MeUtils 2024.3.4.13.4.45__py3-none-any.whl → 2025.1.16.17.15.52__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {MeUtils-2024.3.4.13.4.45.dist-info → MeUtils-2025.1.16.17.15.52.dist-info}/METADATA +38 -32
- MeUtils-2025.1.16.17.15.52.dist-info/RECORD +864 -0
- {MeUtils-2024.3.4.13.4.45.dist-info → MeUtils-2025.1.16.17.15.52.dist-info}/WHEEL +1 -1
- {MeUtils-2024.3.4.13.4.45.dist-info → MeUtils-2025.1.16.17.15.52.dist-info}/entry_points.txt +1 -0
- apps/spider.py +24 -8
- examples/_openaisdk/4v.py +110 -0
- examples/_openaisdk/__init__.py +11 -0
- examples/_openaisdk/baichuan.py +38 -0
- examples/_openaisdk/bpo.py +138 -0
- examples/_openaisdk/chat_latex.py +95 -0
- examples/_openaisdk/chattts.py +85 -0
- examples/_openaisdk/copilot.py +48 -0
- examples/_openaisdk/dalle3.py +48 -0
- examples/_openaisdk/deeplx.py +31 -0
- examples/_openaisdk/demo.py +77 -0
- examples/_openaisdk/embeddings.py +34 -0
- examples/_openaisdk/gpt4all.py +69 -0
- examples/_openaisdk/gpt_fc.py +23 -0
- examples/_openaisdk/gr_vl.py +46 -0
- examples/_openaisdk/json_mode.py +12 -0
- examples/_openaisdk/kimi.py +91 -0
- examples/_openaisdk/kimi_qa.py +57 -0
- examples/_openaisdk/minimax.py +75 -0
- examples/_openaisdk/open_router.py +48 -0
- examples/_openaisdk/openai_aiplus.py +54 -0
- examples/_openaisdk/openai_audio.py +20 -0
- examples/_openaisdk/openai_baichuan.py +59 -0
- examples/_openaisdk/openai_cache.py +37 -0
- examples/_openaisdk/openai_chatfire.py +228 -0
- examples/_openaisdk/openai_chatfire_all.py +166 -0
- examples/_openaisdk/openai_deepinfra.py +55 -0
- examples/_openaisdk/openai_deepseek.py +29 -0
- examples/_openaisdk/openai_doubao.py +43 -0
- examples/_openaisdk/openai_embeddings.py +36 -0
- examples/_openaisdk/openai_files.py +57 -0
- examples/_openaisdk/openai_gitee.py +33 -0
- examples/_openaisdk/openai_god.py +45 -0
- examples/_openaisdk/openai_groq.py +240 -0
- examples/_openaisdk/openai_images.py +203 -0
- examples/_openaisdk/openai_json.py +78 -0
- examples/_openaisdk/openai_lingyi.py +59 -0
- examples/_openaisdk/openai_modelscope.py +54 -0
- examples/_openaisdk/openai_moon.py +55 -0
- examples/_openaisdk/openai_oi.py +61 -0
- examples/_openaisdk/openai_ppu.py +47 -0
- examples/_openaisdk/openai_qwen.py +58 -0
- examples/_openaisdk/openai_search.py +42 -0
- examples/_openaisdk/openai_sensenova.py +81 -0
- examples/_openaisdk/openai_siliconflow.py +52 -0
- examples/_openaisdk/openai_step.py +45 -0
- examples/_openaisdk/openai_test.py +66 -0
- examples/_openaisdk/openai_together.py +57 -0
- examples/_openaisdk/openai_tune.py +38 -0
- examples/_openaisdk/openai_zhipu.py +59 -0
- examples/_openaisdk/ppu.py +28 -0
- examples/_openaisdk/rag.py +54 -0
- examples/_openaisdk/rag_.py +26 -0
- examples/_openaisdk/test.py +52 -0
- examples/_openaisdk/x.py +32 -0
- examples/_openaisdk/xx.py +29 -0
- examples/_openaisdk/zhipu_files.py +47 -0
- examples/_openaisdk/zhipu_/346/231/272/350/203/275/344/275/223.py +45 -0
- examples/_openaisdk//345/205/234/345/272/225/346/265/213/350/257/225.py +50 -0
- examples/_openaisdk//345/244/232/346/250/241/346/200/201/346/265/213/350/257/225.py +76 -0
- examples/_openaisdk//345/244/232/346/250/241/346/200/201/346/265/213/350/257/225_.py +56 -0
- examples/_openaisdk//346/226/207/344/273/266/351/227/256/347/255/224.py +36 -0
- examples/_openaisdk//346/226/207/346/241/243/350/247/243/346/236/220.py +34 -0
- examples/_openaisdk//346/250/241/345/236/213/346/265/213/350/257/225.py +53 -0
- examples/_openaisdk//351/230/277/351/207/214.py +80 -0
- {meutils/serving/jina/__demo → examples/ann}/__init__.py +1 -1
- examples/ann/main.py +31 -0
- examples/apis/kl.py +28 -0
- examples/apis/x.py +17 -0
- examples/apis/xx.py +17 -0
- examples/arq_demo/demo.py +3 -0
- examples/backgroundtasks.py +25 -0
- examples/bserver.py +513 -21
- examples/cache_demo/HermesCache_demo.py +81 -0
- examples/cache_demo/acacge.py +26 -0
- examples/cache_demo/x.py +31 -0
- {meutils/docarray_utils → examples/caches}/__init__.py +1 -1
- examples/caches/llmcache.py +18 -0
- examples/celery_demo/product_task.py +2 -0
- examples/demo.py +17 -1
- examples/fastapi_caching.py +59 -0
- {meutils/dependencies → examples/gr}/__init__.py +1 -1
- examples/gr/d.py +22 -0
- examples/gr/demo.py +30 -0
- examples/ip2/345/234/260/345/214/272.py +16 -0
- examples/jinja2_demo/j2_demo.py +20 -1
- examples/json/346/240/207/345/207/206/345/214/226.py +54 -0
- examples/md.py +29 -0
- {meutils/serving/jina → examples/nesc}/__init__.py +1 -1
- examples/nesc/main.py +76 -0
- examples/orm/mysql_orm.py +113 -0
- examples/orm/sql_creater.py +57 -0
- examples/orm/sqlm.py +134 -0
- examples/rq_demo/fns.py +18 -0
- examples/rq_demo/redis/351/230/237/345/210/227.py +14 -7
- examples/rq_demo/redis/351/230/237/345/210/227_add_chatfire.py +30 -0
- examples/size_map.py +43 -0
- examples/test.py +59 -0
- examples/webs/__init__.py +11 -0
- examples/webs/main.py +34 -0
- examples/x.py +13 -0
- examples//345/216/273/346/260/264/345/215/260.py +20 -0
- examples//346/226/207/346/241/243/346/231/272/350/203/275/__init__.py +11 -0
- meutils/_utils.py +15 -6
- meutils/ai_audio/asr/__init__.py +3 -2
- meutils/ai_audio/asr/cf_asr.py +53 -0
- meutils/ai_audio/asr/de.py +11 -0
- meutils/ai_audio/asr/fast_asr.py +15 -7
- meutils/ai_audio/asr/openai_asr.py +83 -6
- meutils/ai_audio/fast_asr.py +8 -4
- meutils/ai_audio/tts/EdgeTTS.py +33 -7
- meutils/ai_audio/tts/openai_tts.py +24 -20
- meutils/ai_audio/tts/tts_ui.py +1 -0
