MEDfl 0.1.30__py3-none-any.whl → 0.1.32__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {MEDfl-0.1.30.dist-info → MEDfl-0.1.32.dist-info}/METADATA +127 -127
- MEDfl-0.1.32.dist-info/RECORD +34 -0
- {MEDfl-0.1.30.dist-info → MEDfl-0.1.32.dist-info}/WHEEL +1 -1
- {MEDfl-0.1.30.dist-info → MEDfl-0.1.32.dist-info}/top_level.txt +0 -1
- Medfl/LearningManager/__init__.py +13 -13
- Medfl/LearningManager/client.py +150 -150
- Medfl/LearningManager/dynamicModal.py +287 -287
- Medfl/LearningManager/federated_dataset.py +60 -60
- Medfl/LearningManager/flpipeline.py +192 -192
- Medfl/LearningManager/model.py +223 -223
- Medfl/LearningManager/params.yaml +14 -14
- Medfl/LearningManager/params_optimiser.py +442 -442
- Medfl/LearningManager/plot.py +229 -229
- Medfl/LearningManager/server.py +181 -181
- Medfl/LearningManager/strategy.py +82 -82
- Medfl/LearningManager/utils.py +331 -308
- Medfl/NetManager/__init__.py +9 -9
- Medfl/NetManager/database_connector.py +43 -48
- Medfl/NetManager/dataset.py +92 -92
- Medfl/NetManager/flsetup.py +320 -320
- Medfl/NetManager/net_helper.py +254 -248
- Medfl/NetManager/net_manager_queries.py +142 -137
- Medfl/NetManager/network.py +194 -174
- Medfl/NetManager/node.py +184 -178
- Medfl/__init__.py +3 -2
- Medfl/scripts/__init__.py +0 -0
- Medfl/scripts/base.py +30 -0
- Medfl/scripts/create_db.py +126 -0
- alembic/env.py +61 -61
- scripts/base.py +29 -29
- scripts/config.ini +5 -5
- scripts/create_db.py +133 -133
- MEDfl/LearningManager/__init__.py +0 -13
- MEDfl/LearningManager/client.py +0 -150
- MEDfl/LearningManager/dynamicModal.py +0 -287
- MEDfl/LearningManager/federated_dataset.py +0 -60
- MEDfl/LearningManager/flpipeline.py +0 -192
- MEDfl/LearningManager/model.py +0 -223
- MEDfl/LearningManager/params.yaml +0 -14
- MEDfl/LearningManager/params_optimiser.py +0 -442
- MEDfl/LearningManager/plot.py +0 -229
- MEDfl/LearningManager/server.py +0 -181
- MEDfl/LearningManager/strategy.py +0 -82
- MEDfl/LearningManager/utils.py +0 -308
- MEDfl/NetManager/__init__.py +0 -9
- MEDfl/NetManager/database_connector.py +0 -48
- MEDfl/NetManager/dataset.py +0 -92
- MEDfl/NetManager/flsetup.py +0 -320
- MEDfl/NetManager/net_helper.py +0 -248
- MEDfl/NetManager/net_manager_queries.py +0 -137
- MEDfl/NetManager/network.py +0 -174
- MEDfl/NetManager/node.py +0 -178
- MEDfl/__init__.py +0 -2
- MEDfl-0.1.30.data/scripts/setup_mysql.sh +0 -22
- MEDfl-0.1.30.dist-info/RECORD +0 -54
- scripts/db_config.ini +0 -6
@@ -1,127 +1,127 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: MEDfl
|
3
|
-
Version: 0.1.
|
4
|
-
Summary: Python Open-source package for simulating federated learning and differential privacy
|
5
|
-
Home-page: https://github.com/
|
6
|
-
Author: MEDomics consortium
|
7
|
-
Author-email: medomics.info@gmail.com
|
8
|
-
Project-URL: Documentation, https://
|
9
|
-
Project-URL: Github, https://github.com/
|
10
|
-
Keywords: federated learning differential privacy medical research
|
11
|
-
Classifier: Development Status :: 3 - Alpha
|
12
|
-
Classifier: Intended Audience :: Developers
|
13
|
-
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
14
|
-
Classifier: License :: OSI Approved :: MIT License
|
15
|
-
Classifier: Programming Language :: Python :: 3.8
|
16
|
-
Classifier: Programming Language :: Python :: 3.9
|
17
|
-
Requires-Python: >=3.8,<3.11
|
18
|
-
Description-Content-Type: text/markdown
|
19
|
-
Requires-Dist: flwr
|
20
|
-
Requires-Dist: matplotlib
|
21
|
-
Requires-Dist: numpy
|
22
|
-
Requires-Dist: opacus
|
23
|
-
Requires-Dist: pandas
|
24
|
-
Requires-Dist: PyYAML
|
25
|
-
Requires-Dist: setuptools
|
26
|
-
Requires-Dist: Sphinx
|
27
|
-
Requires-Dist: SQLAlchemy
|
28
|
-
Requires-Dist: torch
|
29
|
-
Requires-Dist: datetime
|
30
|
-
Requires-Dist: scikit-learn
|
31
|
-
Requires-Dist: sphinx-jsonschema
|
32
|
-
Requires-Dist: sphinx-rtd-dark-mode
|
33
|
-
Requires-Dist: plotly
|
34
|
-
Requires-Dist: optuna
|
35
|
-
Requires-Dist: mysql
|
36
|
-
Requires-Dist: mysql-connector-python
|
37
|
-
|
38
|
-
# MEDfl : Federated Learning and Differential Privacy Simulation Tool for Tabular Data
|
39
|
-

