MEDfl 0.2.1__py3-none-any.whl → 2.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- MEDfl/LearningManager/__init__.py +13 -13
- MEDfl/LearningManager/client.py +150 -181
- MEDfl/LearningManager/dynamicModal.py +287 -287
- MEDfl/LearningManager/federated_dataset.py +60 -60
- MEDfl/LearningManager/flpipeline.py +192 -192
- MEDfl/LearningManager/model.py +223 -223
- MEDfl/LearningManager/params.yaml +14 -14
- MEDfl/LearningManager/params_optimiser.py +442 -442
- MEDfl/LearningManager/plot.py +229 -229
- MEDfl/LearningManager/server.py +181 -189
- MEDfl/LearningManager/strategy.py +82 -138
- MEDfl/LearningManager/utils.py +331 -331
- MEDfl/NetManager/__init__.py +10 -10
- MEDfl/NetManager/database_connector.py +43 -43
- MEDfl/NetManager/dataset.py +92 -92
- MEDfl/NetManager/flsetup.py +320 -320
- MEDfl/NetManager/net_helper.py +254 -254
- MEDfl/NetManager/net_manager_queries.py +142 -142
- MEDfl/NetManager/network.py +194 -194
- MEDfl/NetManager/node.py +184 -184
- MEDfl/__init__.py +2 -2
- MEDfl/scripts/__init__.py +1 -1
- MEDfl/scripts/base.py +29 -29
- MEDfl/scripts/create_db.py +126 -126
- Medfl/LearningManager/__init__.py +13 -0
- Medfl/LearningManager/client.py +150 -0
- Medfl/LearningManager/dynamicModal.py +287 -0
- Medfl/LearningManager/federated_dataset.py +60 -0
- Medfl/LearningManager/flpipeline.py +192 -0
- Medfl/LearningManager/model.py +223 -0
- Medfl/LearningManager/params.yaml +14 -0
- Medfl/LearningManager/params_optimiser.py +442 -0
- Medfl/LearningManager/plot.py +229 -0
- Medfl/LearningManager/server.py +181 -0
- Medfl/LearningManager/strategy.py +82 -0
- Medfl/LearningManager/utils.py +331 -0
- Medfl/NetManager/__init__.py +10 -0
- Medfl/NetManager/database_connector.py +43 -0
- Medfl/NetManager/dataset.py +92 -0
- Medfl/NetManager/flsetup.py +320 -0
- Medfl/NetManager/net_helper.py +254 -0
- Medfl/NetManager/net_manager_queries.py +142 -0
- Medfl/NetManager/network.py +194 -0
- Medfl/NetManager/node.py +184 -0
- Medfl/__init__.py +3 -0
- Medfl/scripts/__init__.py +2 -0
- Medfl/scripts/base.py +30 -0
- Medfl/scripts/create_db.py +126 -0
- alembic/env.py +61 -61
- {MEDfl-0.2.1.dist-info → medfl-2.0.0.dist-info}/METADATA +120 -108
- medfl-2.0.0.dist-info/RECORD +55 -0
- {MEDfl-0.2.1.dist-info → medfl-2.0.0.dist-info}/WHEEL +1 -1
- {MEDfl-0.2.1.dist-info → medfl-2.0.0.dist-info/licenses}/LICENSE +674 -674
- MEDfl-0.2.1.dist-info/RECORD +0 -31
- {MEDfl-0.2.1.dist-info → medfl-2.0.0.dist-info}/top_level.txt +0 -0
@@ -1,60 +1,60 @@
|
|
1
|
-
from MEDfl.NetManager.net_helper import *
|
2
|
-
from MEDfl.NetManager.net_manager_queries import *
|
3
|
-
from MEDfl.NetManager.database_connector import DatabaseManager
|
4
|
-
|
5
|
-
class FederatedDataset:
|
6
|
-
def __init__(
|
7
|
-
self,
|
8
|
-
name: str,
|
9
|
-
train_nodes: list,
|
10
|
-
test_nodes: list,
|
11
|
-
trainloaders: list,
|
12
|
-
valloaders: list,
|
13
|
-
testloaders: list,
|
14
|
-
):
|
15
|
-
"""
|
16
|
-
Represents a Federated Dataset.