- meutils/ai_audio/utils.py +9 -0
- meutils/ai_cv/__init__.py +0 -1
- meutils/ai_cv/ocr.py +3 -2
- meutils/ai_cv/utils.py +154 -0
- meutils/ai_video/avmerge.py +6 -0
- meutils/ai_video/video.py +11 -2
- meutils/{api → apis}/__init__.py +1 -1
- meutils/apis/ali_apis.py +60 -0
- meutils/apis/audio/__init__.py +10 -0
- meutils/apis/audio/deepinfra.py +59 -0
- meutils/apis/audio/fish.py +248 -0
- meutils/apis/baidu/__init__.py +9 -0
- meutils/apis/baidu/bdaitpzs.py +229 -0
- meutils/apis/baidu/test.py +78 -0
- meutils/apis/chatglm/__init__.py +11 -0
- meutils/apis/chatglm/glm_video.py +273 -0
- meutils/apis/chatglm/glm_video_api.py +116 -0
- meutils/apis/chatglm/images.py +63 -0
- meutils/apis/chatglm/temp.py +259 -0
- meutils/apis/chatglm/x.py +31 -0
- meutils/{api → apis}/common.py +10 -6
- meutils/apis/fal/__init__.py +11 -0
- meutils/apis/fal/files.py +53 -0
- meutils/apis/fal/images.py +57 -0
- meutils/apis/fal/images_.py +72 -0
- meutils/apis/fal/videos.py +77 -0
- meutils/apis/firecrawl.py +45 -0
- meutils/apis/gitee/__init__.py +11 -0
- meutils/apis/gitee/images/__init__.py +9 -0
- meutils/apis/gitee/images/kolors.py +99 -0
- meutils/apis/hailuoai/__init__.py +11 -0
- meutils/apis/hailuoai/demo.py +34 -0
- meutils/apis/hailuoai/hasha_new.py +248 -0
- meutils/apis/hailuoai/music.py +11 -0
- meutils/apis/hailuoai/upload.py +116 -0
- meutils/apis/hailuoai/videos.py +460 -0
- meutils/apis/hailuoai/yy.py +242 -0
- meutils/apis/hf/__init__.py +11 -0
- meutils/apis/hf/got_ocr.py +64 -0
- meutils/apis/hf/gradio.py +34 -0
- meutils/apis/hf/hivisionidphotos.py +80 -0
- meutils/apis/hf/kolors.py +68 -0
- meutils/apis/hf/kolors_virtual_try_on.py +107 -0
- meutils/apis/hf/r.py +53 -0
- meutils/apis/hf/x.py +26 -0
- meutils/apis/hf//350/257/201/344/273/266/347/205/247.py +41 -0
- meutils/apis/hunyuan/__init__.py +11 -0
- meutils/apis/hunyuan/image_tools.py +84 -0
- meutils/apis/images/__init__.py +11 -0
- meutils/apis/images/deepinfra.py +92 -0
- meutils/apis/images/demo.py +150 -0
- meutils/apis/images/eidt.py +36 -0
- meutils/apis/images/flux/__init__.py +11 -0
- meutils/apis/images/flux/fluxpro.py +108 -0
- meutils/apis/images/flux/mystic.py +116 -0
- meutils/apis/images/ideogram/__init__.py +10 -0
- meutils/apis/images/ideogram/ideogram_images.py +193 -0
- meutils/apis/images/prodia/__init__.py +12 -0
- meutils/apis/images/prodia/faceswap.py +76 -0
- meutils/apis/images/recraft.py +152 -0
- meutils/apis/images/virtual_try_on/__init__.py +11 -0
- meutils/apis/images/virtual_try_on/images.py +65 -0
- meutils/apis/jiema/24mail.py +96 -0
- meutils/apis/jiema/__init__.py +11 -0
- meutils/apis/jiema/yezi.py +97 -0
- meutils/apis/jimeng/__init__.py +11 -0
- meutils/apis/jimeng/common.py +328 -0
- meutils/apis/jimeng/doubao.py +68 -0
- meutils/apis/jimeng/doubao_utils.py +175 -0
- meutils/apis/jimeng/files.py +263 -0
- meutils/apis/jimeng/images.py +140 -0
- meutils/apis/jimeng/lip_sync.py +11 -0
- meutils/apis/jina.py +55 -0
- meutils/apis/kling/__init__.py +11 -0
- meutils/apis/kling/api.py +60 -0
- meutils/apis/kling/images.py +174 -0
- meutils/apis/kling/kolors_virtual_try_on.py +111 -0
- meutils/apis/kling/kolors_virtual_try_on_web.py +126 -0
- meutils/apis/kling/videos.py +67 -0
- meutils/apis/kling//351/211/264/346/235/203.py +34 -0
- meutils/apis/kuaidi.py +32 -0
- meutils/apis/kuaishou/__init__.py +10 -0
- meutils/apis/kuaishou/klingai.py +523 -0
- meutils/apis/kuaishou/klingai_video.py +197 -0
- meutils/apis/kuaishou/kolors.py +189 -0
- meutils/apis/llm_qa.py +55 -0
- meutils/apis/luma/__init__.py +11 -0
- meutils/apis/luma/luma.py +123 -0
- meutils/apis/minicpm/__init__.py +9 -0
- meutils/apis/minicpm/luca.py +137 -0
- meutils/apis/monica/__init__.py +11 -0
- meutils/apis/monica/llm.py +11 -0
- meutils/apis/napkin/__init__.py +11 -0
- meutils/apis/napkin/icons.py +42 -0
- meutils/apis/niutrans.py +73 -0
- meutils/apis/oneapi/__init__.py +11 -0
- meutils/apis/oneapi/channel.py +68 -0
- meutils/apis/oneapi/common.py +135 -0
- meutils/apis/oneapi/log.py +47 -0
- meutils/apis/oneapi/token.py +48 -0
- meutils/apis/oneapi/token_.py +112 -0
- meutils/apis/oneapi/user.py +100 -0
- meutils/apis/oneapi/utils.py +47 -0
- meutils/apis/pixverse/__init__.py +11 -0
- meutils/apis/pixverse/pixverse.py +150 -0
- meutils/apis/proxy/__init__.py +11 -0
- meutils/apis/proxy/ips.py +178 -0
- meutils/apis/remini/__init__.py +11 -0
- meutils/apis/remini/remini.py +89 -0
- meutils/apis/replicateai/__init__.py +11 -0
- meutils/apis/replicateai/images.py +79 -0
- meutils/apis/replicateai/raw.py +53 -0
- meutils/apis/runwayml/__init__.py +10 -0
- meutils/apis/runwayml/gen.py +143 -0
- meutils/apis/search/__init__.py +11 -0
- meutils/apis/search/baichuan.py +11 -0
- meutils/apis/search/metaso.py +218 -0
- meutils/apis/search/metaso_.py +77 -0
- meutils/apis/search/n.py +99 -0
- meutils/apis/search/searxng.py +42 -0
- meutils/apis/search_music.py +39 -0
- meutils/apis/siliconflow/__init__.py +9 -0
- meutils/apis/siliconflow/audio.py +63 -0
- meutils/apis/siliconflow/image_to_image.py +116 -0
- meutils/apis/siliconflow/images.py +154 -0
- meutils/apis/siliconflow/rerankers.py +40 -0
- meutils/apis/siliconflow/text_to_image.py +132 -0
- meutils/apis/siliconflow/utils.py +66 -0
- meutils/apis/siliconflow/videos.py +102 -0
- meutils/apis/sunoai/__init__.py +10 -0
- meutils/apis/sunoai/haimian.py +135 -0
- meutils/apis/sunoai/suno.py +373 -0
- meutils/apis/textcard/__init__.py +11 -0
