video", json=payload)
46
+ # response = await client.post("/v1/videos/text2video", json=payload)
47
+ response = await client.post("/v1/images/generations", json=payload)
47
48
  response.raise_for_status()
48
49
  return response.json()
49
50
  #
@@ -57,4 +58,5 @@ async def create_task(request: VideoRequest, token: Optional[str] = None):
57
58
  if __name__ == '__main__':
58
59
  # api_token = encode_jwt_token(ak, sk)
59
60
  # print(api_token) # 打印生成的API_TOKEN
60
- arun(create_task(VideoRequest(prompt="可爱的小姐姐")))
61
+ # arun(create_task(VideoRequest(prompt="可爱的小姐姐")))
62
+ arun(create_task(ImageRequest(prompt="可爱的小姐姐")))
@@ -0,0 +1,80 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ # @Project : AI. @by PyCharm
4
+ # @File : zhipu
5
+ # @Time : 2025/2/19 20:42
6
+ # @Author : betterme
7
+ # @WeChat : meutils
8
+ # @Software : PyCharm
9
+ # @Description :
10
+
11
+ from meutils.pipe import *
12
+ from meutils.str_utils.json_utils import json_path
13
+ from meutils.llm.clients import AsyncOpenAI, chatfire_client, zhipuai_client, moonshot_client
14
+ from meutils.llm.openai_utils import to_openai_params
15
+ from meutils.schemas.openai_types import chat_completion, chat_completion_chunk, ChatCompletionRequest, CompletionUsage
16
+
17
+
18
+ class Completions(object):
19
+
20
+ def __init__(self, api_key: Optional[str] = None):
21
+ self.api_key = api_key
22
+
23
+ async def create(self, request: ChatCompletionRequest, search_result2md: bool = False):
24
+ request.stream = False
25
+ request.model = "web-search-pro"
26
+ request.messages = [{
27
+ "role": "user",
28
+ "content": request.last_content,
29
+ }]
30
+ data = to_openai_params(request)
31
+
32
+ search_completion = await zhipuai_client.chat.completions.create(**data)
33
+ logger.debug(search_completion.model_dump_json(indent=4))
34
+
35
+ if results := json_path(search_completion, '$..[keywords,query,search_result]'):
36
+ data = dict(zip(["keywords", "query", "search_result"], results))
37
+ if search_result2md:
38
+ global df
39
+
40
+ df = pd.DataFrame(data["search_result"])
41
+
42
+ df['title'] = [f"[{k}]({v})" for k, v in zip(df['title'], df['link'])]
43
+ df['media'] = [f"![{k}]({v})" for k, v in zip(df['media'], df['icon'])]
44
+
45
+ df = df[['title', 'media']]
46
+ df.index += 1
47
+ # {df_.to_markdown(index=False).replace('|:-', '|-').replace('-:|', '-|')}
48
+ data["search_result"] = df.to_markdown()
49
+ return data
50
+
51
+ async def query(self, q: str):
52
+ pass
53
+
54
+ # {
55
+ # "role": "user",
56
+ # "content": search_completion.model_dump_json(indent=4),
57
+ # }
58
+
59
+
60
+ if __name__ == '__main__':
61
+ model = "web-search-pro"
62
+ # model = "tencent-search"
63
+
64
+ request = ChatCompletionRequest(
65
+ # model="baichuan4-turbo",
66
+ # model="xx",
67
+ # model="deepseek-r1",
68
+ # model="deepseek-r1:1.5b",
69
+ model=model,
70
+
71
+ # model="moonshot-v1-8k",
72
+ # model="doubao",
73
+
74
+ messages=[
75
+ {"role": "user", "content": "《哪吒之魔童闹海》现在的票房是多少"}
76
+ ],
77
+
78
+ stream=True
79
+ )
80
+ arun(Completions().create(request, search_result2md=True))
@@ -112,6 +112,7 @@ async def generate(request: ImageRequest, api_key: Optional[str] = None):
112
112
 
113
113
  client = AsyncOpenAI(base_url=BASE_URL, api_key=api_key)
114
114
  response = await client.images.generate(**data)
115
+ logger.debug(response)
115
116
  response.model = ""
116
117
 
117
118
  return response
@@ -131,21 +132,21 @@ if __name__ == '__main__':
131
132
  "seed": None
132
133
  }
133
134
 