|
17
|
-
|
18
|
-
:param name: Name of the Federated Dataset.
|
19
|
-
:param train_nodes: List of train nodes.
|
20
|
-
:param test_nodes: List of test nodes.
|
21
|
-
:param trainloaders: List of train data loaders.
|
22
|
-
:param valloaders: List of validation data loaders.
|
23
|
-
:param testloaders: List of test data loaders.
|
24
|
-
"""
|
25
|
-
self.name = name
|
26
|
-
self.train_nodes = train_nodes
|
27
|
-
self.test_nodes = test_nodes
|
28
|
-
self.trainloaders = trainloaders
|
29
|
-
self.valloaders = valloaders
|
30
|
-
self.testloaders = testloaders
|
31
|
-
self.size = len(self.trainloaders[0].dataset[0][0])
|
32
|
-
|
33
|
-
db_manager = DatabaseManager()
|
34
|
-
db_manager.connect()
|
35
|
-
self.eng = db_manager.get_connection()
|
36
|
-
|
37
|
-
def create(self, FLsetupId: int):
|
38
|
-
"""
|
39
|
-
Create a new Federated Dataset in the database.
|
40
|
-
|
41
|
-
:param FLsetupId: The FLsetup ID associated with the Federated Dataset.
|
42
|
-
"""
|
43
|
-
query_params = {"name": self.name, "FLsetupId": FLsetupId}
|
44
|
-
fedDataId = get_feddataset_id_from_name(self.name)
|
45
|
-
if fedDataId :
|
46
|
-
self.id = fedDataId
|
47
|
-
else:
|
48
|
-
self.eng.execute(text(INSERT_FLDATASET_QUERY), query_params)
|
49
|
-
self.id = get_feddataset_id_from_name(self.name)
|
50
|
-
|
51
|
-
|
52
|
-
def update(self, FLpipeId: int, FedId: int):
|
53
|
-
"""
|
54
|
-
Update the FLpipe ID associated with the Federated Dataset in the database.
|
55
|
-
|
56
|
-
:param FLpipeId: The new FLpipe ID to be updated.
|
57
|
-
:param FedId: The Federated Dataset ID.
|
58
|
-
"""
|
59
|
-
query_params = {"FLpipeId": FLpipeId, "FedId": FedId}
|
60
|
-
self.eng.execute(text(UPDATE_FLDATASET_QUERY), **query_params)
|
1
|
+
from MEDfl.NetManager.net_helper import *
|
2
|
+
from MEDfl.NetManager.net_manager_queries import *
|
3
|
+
from MEDfl.NetManager.database_connector import DatabaseManager
|
4
|
+
|
5
|
+
class FederatedDataset:
|
6
|
+
def __init__(
|
7
|
+
self,
|
8
|
+
name: str,
|
9
|
+
train_nodes: list,
|
10
|
+
test_nodes: list,
|
11
|
+
trainloaders: list,
|
12
|
+
valloaders: list,
|
13
|
+
testloaders: list,
|
14
|
+
):
|
15
|
+
"""
|
16
|
+
Represents a Federated Dataset.
|
17
|
+
|
18
|
+
:param name: Name of the Federated Dataset.
|
19
|
+
:param train_nodes: List of train nodes.
|
20
|
+
:param test_nodes: List of test nodes.
|
21
|
+
:param trainloaders: List of train data loaders.
|
22
|
+
:param valloaders: List of validation data loaders.
|
23
|
+
:param testloaders: List of test data loaders.