- meutils/apis/textcard/demo.py +25 -0
- meutils/apis/textcard/hanyuxinjie.py +81 -0
- meutils/apis/textin.py +159 -0
- meutils/apis/to_image/__init__.py +11 -0
- meutils/apis/to_image/html2image.py +29 -0
- meutils/apis/to_image/md.py +29 -0
- meutils/apis/to_image/url2image.py +41 -0
- meutils/apis/together/__init__.py +11 -0
- meutils/apis/together/images.py +80 -0
- meutils/apis/translator/__init__.py +9 -0
- meutils/apis/translator/deeplx.py +55 -0
- meutils/apis/tripo3d/__init__.py +11 -0
- meutils/apis/tripo3d/images.py +106 -0
- meutils/apis/ts.py +60 -0
- meutils/apis/uptime_kuma/__init__.py +11 -0
- meutils/apis/uptime_kuma/common.py +56 -0
- meutils/apis/uptime_kuma//345/233/275/344/272/247/345/210/206/347/273/204.py +68 -0
- meutils/apis/utils.py +47 -0
- meutils/apis/videos/__init__.py +11 -0
- meutils/apis/videos/sora.py +16 -0
- meutils/apis/vidu/__init__.py +9 -0
- meutils/apis/vidu/vidu_video.py +254 -0
- meutils/apis/vidu/x.py +14 -0
- meutils/apis/voice_clone/__init__.py +10 -0
- meutils/apis/voice_clone/fish.py +236 -0
- meutils/apis/voice_clone/fish_api.py +16 -0
- meutils/apis/web_search.py +31 -0
- meutils/apis/yezi.py +97 -0
- meutils/async_task/__init__.py +13 -0
- meutils/async_task/celery_config.py +106 -0
- meutils/async_task/common.py +37 -0
- meutils/async_task/demo_create_tasks.py +73 -0
- meutils/async_task/tasks/__init__.py +11 -0
- meutils/async_task/tasks/_all.py +20 -0
- meutils/async_task/tasks/hailuo.py +24 -0
- meutils/async_task/tasks/kling.py +30 -0
- meutils/async_task/tasks/replicateai.py +24 -0
- meutils/async_task/tasks/test.py +124 -0
- meutils/async_task/tasks/vidu.py +28 -0
- meutils/async_task/utils.py +191 -0
- meutils/async_task//351/200/232/347/224/250/350/256/276/350/256/241.py +119 -0
- meutils/async_utils/asyncer_.py +37 -0
- meutils/async_utils/background.py +68 -0
- meutils/async_utils/common.py +136 -16
- meutils/async_utils/test.py +47 -0
- meutils/cache_utils.py +29 -23
- meutils/caches/__init__.py +9 -0
- meutils/caches/acache.py +45 -0
- meutils/caches/redis_cache.py +63 -0
- meutils/clis/check_api.py +66 -0
- meutils/clis/cli.py +1 -1
- meutils/common.py +56 -17
- meutils/config_utils/__init__.py +11 -0
- meutils/config_utils/lark_utils/__init__.py +11 -0
- meutils/config_utils/lark_utils/common.py +385 -0
- meutils/config_utils/lark_utils/demo.py +13 -0
- meutils/config_utils/lark_utils/x.py +50 -0
- meutils/config_utils/manager.py +108 -0
- meutils/crawlers/__init__.py +11 -0
- meutils/data/VERSION +1 -1
- meutils/data/cowboy-hat-face.webp +0 -0
- meutils/data/oneapi/FOOTER.md +7 -0
- meutils/data/oneapi/NOTICE.md +138 -0
- meutils/data/oneapi/__init__.py +15 -0
- meutils/db/orm.py +179 -0
- meutils/db/redis_db.py +87 -0
- meutils/decorators/cache.py +1 -1
- meutils/decorators/common.py +84 -5
- meutils/decorators/contextmanagers.py +17 -6
- meutils/decorators/fastapi_decorator.py +77 -3
- meutils/decorators/polling.py +46 -0
- meutils/decorators/retry.py +150 -26
- meutils/fastapi_utils/__init__.py +11 -0
- meutils/fastapi_utils/exceptions/http_error.py +72 -0
- meutils/fastapi_utils/exceptions/validation_error.py +44 -0
- meutils/hash_utils.py +9 -4
- meutils/hooks/__init__.py +11 -0
- meutils/hooks/hook_test.py +174 -0
- meutils/hooks/wechat.py +162 -0
- meutils/hooks/wechat_channel.py +303 -0
- meutils/init/evn.py +1 -1
- meutils/io/files_utils.py +232 -0
- meutils/io/image.py +148 -10
- meutils/io/x.py +75 -0
- meutils/llm/__init__.py +10 -0
- meutils/llm/check_api.py +109 -0
- meutils/llm/check_utils.py +106 -0
- meutils/llm/clients.py +38 -0
- meutils/llm/completions/__init__.py +11 -0
- meutils/llm/completions/agents/__init__.py +11 -0
- meutils/llm/completions/agents/file.py +125 -0
- meutils/llm/completions/cp.py +112 -0
- meutils/llm/completions/delilegal.py +135 -0
- meutils/llm/completions/dify.py +81 -0
- meutils/llm/completions/kimi.py +47 -0
- meutils/llm/completions/modelscope.py +11 -0
- meutils/{fileparser/filetype.py → llm/completions/oi.py} +5 -3
- meutils/llm/completions/rag/__init__.py +11 -0
- meutils/llm/completions/rag/fire.py +157 -0
- meutils/llm/completions/rag/qwen.py +11 -0
- meutils/llm/completions/rag/rag.py +41 -0
- meutils/llm/completions/rag.py +38 -0
- meutils/llm/completions/tryblend.py +201 -0
- meutils/llm/completions/tune.py +284 -0
- meutils/llm/completions/x.py +26 -0
- meutils/llm/completions/xx.py +61 -0
- meutils/llm/completions/yuanbao.py +176 -0
- meutils/llm/demo.py +114 -0
- meutils/llm/functions/__init__.py +11 -0
- meutils/llm/mappers.py +15 -0
- meutils/llm/openai_utils/__init__.py +11 -0
- meutils/llm/openai_utils/common.py +284 -0
- meutils/llm/openai_utils/tool_outputs.py +45 -0
- meutils/llm/output_parsers/__init__.py +80 -0
- meutils/llm/prompts/__init__.py +244 -0
- meutils/llm/prompts/demo.py +155 -0
- meutils/llm/prompts/html2image_test.py +19 -0
- meutils/llm/utils.py +133 -0
- meutils/llm/x.py +75 -0
- meutils/notice/feishu.py +40 -9
- meutils/notice/wechat.py +23 -21
- meutils/np_utils.py +10 -1
- meutils/office_automation/pdf.py +6 -1
- meutils/oss/__init__.py +20 -0
- meutils/oss/minio_oss.py +184 -0
- meutils/oss/minio_utils.py +48 -0
- meutils/other/__demo.py +6 -4
- meutils/pandas_utils/__init__.py +1 -0
- meutils/pandas_utils/common.py +31 -0
- meutils/pandas_utils/pd_utils.py +10 -6
- meutils/parsers/__init__.py +10 -0
- meutils/parsers/file_parsers.py +110 -0
- meutils/parsers/fileparser/demo.py +41 -0