134
- data = {'model': 'flux1.1-pro',
135
- 'prompt': 'Surrealism, Chinese art, fairy, close-up of the upper body, hazy, glowing, dreamy, light pink and light blue gradient long hair, beautiful and charming, dressed in cashmere-like clothing, streamlined design, elegant, fair-skinned and beautiful, delicate features, comfortable, lying on an ice blue bed, background of a crescent moon and starry sky, with a touch of romantic gifts, virtual engine rendering, 3D model, OC rendering, perfect composition, ultra-detailed details, 3D rendering close-up shot. (flux1.1-pro)',
136
- 'negative_prompt': '', 'n': 1, 'response_format': 'url', 'size': '1152x2048', 'num_inference_steps': 20,
137
- 'seed': None}
138
-
139
- data = {
140
- "model": "flux-dev",
141
- "prompt": "(Chinese dragon soaring through the clouds).(majestic, colorful, mythical, powerful, ancient).(DSLR camera).(wide-angle lens).(dawn)(fantasy photography).(Kodak Ektar 100)",
142
- "negative_prompt": "",
143
- "n": 1,
144
- "response_format": "url",
145
- "size":"1366x768",
146
- "num_inference_steps": 20,
147
- "seed": None
148
- }
135
+ # data = {'model': 'flux1.1-pro',
136
+ # 'prompt': 'Surrealism, Chinese art, fairy, close-up of the upper body, hazy, glowing, dreamy, light pink and light blue gradient long hair, beautiful and charming, dressed in cashmere-like clothing, streamlined design, elegant, fair-skinned and beautiful, delicate features, comfortable, lying on an ice blue bed, background of a crescent moon and starry sky, with a touch of romantic gifts, virtual engine rendering, 3D model, OC rendering, perfect composition, ultra-detailed details, 3D rendering close-up shot. (flux1.1-pro)',
137
+ # 'negative_prompt': '', 'n': 1, 'response_format': 'url', 'size': '1152x2048', 'num_inference_steps': 20,
138
+ # 'seed': None}
139
+ #
140
+ # data = {
141
+ # "model": "flux-dev",
142
+ # "prompt": "(Chinese dragon soaring through the clouds).(majestic, colorful, mythical, powerful, ancient).(DSLR camera).(wide-angle lens).(dawn)(fantasy photography).(Kodak Ektar 100)",
143
+ # "negative_prompt": "",
144
+ # "n": 1,
145
+ # "response_format": "url",
146
+ # "size":"1366x768",
147
+ # "num_inference_steps": 20,
148
+ # "seed": None
149
+ # }
149
150
 
150
151
  # request = FluxImageRequest(model="flux", prompt="a dog", size="1024x1024", num_inference_steps=1)
151
152
  # request = FluxImageRequest(model="flux-pro", prompt="a dog", size="10x10", num_inference_steps=1)
@@ -163,3 +164,4 @@ if __name__ == '__main__':
163
164
  # )
164
165
 
165
166
  arun(generate(request))
167
+
@@ -208,7 +208,8 @@ if __name__ == '__main__':
208
208
  d = {
209
209
  "model": 'vidu-2.0',
210
210
  "prompt": "这个女人笑起来",
211
- "url": "https://oss.ffire.cc/files/kling_watermark.png" # failed to save uploads
211
+ "url": "https://oss.ffire.cc/files/kling_watermark.png", # failed to save uploads
212
+ "tail_image_url": "https://oss.ffire.cc/files/kling_watermark.png",
212
213
  }
213
214
  token = None
214
215
  # print(bjson(ViduRequest(**d).payload))
meutils/caches/acache.py CHANGED
@@ -27,7 +27,7 @@ async def cached_fc(user_id, **kwargs):
27
27
  rcache = RedisCache(
28
28
  endpoint="127.0.0.1", port=6379, namespace="me" # 缓存键前缀
29
29
  )
30
- @cached(ttl=60, cache=rcache)
30
+ @cached(cache=rcache)
31
31
  async def redis_fc(user_id, **kwargs):
32
32
  logger.debug(user_id)
33
33
  return False
meutils/data/VERSION CHANGED
@@ -1 +1 @@
1
- 2025.02.14.14.14.57
1
+ 2025.02.20.17.30.07
@@ -11,6 +11,7 @@
11
11
  from meutils.pipe import *
12
12
 