|
24
|
+
"""
|
25
|
+
self.name = name
|
26
|
+
self.train_nodes = train_nodes
|
27
|
+
self.test_nodes = test_nodes
|
28
|
+
self.trainloaders = trainloaders
|
29
|
+
self.valloaders = valloaders
|
30
|
+
self.testloaders = testloaders
|
31
|
+
self.size = len(self.trainloaders[0].dataset[0][0])
|
32
|
+
|
33
|
+
db_manager = DatabaseManager()
|
34
|
+
db_manager.connect()
|
35
|
+
self.eng = db_manager.get_connection()
|
36
|
+
|
37
|
+
def create(self, FLsetupId: int):
|
38
|
+
"""
|
39
|
+
Create a new Federated Dataset in the database.
|
40
|
+
|
41
|
+
:param FLsetupId: The FLsetup ID associated with the Federated Dataset.
|
42
|
+
"""
|
43
|
+
query_params = {"name": self.name, "FLsetupId": FLsetupId}
|
44
|
+
fedDataId = get_feddataset_id_from_name(self.name)
|
45
|
+
if fedDataId :
|
46
|
+
self.id = fedDataId
|
47
|
+
else:
|
48
|
+
self.eng.execute(text(INSERT_FLDATASET_QUERY), query_params)
|
49
|
+
self.id = get_feddataset_id_from_name(self.name)
|
50
|
+
|
51
|
+
|
52
|
+
def update(self, FLpipeId: int, FedId: int):
|
53
|
+
"""
|
54
|
+
Update the FLpipe ID associated with the Federated Dataset in the database.
|
55
|
+
|
56
|
+
:param FLpipeId: The new FLpipe ID to be updated.
|
57
|
+
:param FedId: The Federated Dataset ID.
|
58
|
+
"""
|
59
|
+
query_params = {"FLpipeId": FLpipeId, "FedId": FedId}
|
60
|
+
self.eng.execute(text(UPDATE_FLDATASET_QUERY), **query_params)
|
@@ -1,192 +1,192 @@
|
|
1
|
-
import datetime
|
2
|
-
from typing import List
|
3
|
-
import json
|
4
|
-
import pandas as pd
|
5
|
-
|
6
|
-
|
7
|
-
# File: create_query.py
|
8
|
-
from sqlalchemy import text
|
9
|
-
from torch.utils.data import DataLoader, TensorDataset
|
10
|
-
import torch
|
11
|
-
|
12
|
-
from MEDfl.LearningManager.server import FlowerServer
|
13
|
-
from MEDfl.LearningManager.utils import params, test
|
14
|
-
from MEDfl.NetManager.net_helper import get_flpipeline_from_name
|
15
|
-
from MEDfl.NetManager.net_manager_queries import (CREATE_FLPIPELINE_QUERY,
|
16
|
-
DELETE_FLPIPELINE_QUERY , CREATE_TEST_RESULTS_QUERY)
|
17
|
-
from MEDfl.NetManager.database_connector import DatabaseManager
|
18
|
-
|
19
|
-
def create_query(name, description, creation_date, result):
|
20
|
-
query = text(
|
21
|
-
f"INSERT INTO FLpipeline(name, description, creation_date, results) "
|
22
|
-
f"VALUES ('{name}', '{description}', '{creation_date}', '{result}')"
|
23
|
-
)
|
24
|
-
return query
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
class FLpipeline:
|
29
|
-
"""
|
30
|
-
FLpipeline class for managing Federated Learning pipelines.
|
31
|
-
|
32
|
-
Attributes:
|
33
|
-
name (str): The name of the FLpipeline.
|
34
|
-
description (str): A description of the FLpipeline.
|
35
|
-
server (FlowerServer): The FlowerServer object associated with the FLpipeline.
|
36
|
-
|
37
|
-
Methods:
|
38
|
-
__init__(self, name: str, description: str, server: FlowerServer) -> None:
|
39
|
-
Initialize FLpipeline with the specified name, description, and server.