- meutils/parsers/fileparser/filetype.py +41 -0
- meutils/pay.py +37 -0
- meutils/pipe.py +37 -4
- meutils/playwright_utils/common.py +20 -12
- meutils/plots/common.py +35 -34
- meutils/queues/demo.py +56 -0
- meutils/queues/smooth_queue.py +120 -0
- meutils/queues/uniform_queue.py +3 -1
- meutils/request_utils/__init__.py +26 -2
- meutils/request_utils/ark.py +47 -0
- meutils/request_utils/crawler.py +34 -5
- meutils/request_utils/jwt_utils/__init__.py +11 -0
- meutils/request_utils/jwt_utils/common.py +42 -0
- meutils/request_utils/volc.py +160 -0
- meutils/schemas/__init__.py +0 -1
- meutils/schemas/baidu_types.py +70 -0
- meutils/schemas/batch_types.py +450 -0
- meutils/schemas/celery_types.py +64 -0
- meutils/schemas/chatfire_types.py +15 -0
- meutils/schemas/chatglm_types.py +197 -0
- meutils/schemas/db/__init__.py +11 -0
- meutils/schemas/db/oneapi_types.py +117 -0
- meutils/schemas/dify_types.py +40 -0
- meutils/schemas/embedding.py +31 -0
- meutils/schemas/fal_types.py +13 -0
- meutils/schemas/fish_types.py +11 -0
- meutils/schemas/hailuo_types.py +208 -0
- meutils/schemas/haimian_types.py +51 -0
- meutils/schemas/idphoto_types.py +43 -0
- meutils/schemas/image_types.py +476 -0
- meutils/schemas/jimeng_types.py +28 -0
- meutils/schemas/jina_types.py +67 -0
- meutils/schemas/kimi_types.py +86 -0
- meutils/schemas/kling_types.py +235 -0
- meutils/schemas/kuaishou_types.py +328 -0
- meutils/schemas/luma_types.py +59 -0
- meutils/schemas/message_types.py +165 -0
- meutils/schemas/message_types_.py +219 -0
- meutils/schemas/metaso_types.py +64 -0
- meutils/schemas/napkin_types.py +85 -0
- meutils/schemas/ocr_types.py +37 -0
- meutils/schemas/oneapi/__init__.py +11 -0
- meutils/schemas/oneapi/_types.py +49 -0
- meutils/schemas/oneapi/common.py +883 -0
- meutils/schemas/oneapi/icons.py +30 -0
- meutils/schemas/oneapi/model_group_info.py +48 -0
- meutils/schemas/oneapi/model_info.py +34 -0
- meutils/schemas/oneapi/models.py +26 -0
- meutils/schemas/oneapi/x.py +26 -0
- meutils/schemas/oneapi//351/207/215/345/256/232/345/220/221.py +132 -0
- meutils/schemas/openai_api_protocol.py +411 -0
- meutils/schemas/openai_types.py +366 -0
- meutils/schemas/pixverse_types.py +88 -0
- meutils/schemas/playwright_types.py +57 -0
- meutils/schemas/prodia_types.py +19 -0
- meutils/schemas/replicate_types.py +112 -0
- meutils/schemas/request_types.py +20 -0
- meutils/schemas/runwayml_types.py +190 -0
- meutils/schemas/siliconflow_types.py +80 -0
- meutils/schemas/step_types.py +19 -0
- meutils/schemas/suno_types.py +319 -0
- meutils/schemas/task_types.py +192 -0
- meutils/schemas/translator_types.py +29 -0
- meutils/schemas/tripo3d_types.py +57 -0
- meutils/schemas/tryblend_types.py +51 -0
- meutils/schemas/video_types.py +62 -0
- meutils/schemas/vidu_types.py +350 -0
- meutils/schemas/wechat_types.py +316 -0
- meutils/schemas/yuanbao_types.py +260 -0
- meutils/serving/celery/__init__.py +8 -0
- meutils/serving/celery/config.py +115 -0
- meutils/serving/celery/router.py +4 -6
- meutils/serving/celery/tasks.py +6 -4
- meutils/serving/celery//351/200/232/347/224/250/350/256/276/350/256/241.py +119 -0
- meutils/serving/fastapi/common.py +27 -31
- meutils/serving/fastapi/dependencies/__init__.py +0 -1
- meutils/serving/fastapi/dependencies/auth.py +55 -2
- meutils/serving/fastapi/exceptions/http_error.py +67 -2
- meutils/serving/fastapi/exceptions/validation_error.py +18 -2
- meutils/serving/fastapi/lifespans.py +73 -0
- meutils/serving/fastapi/routers/scheduler.py +12 -0
- meutils/serving/fastapi/routers/screenshot.py +47 -0
- meutils/serving/fastapi/routers/spider.py +8 -3
- meutils/serving/fastapi/routers/task.py +48 -0
- meutils/serving/fastapi/utils.py +48 -1
- meutils/serving/streamlit/common.py +1 -1
- meutils/smooth_utils.py +3 -0
- meutils/str_utils/__init__.py +22 -3
- meutils/str_utils/json_utils.py +7 -0
- meutils/str_utils/regular_expression.py +102 -10
- meutils/templates/xx.html +21 -0
- meutils/templates/xxx.html +117 -0
- meutils/todo.py +12 -0
- meutils/tools/token_monitor.py +33 -0
- MeUtils-2024.3.4.13.4.45.dist-info/RECORD +0 -540
- meutils/ai_audio/asr/subtitle.srt +0 -40
- meutils/ai_audio/demo.ipynb +0 -1215
- meutils/ai_audio/example.srt +0 -348
- meutils/ai_audio/new.srt +0 -179
- meutils/ai_audio/subtitles.srt +0 -696
- meutils/ai_audio/tts/new.srt +0 -179
- meutils/ai_audio//350/247/206/351/242/221/345/220/210/345/271/266.sh +0 -32
- meutils/ai_cv/1.jpg +0 -0
- meutils/ai_cv/197.jpg +0 -0
- meutils/ai_cv/2.jpg +0 -0
- meutils/ai_cv/img.png +0 -0
- meutils/ai_cv/invoice.jpg +0 -0
- meutils/ai_cv/tbl.png +0 -0
- meutils/ai_cv/test.png +0 -0
- meutils/ann/README.md +0 -33
- meutils/ann/README_gensim.md +0 -47
- meutils/ann/examples/client.py +0 -59
- meutils/ann/examples/demo.py +0 -24
- meutils/api/deeplx.py +0 -29
- meutils/api/qr.png +0 -0
- meutils/clis/README.md +0 -29
- meutils/clis/__test.sh +0 -17
- meutils/clis/deepseek.txt +0 -8
- meutils/clis/deepseek_13003330042.json +0 -1
- meutils/clis/deepseek_13003872192.json +0 -1
- meutils/clis/deepseek_13852263862.json +0 -1
- meutils/clis/deepseek_13913898681.json +0 -1
- meutils/clis/deepseek_13962978617.json +0 -1
- meutils/clis/deepseek_15251801790.json +0 -1
- meutils/clis/deepseek_15720826383.json +0 -1
- meutils/clis/deepseek_18395563611.json +0 -1
- meutils/clis/deepseek_313303303@qq.com.json +0 -1
- meutils/clis/kimi_state.json +0 -1
- meutils/cmds/README.md +0 -55