13
13
  from contextlib import contextmanager, asynccontextmanager
14
+ from concurrent.futures import ThreadPoolExecutor, as_completed, TimeoutError
14
15
 
15
16
 
16
17
  @contextmanager
@@ -56,10 +57,52 @@ async def atry_catcher(task="Task", fallback: Callable = None, is_trace: bool =
56
57
  yield await fallback()
57
58
 
58
59
 
60
+ @contextmanager
61
+ def timeout_task_executor(timeout: float=3, max_workers: int = None):
62
+ """
63
+ 一个上下文管理器,用于执行任务并设置超时时间。
64
+ :param timeout: 超时时间(秒)。
65
+ :param max_workers: 线程池的最大工作线程数,默认为 None(由系统决定)。
66
+ """
67
+ executor = ThreadPoolExecutor(max_workers=max_workers)
68
+
69
+ def execute_task(task: Callable[[], Any]) -> Any:
70
+ """
71
+ 在上下文中执行任务,并设置超时时间。
72
+ :param task: 要执行的任务函数。
73
+ :return: 任务的结果。如果超时,抛出 TimeoutError。
74
+ """
75
+ future = executor.submit(task)
76
+ try:
77
+ return future.result(timeout=timeout)
78
+ except TimeoutError:
79
+ logger.error(f"Task was terminated due to timeout after {timeout} seconds.")
80
+ return None
81
+
82
+ try:
83
+ yield execute_task # 返回一个可调用对象,用于执行任务
84
+ finally:
85
+ executor.shutdown(wait=False) # 不等待未完成的任务,直接关闭
86
+
87
+
59
88
  if __name__ == '__main__':
60
- async def f():
61
- return 1/0
89
+ # async def f():
90
+ # return 1/0
91
+ #
92
+ #
93
+ # with try_catcher("test"):
94
+ # arun(f())
95
+
96
+ def example_task():
97
+ print("Starting task...")
98
+ time.sleep(4) # 模拟耗时任务
99
+ print("Task completed!")
100
+ return "Done"
62
101
 
63
102
 
64
- with try_catcher("test"):
65
- arun(f())
103
+ with timeout_task_executor(timeout=3) as execute:
104
+ try:
105
+ result = execute(example_task)
106
+ print(f"Task result: {result}")
107
+ except TimeoutError:
108
+ print("Task did not complete in time.")
meutils/io/files_utils.py CHANGED
@@ -45,6 +45,7 @@ def base64_to_bytes(base64_image_string):
45
45
  return base64.b64decode(base64_image_string.split(",", 1)[-1])
46
46
 
47
47
 
48
+ @retrying()
48
49
  async def to_bytes(
49
50
  file: Union[UploadFile, str, bytes],
50
51
  headers: Optional[dict] = None
@@ -104,7 +105,6 @@ async def to_tempfile(file: Union[UploadFile, str]):
104
105
  yield temp.name
105
106
 
106
107
 
107
- @cache(ttl=7 * 24 * 3600)
108
108
  async def to_url_fal(
109
109
  file: Union[str, bytes, List],
110
110
  filename: Optional[str] = None,
@@ -94,8 +94,10 @@ async def check_token_for_jina(api_key, threshold=1000):
94
94
  if __name__ == '__main__':
95
95
  from meutils.config_utils.lark_utils import get_next_token_for_polling
96
96
 
97
+ check_valid_token = partial(check_token_for_siliconflow, threshold=-1)
98
+
97
99
  pass
98
- arun(check_token_for_siliconflow("sk-xcdcquzwbsycxgadtwijeetzukhroyeorzqqzfvrtwrlmqrs"))
100
+ arun(check_valid_token("sk-geevdizajhngehlkrjlgwcugcunrircpezhqijrscmtiafxj", threshold=0.1))
99
101
 
100
102
  FEISHU_URL = "https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=KVClcs"
101
103
 
@@ -103,4 +105,4 @@ if __name__ == '__main__':
103
105
 
104
106
  # arun(get_next_token_for_polling(check_token=check_token_for_openai, feishu_url=FEISHU_URL))
105
107
 