|
40
|
-
|
41
|
-
|
42
|
-
"""
|
43
|
-
|
44
|
-
def __init__(
|
45
|
-
self, name: str, description: str, server: FlowerServer
|
46
|
-
) -> None:
|
47
|
-
self.name = name
|
48
|
-
self.description = description
|
49
|
-
self.server = server
|
50
|
-
self.validate()
|
51
|
-
|
52
|
-
db_manager = DatabaseManager()
|
53
|
-
db_manager.connect()
|
54
|
-
self.eng = db_manager.get_connection()
|
55
|
-
|
56
|
-
def validate(self) -> None:
|
57
|
-
"""
|
58
|
-
Validate the name, description, and server attributes.
|
59
|
-
Raises:
|
60
|
-
TypeError: If the name is not a string, the description is not a string,
|
61
|
-
or the server is not a FlowerServer object.
|
62
|
-
"""
|
63
|
-
if not isinstance(self.name, str):
|
64
|
-
raise TypeError("name argument must be a string")
|
65
|
-
|
66
|
-
if not isinstance(self.description, str):
|
67
|
-
raise TypeError("description argument must be a string")
|
68
|
-
|
69
|
-
# if not isinstance(self.server, FlowerServer):
|
70
|
-
# raise TypeError("server argument must be a FlowerServer")
|
71
|
-
|
72
|
-
def create(self, result: str) -> None:
|
73
|
-
"""
|
74
|
-
Create a new FLpipeline entry in the database with the given result.
|
75
|
-
|
76
|
-
Args:
|
77
|
-
result (str): The result string to store in the database.
|
78
|
-
|
79
|
-
"""
|
80
|
-
creation_date = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
81
|
-
query = CREATE_FLPIPELINE_QUERY.format(
|
82
|
-
name=self.name,
|
83
|
-
description=self.description,
|
84
|
-
creation_date=creation_date,
|
85
|
-
result=result,
|
86
|
-
)
|
87
|
-
self.eng.execute(text(query))
|
88
|
-
self.id = get_flpipeline_from_name(self.name)
|
89
|
-
try:
|
90
|
-
self.server.fed_dataset.update(
|
91
|
-
FLpipeId=self.id, FedId=self.server.fed_dataset.id
|
92
|
-
)
|
93
|
-
except:
|
94
|
-
pass
|
95
|
-
|
96
|
-
def delete(self) -> None:
|
97
|
-
"""
|
98
|
-
Delete the FLpipeline entry from the database based on its name.
|
99
|
-
|
100
|
-
Note: This is a placeholder method and needs to be implemented based on your specific database setup.
|
101
|
-
|
102
|
-
"""
|
103
|
-
# Placeholder code for deleting the FLpipeline entry from the database based on the name.
|
104
|
-
# You need to implement the actual deletion based on your database setup.
|
105
|
-
self.eng.execute(DELETE_FLPIPELINE_QUERY.format(self.name))
|
106
|
-
|
107
|
-
|
108
|
-
def test_by_node(self, node_name: str, test_frac=1) -> dict:
|
109
|
-
"""
|
110
|
-
Test the FLpipeline by node with the specified test_frac.
|
111
|
-
|
112
|
-
Args:
|
113
|
-
node_name (str): The name of the node to test.
|
114
|
-
test_frac (float, optional): The fraction of the test data to use. Default is 1.
|
115
|
-
|
116
|
-
Returns:
|
117
|
-
dict: A dictionary containing the node name and the classification report.
|
118
|
-
|
119
|
-
"""
|
120
|
-
idx = self.server.fed_dataset.test_nodes.index(node_name)
|
121
|
-
global_model, test_loader = (
|
122
|
-
self.server.global_model,
|
123
|
-
self.server.fed_dataset.testloaders[idx],
|
124
|
-
)
|
125
|
-
|
126
|
-
# Move model to GPU if available
|
127
|
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
128
|
-
global_model.model.to(device)
|
129
|
-
|
130
|
-
# Prepare test data
|
131
|
-
test_data = test_loader.dataset
|
132
|
-
num_samples = int(test_frac * len(test_data))
|
133
|
-
test_data = TensorDataset(test_data[:num_samples][0].to(device), test_data[:num_samples][1].to(device))
|
134
|
-
|
135
|
-
# Create DataLoader for test data
|
136
|
-
test_loader = DataLoader(test_data, batch_size=params["test_batch_size"])
|
137
|
-
|
138
|
-
# Perform testing
|
139
|
-
classification_report = test(model=global_model.model, test_loader=test_loader, device=device)
|
140
|
-
|
141
|
-
return {
|
142
|
-
"node_name": node_name,
|
143
|
-
"classification_report": str(classification_report),
|
144
|
-
}
|
145
|
-
|
146
|
-
|
147
|
-
def auto_test(self, test_frac=1) -> List[dict]:
|
148
|
-
"""
|
149
|
-
Automatically test the FLpipeline on all nodes with the specified test_frac.