- meutils/coding/__init__.py +0 -11
- meutils/coding/find132.py +0 -40
- meutils/db/README.md +0 -51
- meutils/decorators/README.md +0 -17
- meutils/docarray_utils/demo_es.py +0 -34
- meutils/docarray_utils/demo_hnsw.py +0 -55
- meutils/docarray_utils/in_memory.py +0 -38
- meutils/docarray_utils//346/224/271/351/200/240/344/270/213hnsw.py +0 -43
- meutils/io/file.py +0 -20
- meutils/io/img.png +0 -0
- meutils/io/x.yml +0 -1
- meutils/notice/img.png +0 -0
- meutils/notice/todo.md +0 -10
- meutils/office_automation//346/212/225/350/265/204/347/256/241/347/220/206/347/263/273/347/273/237O3.2_/344/272/244/346/230/223/347/273/204.pdm +0 -22469
- meutils/playwright_utils/__test.sh +0 -2
- meutils/playwright_utils/kimi1_cookies.json +0 -1
- meutils/playwright_utils/kimi2_cookies.json +0 -1
- meutils/playwright_utils/kimi_cookies.json +0 -93
- meutils/serving/README.md +0 -1
- meutils/serving/celery/_run.sh +0 -10
- meutils/serving/gui/run.sh +0 -9
- meutils/serving/jina/__demo/client.py +0 -42
- meutils/serving/jina/__demo/flow.svg +0 -1
- meutils/serving/jina/__demo/s.py +0 -34
- meutils/serving/jina/__demo/s2.py +0 -37
- meutils/serving/jina/__demo/server.py +0 -83
- meutils/serving/jina/__demo/test.py +0 -40
- meutils/serving/jina/executors/SentenceEncoder.py +0 -62
- meutils/serving/jina/executors/SentenceEncoder_.py +0 -63
- meutils/serving/jina/executors/__init__.py +0 -46
- meutils/serving/jina/executors/base.py +0 -40
- meutils/serving/jina/nlp_serving/__init__.py +0 -11
- meutils/serving/jina/nlp_serving/word_segmentation.py +0 -40
- meutils/serving/streamlit/conf.yaml +0 -5
- meutils/serving/streamlit/ocr.png +0 -0
- meutils/serving/streamlit/run.sh +0 -17
- meutils/serving/webui/.streamlit/_config.toml +0 -186
- meutils/serving/webui/.streamlit/config.toml +0 -26
- meutils/serving/webui/pages/_1_/345/210/206/350/257/215.py +0 -56
- meutils/serving/webui/pages/_2_/350/257/215/346/200/247/346/240/207/346/263/250/344/270/216/345/256/236/344/275/223/350/257/206/345/210/253.py +0 -54
- meutils/serving/webui/pages/_3_/346/226/207/346/234/254/345/214/271/351/205/215.py +0 -64
- meutils/serving/webui/run.sh +0 -9
- meutils/spark/__init__.py +0 -26
- meutils/tools/monitor.yml +0 -29
- {MeUtils-2024.3.4.13.4.45.dist-info → MeUtils-2025.1.16.17.15.52.dist-info}/LICENSE +0 -0
- {MeUtils-2024.3.4.13.4.45.dist-info → MeUtils-2025.1.16.17.15.52.dist-info}/top_level.txt +0 -0
- {meutils → examples}/comp_utils/__init__.py +0 -0
- {meutils → examples}/comp_utils/reverse_metric.py +0 -0
- /meutils/{fileparser/README.md → fastapi_utils/exceptions/__init__.py} +0 -0
- /meutils/{fileparser → parsers/fileparser}/PDF/346/212/275/345/217/226.py" +0 -0
- /meutils/{fileparser → parsers/fileparser}/__init__.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/common.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/__init__.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/__main__.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/filetype.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/helpers.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/match.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/__init__.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/application.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/archive.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/audio.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/base.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/document.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/font.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/image.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/isobmff.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/types/video.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/filetype/utils.py +0 -0
- /meutils/{fileparser → parsers/fileparser}/pdf.py +0 -0
- /meutils/{fileparser → parsers/fileparser}//350/241/250/346/240/274/346/212/275/345/217/226.py" +0 -0
@@ -0,0 +1,116 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# @Project : AI. @by PyCharm
|
4
|
+
# @File : image_to_image
|
5
|
+
# @Time : 2024/8/23 17:04
|
6
|
+
# @Author : betterme
|
7
|
+
# @WeChat : meutils
|
8
|
+
# @Software : PyCharm
|
9
|
+
# @Description :
|
10
|
+
|
11
|
+
from meutils.pipe import *
|
12
|
+
from meutils.config_utils.lark_utils import get_spreadsheet_values, get_next_token_for_polling
|
13
|
+
from meutils.schemas.openai_types import ImageRequest, ImagesResponse
|
14
|
+
from meutils.apis.translator import deeplx
|
15
|
+
from meutils.schemas.translator_types import DeeplxRequest
|
16
|
+
from meutils.decorators.retry import retrying
|
17
|
+
from meutils.schemas.image_types import ASPECT_RATIOS
|
18
|
+
from meutils.schemas.oneapi import REDIRECT_MODEL
|
19
|
+
|
20
|
+
from meutils.io.image import image_to_base64
|
21
|
+
|
22
|
+
BASE_URL = "https://cloud.siliconflow.cn"
|
23
|
+
FEISHU_URL = "https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=InxiCF"
|
24
|
+
FEISHU_URL_TOKEN = "https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=xlvlrH"
|
25
|
+
|
26
|
+
url = "https://api.siliconflow.cn/v1/TencentARC/PhotoMaker/image-to-image"
|
27
|
+
|
28
|
+
PHOTOMAKER_STYLES = {
|
29
|
+
"Photographic (Default)",
|
30
|
+
"Cinematic",
|
31
|
+
"Comic book",
|
32
|
+
"Disney Character",
|
33
|
+
"Disney Character",
|
34
|
+
"Digital Art",
|
35
|
+
"Fantasy Art",
|
36
|
+
"Neopunk",
|
37
|
+
"Enhance",
|
38
|
+
"Lowpoly",
|
39
|
+