106
- arun(check_token_for_jina(["jina_c8da77fed9704d558c8def39837960edplTLkNYrsPTJHBF1HcYg_RkRVh0X"]*10))
108
+ # arun(check_token_for_jina(["jina_c8da77fed9704d558c8def39837960edplTLkNYrsPTJHBF1HcYg_RkRVh0X"]*10))
@@ -7,6 +7,7 @@
7
7
  # @WeChat : meutils
8
8
  # @Software : PyCharm
9
9
  # @Description : todo: 格式匹配
10
+ # https://github.com/deepseek-ai/DeepSeek-R1
10
11
 
11
12
  from meutils.pipe import *
12
13
  from meutils.llm.clients import AsyncOpenAI, chatfire_client, zhipuai_client, moonshot_client
@@ -0,0 +1,69 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ # @Project : AI. @by PyCharm
4
+ # @File : gemini
5
+ # @Time : 2025/2/14 17:36
6
+ # @Author : betterme
7
+ # @WeChat : meutils
8
+ # @Software : PyCharm
9
+ # @Description :
10
+
11
+
12
+ from meutils.pipe import *
13
+ from meutils.llm.openai_utils import to_openai_params
14
+ from meutils.llm.clients import chatfire_client
15
+
16
+ from meutils.schemas.openai_types import chat_completion, chat_completion_chunk, ChatCompletionRequest, CompletionUsage
17
+
18
+ """
19
+ image => file
20
+
21
+ "type": "image_url",
22
+ "image_url": {
23
+
24
+
25
+ """
26
+
27
+
28
+ async def create(request: ChatCompletionRequest):
29
+ data = to_openai_params(request)
30
+
31
+ if request.stream:
32
+ _chunk = ""
33
+ async for chunk in await chatfire_client.chat.completions.create(**data):
34
+ chunk = chunk.choices[0].delta.content or ""
35
+ yield chunk.removeprefix(_chunk)
36
+ _chunk = chunk
37
+
38
+ else:
39
+ response = await client.chat.completions.create(**data)
40
+ # logger.info(response)
41
+ yield response.choices[0].message.content
42
+
43
+
44
+ if __name__ == '__main__':
45
+ # [
46
+ # "qwen-plus-latest",
47
+ # "qvq-72b-preview",
48
+ # "qwq-32b-preview",
49
+ # "qwen2.5-coder-32b-instruct",
50
+ # "qwen-vl-max-latest",
51
+ # "qwen-turbo-latest",
52
+ # "qwen2.5-72b-instruct",
53
+ # "qwen2.5-32b-instruct"
54
+ # ]
55
+ request = ChatCompletionRequest(
56
+ # model="qwen-turbo-2024-11-01",
57
+ model="qwen-max-latest",
58
+ # model="qwen-plus-latest",
59
+
60
+ messages=[
61
+ {
62
+ 'role': 'user',
63
+ 'content': 'hi'
64
+ },
65
+
66
+ ],
67
+ stream=False,
68
+ )
69
+ arun(create(request))
@@ -0,0 +1,18 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ # @Project : AI. @by PyCharm
4
+ # @File : search_prompt
5
+ # @Time : 2025/2/19 10:37
6
+ # @Author : betterme
7
+ # @WeChat : meutils
8
+ # @Software : PyCharm
9
+ # @Description : 提示词模板
10
+
11
+ from meutils.pipe import *
12
+
13
+ current_date = datetime.datetime.now().strftime("%Y-%m-%d")
14
+
15
+ system_prompt = f"""你是一个具备网络访问能力的智能助手,在适当情况下,优先使用网络信息(参考信息)来回答,
16
+ 以确保用户得到最新、准确的帮助。当前日期是 {current_date}。"""
17
+
18
+ # deepseek_prompt
@@ -83,7 +83,7 @@ class ImageRequest(BaseModel): # openai
83
83
 
84
84
  # oneapi
85
85
  negative_prompt: Optional[str] = None
86
- guidance: Optional[int] = None
86
+ guidance: Optional[float] = None
87
87
  steps: Optional[int] = None
88
88
 
89
89
  controls: Optional[dict] = {} # 额外参数
@@ -479,6 +479,9 @@ class ImageProcess(BaseModel):
479
479
 
480
480
  response_format: Literal["url", "b64_json"] = "url"
481
481
 
482
+ # class Config:
483
+ # extra = "allow"
484
+
482
485
 
483
486
  if __name__ == '__main__':
484
487
  # print(ASPECT_RATIOS.items())