|
150
|
-
|
151
|
-
Args:
|
152
|
-
test_frac (float, optional): The fraction of the test data to use. Default is 1.
|
153
|
-
|
154
|
-
Returns:
|
155
|
-
List[dict]: A list of dictionaries containing the node names and the classification reports.
|
156
|
-
|
157
|
-
"""
|
158
|
-
result = [
|
159
|
-
self.test_by_node(node, test_frac)
|
160
|
-
for node in self.server.fed_dataset.test_nodes
|
161
|
-
]
|
162
|
-
self.create("\n".join(str(res).replace("'", '"') for res in result))
|
163
|
-
|
164
|
-
# stockage des resultats des tests
|
165
|
-
for entry in result:
|
166
|
-
node_name = entry['node_name']
|
167
|
-
classification_report_str = entry['classification_report']
|
168
|
-
|
169
|
-
# Convert the 'classification_report' string to a dictionary
|
170
|
-
classification_report_dict = json.loads(classification_report_str.replace("'", "\""))
|
171
|
-
try:
|
172
|
-
# Insert record into the 'testResults' table
|
173
|
-
query = CREATE_TEST_RESULTS_QUERY.format(
|
174
|
-
pipelineId = self.id,
|
175
|
-
nodeName = node_name ,
|
176
|
-
confusion_matrix = json.dumps(classification_report_dict['confusion matrix']),
|
177
|
-
accuracy =classification_report_dict['Accuracy'] ,
|
178
|
-
sensivity = classification_report_dict['Sensitivity/Recall'] ,
|
179
|
-
ppv = classification_report_dict['PPV/Precision'] ,
|
180
|
-
npv= classification_report_dict['NPV'] ,
|
181
|
-
f1score= classification_report_dict['F1-score'] ,
|
182
|
-
fpr= classification_report_dict['False positive rate'] ,
|
183
|
-
tpr= classification_report_dict['True positive rate']
|
184
|
-
)
|
185
|
-
self.eng.execute(text(query))
|
186
|
-
except Exception as e:
|
187
|
-
# This block will catch any other exceptions
|
188
|
-
print(f"An unexpected error occurred: {e}")
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
return result
|
1
|
+
import datetime
|
2
|
+
from typing import List
|
3
|
+
import json
|
4
|
+
import pandas as pd
|
5
|
+
|
6
|
+
|
7
|
+
# File: create_query.py
|
8
|
+
from sqlalchemy import text
|
9
|
+
from torch.utils.data import DataLoader, TensorDataset
|
10
|
+
import torch
|
11
|
+
|
12
|
+
from MEDfl.LearningManager.server import FlowerServer
|
13
|
+
from MEDfl.LearningManager.utils import params, test
|
14
|
+
from MEDfl.NetManager.net_helper import get_flpipeline_from_name
|
15
|
+
from MEDfl.NetManager.net_manager_queries import (CREATE_FLPIPELINE_QUERY,
|
16
|
+
DELETE_FLPIPELINE_QUERY , CREATE_TEST_RESULTS_QUERY)
|
17
|
+
from MEDfl.NetManager.database_connector import DatabaseManager
|
18
|
+
|
19
|
+
def create_query(name, description, creation_date, result):
|
20
|
+
query = text(
|
21
|
+
f"INSERT INTO FLpipeline(name, description, creation_date, results) "
|
22
|
+
f"VALUES ('{name}', '{description}', '{creation_date}', '{result}')"
|
23
|
+
)
|
24
|
+
return query
|
25
|
+
|
26
|
+
|
27
|
+
|
28
|
+
class FLpipeline:
|
29
|
+
"""
|
30
|
+
FLpipeline class for managing Federated Learning pipelines.