"Line art",
|
40
|
+
"(No style)",
|
41
|
+
}
|
42
|
+
|
43
|
+
|
44
|
+
@retrying(max_retries=3, title=__name__)
|
45
|
+
async def create(request: ImageRequest, api_key: Optional[str] = None): # SD3
|
46
|
+
api_key = api_key or await get_next_token_for_polling(feishu_url=FEISHU_URL)
|
47
|
+
|
48
|
+
# logger.debug(request)
|
49
|
+
|
50
|
+
prompt = (await deeplx.translate(DeeplxRequest(text=request.prompt, target_lang="EN"))).get("data")
|
51
|
+
|
52
|
+
logger.debug(prompt)
|
53
|
+
|
54
|
+
if request.url and request.url.startswith('http'):
|
55
|
+
image_data = image_to_base64(request.url)
|
56
|
+
else:
|
57
|
+
image_data = request.url
|
58
|
+
|
59
|
+
payload = {
|
60
|
+
"prompt": prompt,
|
61
|
+
"negative_prompt": request.negative_prompt,
|
62
|
+
"image_size": request.size,
|
63
|
+
"batch_size": request.n,
|
64
|
+
"seed": 0,
|
65
|
+
"num_inference_steps": request.num_inference_steps,
|
66
|
+
"guidance_scale": request.guidance_scale,
|
67
|
+
|
68
|
+
"image": image_data,
|
69
|
+
"style_name": request.style if request.style in PHOTOMAKER_STYLES else "Photographic (Default)",
|
70
|
+
"style_strengh_radio": 20
|
71
|
+
}
|
72
|
+
# payload = {
|
73
|
+
# "prompt": "a half-body portrait of a man img wearing the sunglasses in Iron man suit, best quality",
|
74
|
+
# "image": "",
|
75
|
+
# "image_size": "1024x1024",
|
76
|
+
# "style_name": "Photographic (Default)",
|
77
|
+
# "batch_size": 1,
|
78
|
+
# "num_inference_steps": 20,
|
79
|
+
# "guidance_scale": 5,
|
80
|
+
# "style_strengh_radio": 20
|
81
|
+
# }
|
82
|
+
|
83
|
+
headers = {
|
84
|
+
"Authorization": f"Bearer {api_key}",
|
85
|
+
}
|
86
|
+
base_url = "https://api.siliconflow.cn/v1"
|
87
|
+
url = "https://api.siliconflow.cn/v1/TencentARC/PhotoMaker/image-to-image"
|
88
|
+
|
89
|
+
async with httpx.AsyncClient(base_url=base_url, headers=headers, timeout=100) as client:
|
90
|
+
response = await client.post(f"/{request.model}/image-to-image", json=payload)
|
91
|
+
|
92
|
+
if response.is_success:
|
93
|
+
data = response.json().get('images', [])
|
94
|
+
return ImagesResponse(data=data)
|
95
|
+
response.raise_for_status() # 451
|
96
|
+
|
97
|
+
|
98
|
+
if __name__ == '__main__':
|
99
|
+
url = "https://oss.ffire.cc/files/s.png"
|
100
|
+
# url = "https://dss2.bdstatic.com/5bVYsj_p_tVS5dKfpU_Y_D3/res/r/image/2021-3-4/hao123%20logo.png"
|
101
|
+
# url = "https://sf-maas-uat-prod.oss-cn-shanghai.aliyuncs.com/outputs/5618c93e-74f6-4177-9a33-ef8b361ab1e9_00001_.png"
|
102
|
+
# url="https://s22-def.ap4r.com/bs2/upload-ylab-stunt-sgp/ai_portal/1724896538/Q1jrJ51ElR/z3dsfjwxkvipbczkzvbklc.png"
|
103
|
+
model = "TencentARC/PhotoMaker"
|
104
|
+
model = "ByteDance/SDXL-Lightning"
|
105
|
+
# model = "stabilityai/stable-diffusion-xl-base-1.0"
|
106
|
+
# model = "stabilityai/stable-diffusion-2-1"
|
107
|
+
# model = "TencentARC/PhotoMaker"
|
108
|
+
|
109
|
+
request = ImageRequest(
|
110
|
+
prompt='a half-body portrait of a man img wearing the sunglasses in Iron man suit, best quality',
|
111
|
+
# url=url,
|
112
|
+
model=model,
|
113
|
+
# url=""
|
114
|
+
)
|
115
|
+
|
116
|
+
arun(create(request, api_key=os.getenv("SILICONFLOW_API_KEY")))
|
@@ -0,0 +1,154 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# @Project : AI. @by PyCharm
|
4
|
+
# @File : openai_images
|
5
|
+
# @Time : 2024/10/16 08:54
|
6
|
+
# @Author : betterme
|
7
|
+
# @WeChat : meutils
|
8
|
+
# @Software : PyCharm
|
9
|
+
# @Description :
|
10
|
+
|
11
|
+
from openai import AsyncOpenAI
|
12
|
+
|
13
|
+
from meutils.pipe import *
|
14
|
+
from meutils.config_utils.lark_utils import get_next_token_for_polling
|
15
|
+
from meutils.llm.openai_utils import to_openai_images_params
|
16
|
+
from meutils.llm.check_utils import check_token_for_siliconflow
|
17
|
+
from meutils.notice.feishu import IMAGES, send_message as _send_message
|
18
|
+
from meutils.decorators.retry import retrying
|
19
|
+
|
20
|
+
from meutils.apis.translator import deeplx
|
21
|
+
from meutils.schemas.translator_types import DeeplxRequest
|
22
|
+
from meutils.schemas.image_types import ImageRequest, FluxImageRequest, SDImageRequest, ImagesResponse
|
23
|
+
|
24
|
+
FEISHU_URL = "https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=3aA5dH"
|
25
|
+
FEISHU_URL_FREE = "https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=xlvlrH"
|
26
|
+
|
27
|
+
BASE_URL = os.getenv("SILICONFLOW_BASE_URL")
|
28
|
+
|
29
|
+
DEFAULT_MODEL = "black-forest-labs/FLUX.1-schnell"
|
30
|
+
MODELS = {
|
31
|
+
|
32
|
+
"flux.1-schnell": "black-forest-labs/FLUX.1-schnell",
|
33
|
+
"flux.1-dev": "black-forest-labs/FLUX.1-dev",
|
34
|
+
"flux.1-pro": "black-forest-labs/FLUX.1-dev",
|
35
|
+
"flux.1.1-pro": "black-forest-labs/FLUX.1-dev",
|
36
|
+
"flux-1.1-pro": "black-forest-labs/FLUX.1-dev", # replicate
|
37
|
+
"flux1.1-pro": "black-forest-labs/FLUX.1-dev",
|
38
|
+
|
39
|
+
"flux.1-pro-max": "black-forest-labs/FLUX.1-dev",
|
40
|
+
|
41
|
+
"flux-schnell": "black-forest-labs/FLUX.1-schnell",
|
42
|
+
"flux-dev": "black-forest-labs/FLUX.1-dev",
|
43
|
+
"flux-pro": "black-forest-labs/FLUX.1-dev",
|
44
|
+
"flux-pro-max": "black-forest-labs/FLUX.1-dev",
|
45
|
+
|
46
|
+
"stable-diffusion-xl-base-1.0": "stabilityai/stable-diffusion-xl-base-1.0", # 图生图
|
47
|
+
"stable-diffusion-2-1": "stabilityai/stable-diffusion-2-1", # 图生图
|
48
|
+
|
49
|
+
"stable-diffusion": "stabilityai/stable-diffusion-3-medium",
|
50
|
+
"stable-diffusion-3-medium": "stabilityai/stable-diffusion-3-medium",
|
51
|
+
"stable-diffusion-3": "stabilityai/stable-diffusion-3-medium",
|
52
|
+
|
53
|
+
"stable-diffusion-3-5-large": "stabilityai/stable-diffusion-3-5-large",
|
54
|
+
|
55
|
+
"stabilityai": "stabilityai/stable-diffusion-3-5-large",
|
56
|
+
|
57
|
+
}
|
58
|
+
|
59
|
+
send_message = partial(
|
60
|
+
_send_message,
|
61
|
+
title=__name__,
|
62
|
+
url=IMAGES
|
63
|
+
)
|
64
|
+
check_token = check_token_for_siliconflow
|
65
|
+
|
66
|
+
check_valid_token = partial(check_token_for_siliconflow, threshold=-1)
|
67
|
+
|
68
|
+
|
69
|
+
@retrying(max_retries=3, title=__name__)
|
70
|
+
async def generate(request: ImageRequest, api_key: Optional[str] = None):
|
71
|
+
request.prompt_enhancement = True
|
72
|
+
if not request.prompt:
|
73
|
+
# {'model': 'flux-schnell', 'messages': [{'role': 'user', 'content': '写一个10个字的冷笑话'}]}
|
74
|
+
return ImagesResponse(**request.model_dump())
|
75
|
+
|
76
|
+
if not request.model.startswith(("flux",)): # 自动翻译
|
77
|
+
request.prompt = (
|
78
|
+
await deeplx.translate(DeeplxRequest(text=request.prompt, target_lang="EN"))
|
79
|
+
).get("data", request.prompt)
|
80
|
+
|
81
|
+
request.model = MODELS.get(request.model, DEFAULT_MODEL)
|
82
|
+
logger.debug(request)
|
83
|
+
|
84
|
+
if any(i in request.model.lower() for i in {"pro-max", }):
|
85
|
+
request.num_inference_steps = 20
|
86
|
+
api_key = api_key or await get_next_token_for_polling(
|
87
|
+
FEISHU_URL,
|
88
|
+
check_token=check_token,
|
89
|
+
from_redis=True,
|
90
|
+
min_points=0.1
|
91
|
+
)
|
92
|
+
|
93
|
+
elif any(i in request.model.lower() for i in {"dev", "pro"}): # 压缩像素
|
94
|
+
request.num_inference_steps = 20
|
95
|
+
api_key = api_key or await get_next_token_for_polling(
|
96
|
+
FEISHU_URL,
|
97
|
+
check_token=check_token,
|
98
|
+
from_redis=True,
|
99
|
+
min_points=0.1
|
100
|
+
)
|
101
|
+
# request.size = "2048x1024"
|
102
|
+
|
103
|
+
w, h = map(int, request.size.split("x"))
|
104
|
+
max_size = max(w, h)
|
105
|
+
w, h = w * 1024 / max_size, h * 1024 / max_size
|
106
|
+
request.size = f"{int(w)}x{int(h)}"
|
107
|
+
else:
|
108
|
+
api_key = api_key or await get_next_token_for_polling(FEISHU_URL_FREE, check_valid_token, from_redis=True)
|
109
|
+
|
110
|
+
data = to_openai_images_params(request)
|
111
|
+
logger.debug(data)
|
112
|
+
|
113
|
+
client = AsyncOpenAI(base_url=BASE_URL, api_key=api_key)
|
114
|
+
response = await client.images.generate(**data)
|
115
|
+
response.model = ""
|
116
|
+
|
117
|
+
return response
|
118
|
+
|
119
|
+
|
120
|
+
if __name__ == '__main__':
|
121
|
+
from meutils.pipe import *
|
122
|
+
|
123
|
+
data = {
|
124
|
+
"model": "flux-schnell",
|
125
|
+
"prompt": "(Chinese dragon soaring through the clouds).(majestic, colorful, mythical, powerful, ancient).(DSLR camera).(wide-angle lens).(dawn)(fantasy photography).(Kodak Ektar 100)",
|
126
|
+
"negative_prompt": "",
|
127
|
+
"n": 1,
|
128
|
+
"response_format": "url",
|
129
|
+
# "size": "16x9",
|
130
|
+
"num_inference_steps": 20,
|
131
|
+
"seed": None
|
132
|
+
}
|
133
|
+
|
134
|
+
data = {'model': 'flux1.1-pro',
|
135
|
+
'prompt': 'Surrealism, Chinese art, fairy, close-up of the upper body, hazy, glowing, dreamy, light pink and light blue gradient long hair, beautiful and charming, dressed in cashmere-like clothing, streamlined design, elegant, fair-skinned and beautiful, delicate features, comfortable, lying on an ice blue bed, background of a crescent moon and starry sky, with a touch of romantic gifts, virtual engine rendering, 3D model, OC rendering, perfect composition, ultra-detailed details, 3D rendering close-up shot. (flux1.1-pro)',
|
136
|
+
'negative_prompt': '', 'n': 1, 'response_format': 'url', 'size': '1152x2048', 'num_inference_steps': 20,
|
137
|
+
'seed': None}
|
138
|
+
|
139
|
+
# request = FluxImageRequest(model="flux", prompt="a dog", size="1024x1024", num_inference_steps=1)
|
140
|
+
# request = FluxImageRequest(model="flux-pro", prompt="a dog", size="10x10", num_inference_steps=1)
|
141
|
+
request = FluxImageRequest(**data)
|
142
|
+
|
143
|
+
print(request)
|
144
|
+
# request = SDImageRequest(
|
145
|
+
# # model="stable-diffusion-2-1",
|
146
|
+
# # model="stable-diffusion-xl-base-1.0",
|
147
|
+
# model="stable-diffusion-3-5-large",
|
148
|
+
# # model="stable-diffusion",
|
149
|
+
#
|
150
|
+
# prompt="an island near sea, with seagulls, moon shining over the sea, light house, boats int he background, fish flying over the sea",
|
151
|
+
# size="576x1024",
|
152
|
+
# )
|
153
|
+
|
154
|
+
arun(generate(request))
|
@@ -0,0 +1,40 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# @Project : AI. @by PyCharm
|
4
|
+
# @File : reranker
|
5
|
+
# @Time : 2024/8/13 10:08
|
6
|
+
# @Author : betterme
|
7
|
+
# @WeChat : meutils
|
8
|
+
# @Software : PyCharm
|
9
|
+
# @Description :
|
10
|
+
|
11
|
+
from meutils.pipe import *
|
12
|
+
|
13
|
+
from meutils.schemas.siliconflow_types import BASE_URL, RerankRequest, EXAMPLES
|
14
|
+
from meutils.config_utils.lark_utils import get_spreadsheet_values, get_next_token_for_polling
|
15
|
+
|
16
|
+
FEISHU_URL = 'https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=InxiCF'
|
17
|
+
|
18
|
+
|
19
|
+
@alru_cache()
|
20
|
+
async def rerank(request: RerankRequest, api_key: Optional[str] = None):
|
21
|
+
api_key = api_key or await get_next_token_for_polling(feishu_url=FEISHU_URL)
|
22
|
+
|
23
|
+
payload = request.model_dump()