|
31
|
+
|
32
|
+
Attributes:
|
33
|
+
name (str): The name of the FLpipeline.
|
34
|
+
description (str): A description of the FLpipeline.
|
35
|
+
server (FlowerServer): The FlowerServer object associated with the FLpipeline.
|
36
|
+
|
37
|
+
Methods:
|
38
|
+
__init__(self, name: str, description: str, server: FlowerServer) -> None:
|
39
|
+
Initialize FLpipeline with the specified name, description, and server.
|
40
|
+
|
41
|
+
|
42
|
+
"""
|
43
|
+
|
44
|
+
def __init__(
|
45
|
+
self, name: str, description: str, server: FlowerServer
|
46
|
+
) -> None:
|
47
|
+
self.name = name
|
48
|
+
self.description = description
|
49
|
+
self.server = server
|
50
|
+
self.validate()
|
51
|
+
|
52
|
+
db_manager = DatabaseManager()
|
53
|
+
db_manager.connect()
|
54
|
+
self.eng = db_manager.get_connection()
|
55
|
+
|
56
|
+
def validate(self) -> None:
|
57
|
+
"""
|
58
|
+
Validate the name, description, and server attributes.
|
59
|
+
Raises:
|
60
|
+
TypeError: If the name is not a string, the description is not a string,
|
61
|
+
or the server is not a FlowerServer object.
|
62
|
+
"""
|
63
|
+
if not isinstance(self.name, str):
|
64
|
+
raise TypeError("name argument must be a string")
|
65
|
+
|
66
|
+
if not isinstance(self.description, str):
|
67
|
+
raise TypeError("description argument must be a string")
|
68
|
+
|
69
|
+
# if not isinstance(self.server, FlowerServer):
|
70
|
+
# raise TypeError("server argument must be a FlowerServer")
|
71
|
+
|
72
|
+
def create(self, result: str) -> None:
|
73
|
+
"""
|
74
|
+
Create a new FLpipeline entry in the database with the given result.
|
75
|
+
|
76
|
+
Args:
|
77
|
+
result (str): The result string to store in the database.
|
78
|
+
|
79
|
+
"""
|
80
|
+
creation_date = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
81
|
+
query = CREATE_FLPIPELINE_QUERY.format(
|
82
|
+
name=self.name,
|
83
|
+
description=self.description,
|
84
|
+
creation_date=creation_date,
|
85
|
+
result=result,
|
86
|
+
)
|
87
|
+
self.eng.execute(text(query))
|
88
|
+
self.id = get_flpipeline_from_name(self.name)
|
89
|
+
try:
|
90
|
+
self.server.fed_dataset.update(
|
91
|
+
FLpipeId=self.id, FedId=self.server.fed_dataset.id
|
92
|
+
)
|
93
|
+
except:
|
94
|
+
pass
|
95
|
+
|
96
|
+
def delete(self) -> None:
|
97
|
+
"""
|
98
|
+
Delete the FLpipeline entry from the database based on its name.
|
99
|
+
|
100
|
+
Note: This is a placeholder method and needs to be implemented based on your specific database setup.
|
101
|
+
|
102
|
+
"""
|
103
|
+
# Placeholder code for deleting the FLpipeline entry from the database based on the name.
|
104
|
+
# You need to implement the actual deletion based on your database setup.
|
105
|
+
self.eng.execute(DELETE_FLPIPELINE_QUERY.format(self.name))
|
106
|
+
|
107
|
+
|
108
|
+
def test_by_node(self, node_name: str, test_frac=1) -> dict:
|
109
|
+
"""
|
110
|
+
Test the FLpipeline by node with the specified test_frac.
|
111
|
+
|
112
|
+
Args:
|
113
|
+
node_name (str): The name of the node to test.