|
24
|
+
payload['model'] = "BAAI/bge-reranker-v2-m3" # 写死
|
25
|
+
|
26
|
+
headers = {
|
27
|
+
"authorization": f"Bearer {api_key}"
|
28
|
+
}
|
29
|
+
async with httpx.AsyncClient(base_url=BASE_URL, headers=headers, timeout=100) as client:
|
30
|
+
response = await client.post("/rerank", json=payload)
|
31
|
+
# logger.debug(response.text)
|
32
|
+
|
33
|
+
if response.is_success:
|
34
|
+
return response.json()
|
35
|
+
else:
|
36
|
+
response.raise_for_status()
|
37
|
+
|
38
|
+
|
39
|
+
if __name__ == '__main__':
|
40
|
+
arun(rerank(RerankRequest(**EXAMPLES[0])))
|
@@ -0,0 +1,132 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# @Project : AI. @by PyCharm
|
4
|
+
# @File : text_to_image
|
5
|
+
# @Time : 2024/7/8 12:19
|
6
|
+
# @Author : betterme
|
7
|
+
# @WeChat : meutils
|
8
|
+
# @Software : PyCharm
|
9
|
+
# @Description : https://docs.siliconflow.cn/reference/stabilityaistable-diffusion-3-medium_text-to-image
|
10
|
+
|
11
|
+
from meutils.pipe import *
|
12
|
+
from meutils.pipe import storage_to_cookie
|
13
|
+
from meutils.config_utils.lark_utils import get_spreadsheet_values, get_next_token_for_polling
|
14
|
+
from meutils.schemas.openai_types import ImageRequest, ImagesResponse
|
15
|
+
from meutils.apis.translator import deeplx
|
16
|
+
from meutils.schemas.translator_types import DeeplxRequest
|
17
|
+
from meutils.decorators.retry import retrying
|
18
|
+
from meutils.schemas.image_types import ASPECT_RATIOS
|
19
|
+
|
20
|
+
BASE_URL = "https://api.siliconflow.cn/v1"
|
21
|
+
FEISHU_URL = "https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=InxiCF"
|
22
|
+
FEISHU_URL_TOKEN = "https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=xlvlrH"
|
23
|
+
|
24
|
+
|
25
|
+
@retrying(max_retries=5, title=__name__)
|
26
|
+
async def create(request: ImageRequest, api_key: Optional[str] = None): # SD3
|
27
|
+
api_key = api_key or await get_next_token_for_polling(feishu_url=FEISHU_URL)
|
28
|
+
|
29
|
+
url = f"{request.model}/text-to-image"
|
30
|
+
if request.model.startswith(('black-forest-labs',)): # 'black-forest-labs/FLUX.1-dev'
|
31
|
+
if 'dev' in request.model:
|
32
|
+
url = "/image/generations"
|
33
|
+
else:
|
34
|
+
request.prompt = (await deeplx.translate(DeeplxRequest(text=request.prompt, target_lang="EN"))).get("data")
|
35
|
+
|
36
|
+
# if not request.prompt_enhancement:
|
37
|
+
# request.prompt = (await deeplx.translate(DeeplxRequest(text=request.prompt, target_lang="EN"))).get("data")
|
38
|
+
payload = {
|
39
|
+
"model": request.model,
|
40
|
+
"prompt": request.prompt,
|
41
|
+
"image_size": ASPECT_RATIOS.get(request.size, request.size),
|
42
|
+
"batch_size": request.n,
|
43
|
+
"num_inference_steps": request.num_inference_steps,
|
44
|
+
"guidance_scale": request.guidance_scale,
|
45
|
+
"prompt_enhancement": True
|
46
|
+
}
|
47
|
+
|
48
|
+
headers = {
|
49
|
+
"Authorization": f"Bearer {api_key}",
|
50
|
+
}
|
51
|
+
|
52
|
+
async with httpx.AsyncClient(base_url=BASE_URL, headers=headers, timeout=100) as client:
|
53
|
+
|
54
|
+
response = await client.post(url, json=payload)
|
55
|
+
|
56
|
+
logger.debug(response.json())
|
57
|
+
|
58
|
+
if response.is_success:
|
59
|
+
data = response.json().get('images', [])
|
60
|
+
return ImagesResponse(data=data)
|
61
|
+
raise response.raise_for_status() # 451
|
62
|
+
# from fastapi import HTTPException, status
|
63
|
+
|
64
|
+
# raise HTTPException(status_code=response.status_code, detail=response.text) from response.raise_for_status()
|
65
|
+
|
66
|
+
|
67
|
+
if __name__ == '__main__':
|
68
|
+
# cookie = await get_next_token_for_polling(feishu_url="https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=xlvlrH")
|
69
|
+
# api_key = storage_to_cookie(cookie)
|
70
|
+
|
71
|
+
# storage_state = get_spreadsheet_values(feishu_url="https://xchatllm.feishu.cn/sheets/Bmjtst2f6hfMqFttbhLcdfRJnNf?sheet=xlvlrH",
|
72
|
+
# to_dataframe=True)[0]
|
73
|
+
|
74
|
+
# cookie = storage_to_cookie(storage_state[0])
|
75
|
+
|
76
|
+
# request = ImageRequest(
|
77
|
+
# # model="stabilityai/stable-diffusion-3-medium",
|
78
|
+
# # model="black-forest-labs/FLUX.1-schnell",
|
79
|
+
# model="black-forest-labs/FLUX.1-dev",
|
80
|
+
#
|
81
|
+
# prompt="一条可爱的狗"
|
82
|
+
# )
|
83
|
+
# print(arun(create_image(request)))
|
84
|
+
|
85
|
+
# arun(get_next_token_for_polling(feishu_url=FEISHU_URL_TOKEN))
|
86
|
+
# request = ImageRequest(
|
87
|
+
# prompt="画条狗",
|
88
|
+
# model="stabilityai/stable-diffusion-3-medium"
|
89
|
+
# )
|
90
|
+
#
|
91
|
+
# with timer():
|
92
|
+
# arun(
|
93
|
+
# api_create_image(
|
94
|
+
# request
|
95
|
+
# )
|
96
|
+
# )
|
97
|
+
#
|
98
|
+
# 内容审核测试
|
99
|
+
prompt = """
|
100
|
+
一个中国美女,在河边
|
101
|
+
"""
|
102
|
+
request = ImageRequest(
|
103
|
+
prompt=prompt,
|
104
|
+
model="black-forest-labs/FLUX.1-dev",
|
105
|
+
# model="black-forest-labs/FLUX.1-schnell",
|
106
|
+
# model="ByteDance/SDXL-Lightning",
|
107
|
+
|
108
|
+
# size='1366x1366',
|
109
|
+
n=1
|
110
|
+
)
|
111
|
+
|
112
|
+
with timer():
|
113
|
+
|
114
|
+
try:
|
115
|
+
arun(
|
116
|
+
create(
|
117
|
+
request,
|
118
|
+
)
|
119
|
+
)
|
120
|
+
except Exception as e:
|
121
|
+
print(e)
|
122
|
+
# request = ImageRequest(
|
123
|
+
# prompt=prompt,
|
124
|
+
# model="black-forest-labs/FLUX.1-dev"
|
125
|
+
# )
|
126
|
+
#
|
127
|
+
# with timer():
|
128
|
+
# arun(
|
129
|
+
# api_create_image(
|
130
|
+
# request
|
131
|
+
# )
|
132
|
+
# )
|