|
114
|
+
test_frac (float, optional): The fraction of the test data to use. Default is 1.
|
115
|
+
|
116
|
+
Returns:
|
117
|
+
dict: A dictionary containing the node name and the classification report.
|
118
|
+
|
119
|
+
"""
|
120
|
+
idx = self.server.fed_dataset.test_nodes.index(node_name)
|
121
|
+
global_model, test_loader = (
|
122
|
+
self.server.global_model,
|
123
|
+
self.server.fed_dataset.testloaders[idx],
|
124
|
+
)
|
125
|
+
|
126
|
+
# Move model to GPU if available
|
127
|
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
128
|
+
global_model.model.to(device)
|
129
|
+
|
130
|
+
# Prepare test data
|
131
|
+
test_data = test_loader.dataset
|
132
|
+
num_samples = int(test_frac * len(test_data))
|
133
|
+
test_data = TensorDataset(test_data[:num_samples][0].to(device), test_data[:num_samples][1].to(device))
|
134
|
+
|
135
|
+
# Create DataLoader for test data
|
136
|
+
test_loader = DataLoader(test_data, batch_size=params["test_batch_size"])
|
137
|
+
|
138
|
+
# Perform testing
|
139
|
+
classification_report = test(model=global_model.model, test_loader=test_loader, device=device)
|
140
|
+
|
141
|
+
return {
|
142
|
+
"node_name": node_name,
|
143
|
+
"classification_report": str(classification_report),
|
144
|
+
}
|
145
|
+
|
146
|
+
|
147
|
+
def auto_test(self, test_frac=1) -> List[dict]:
|
148
|
+
"""
|
149
|
+
Automatically test the FLpipeline on all nodes with the specified test_frac.
|
150
|
+
|
151
|
+
Args:
|
152
|
+
test_frac (float, optional): The fraction of the test data to use. Default is 1.
|
153
|
+
|
154
|
+
Returns:
|
155
|
+
List[dict]: A list of dictionaries containing the node names and the classification reports.
|
156
|
+
|
157
|
+
"""
|
158
|
+
result = [
|
159
|
+
self.test_by_node(node, test_frac)
|
160
|
+
for node in self.server.fed_dataset.test_nodes
|
161
|
+
]
|
162
|
+
self.create("\n".join(str(res).replace("'", '"') for res in result))
|
163
|
+
|
164
|
+
# stockage des resultats des tests
|
165
|
+
for entry in result:
|
166
|
+
node_name = entry['node_name']
|
167
|
+
classification_report_str = entry['classification_report']
|
168
|
+
|
169
|
+
# Convert the 'classification_report' string to a dictionary
|
170
|
+
classification_report_dict = json.loads(classification_report_str.replace("'", "\""))
|
171
|
+
try:
|
172
|
+
# Insert record into the 'testResults' table
|
173
|
+
query = CREATE_TEST_RESULTS_QUERY.format(
|
174
|
+
pipelineId = self.id,
|
175
|
+
nodeName = node_name ,
|
176
|
+
confusion_matrix = json.dumps(classification_report_dict['confusion matrix']),
|
177
|
+
accuracy =classification_report_dict['Accuracy'] ,
|
178
|
+
sensivity = classification_report_dict['Sensitivity/Recall'] ,
|
179
|
+
ppv = classification_report_dict['PPV/Precision'] ,
|
180
|
+
npv= classification_report_dict['NPV'] ,
|
181
|
+
f1score= classification_report_dict['F1-score'] ,
|
182
|
+
fpr= classification_report_dict['False positive rate'] ,
|
183
|
+
tpr= classification_report_dict['True positive rate']
|
184
|
+
)
|
185
|
+
self.eng.execute(text(query))
|
186
|
+
except Exception as e:
|
187
|
+
# This block will catch any other exceptions
|
188
|
+
print(f"An unexpected error occurred: {e}")
|
189
|
+
|
190
|
+
|
191
|
+
|
192
|
+
return result
|