|
40
|
-

|
41
|
-
|
42
|
-

|
43
|
-

|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
## Table of Contents
|
49
|
-
* [1. Introduction](#1-introduction)
|
50
|
-
* [2. Installation](#2-installation)
|
51
|
-
* [3. Documentation](#3-documentation)
|
52
|
-
* [4. Getting started](#4-Getting-started)
|
53
|
-
* [5. Acknowledgement](#5-acknowledgement)
|
54
|
-
* [6. Authors](#6-authors)
|
55
|
-
* [7. Statement](#7-statement)
|
56
|
-
|
57
|
-
## 1. Introduction
|
58
|
-
This Python package is an open-source tool designed for simulating federated learning and incorporating differential privacy. It empowers researchers and developers to effortlessly create, execute, and assess federated learning pipelines while seamlessly working with various tabular datasets.
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
## 2. Installation
|
65
|
-
|
66
|
-
### Python installation
|
67
|
-
The MEDfl package requires *python 3.9* or more to be run. If you don't have it installed on your machine, check out the following link [Python ](https://www.python.org/downloads/).
|
68
|
-
It also requires MySQL database
|
69
|
-
|
70
|
-
### Package installation
|
71
|
-
For now, you can install the ``MEDfl``package as:
|
72
|
-
```
|
73
|
-
git clone https://github.com/MEDomics-UdeS/MEDfl.git
|
74
|
-
cd MEDfl
|
75
|
-
pip install -e .
|
76
|
-
```
|
77
|
-
### MySQL DB configuration
|
78
|
-
MEDfl requires a MySQL DB connection, and this is in order to allow users to work with their own tabular datasets, we have created a bash script to install and configure A MySQL DB with phpmyadmin monitoring system, run the following command then change your credential on the MEDfl/scripts/base.py and MEDfl/scripts/db_config.ini files
|
79
|
-
```
|
80
|
-
sudo bash MEDfl/scripts/setup_mysql.sh
|
81
|
-
```
|
82
|
-
|
83
|
-
### Project Base URL Update
|
84
|
-
Please ensure to modify the `base_url` parameter in the `MEDfl/global_params.yaml` file. The `base_url` represents the path to the MEDfl project on your local machine. Update this value accordingly.
|
85
|
-
|
86
|
-
## 3. Documentation
|
87
|
-
We used sphinx to create the documentation for this project. you can generate and host it locally by compiling the documentation source code using:
|
88
|
-
```
|
89
|
-
cd docs
|
90
|
-
make clean
|
91
|
-
make html
|
92
|
-
```
|
93
|
-
|
94
|
-
Then open it locally using:
|
95
|
-
|
96
|
-
```
|
97
|
-
cd _build/html
|
98
|
-
python -m http.server
|
99
|
-
```
|
100
|
-
|
101
|
-
## 4. Getting started
|
102
|
-
|
103
|
-
We have created a complete tutorial for the different functionalities of the package. it can be found here [tutorial](https://github.com/MEDomics-UdeS/MEDfl/notebooks/First_tuto.ipynb)
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
## 5. Acknowledgment
|
108
|
-
MEDfl is an open-source package that welcomes any contribution and feedback. We wish that this package could serve the growing private AI research community.
|
109
|
-
|
110
|
-
## 6. Authors
|
111
|
-
* [MEDomics](https://github.com/medomics/): MEDomics consortium.
|
112
|
-
|
113
|
-
## 7. Statement
|
114
|
-
|
115
|
-
This package is part of https://github.com/medomics, a package providing research utility tools for developing precision medicine applications.
|
116
|
-
|
117
|
-
```
|
118
|
-
MIT License
|
119
|
-
|
120
|
-
Copyright (C) 2022 MEDomics consortium
|
121
|
-
|
122
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
123
|
-
|
124
|
-
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
125
|
-
|
126
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
127
|
-
```
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: MEDfl
|
3
|
+
Version: 0.1.32
|
4
|
+
Summary: Python Open-source package for simulating federated learning and differential privacy
|
5
|
+
Home-page: https://github.com/MEDomics-UdeS/MEDfl
|
6
|
+
Author: MEDomics consortium
|
7
|
+
Author-email: medomics.info@gmail.com
|
8
|
+
Project-URL: Documentation, https://
|
9
|
+
Project-URL: Github, https://github.com/MEDomics-UdeS/MEDfl
|
10
|
+
Keywords: federated learning differential privacy medical research
|
11
|
+
Classifier: Development Status :: 3 - Alpha
|
12
|
+
Classifier: Intended Audience :: Developers
|
13
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
14
|
+
Classifier: License :: OSI Approved :: MIT License
|
15
|
+
Classifier: Programming Language :: Python :: 3.8
|
16
|
+
Classifier: Programming Language :: Python :: 3.9
|
17
|
+
Requires-Python: >=3.8,<3.11
|
18
|
+
Description-Content-Type: text/markdown
|
19
|
+
Requires-Dist: flwr ~=1.7.0
|
20
|
+
Requires-Dist: matplotlib ~=3.6.3
|
21
|
+
Requires-Dist: numpy ~=1.24.2
|
22
|
+
Requires-Dist: opacus ~=1.3.0
|
23
|
+
Requires-Dist: pandas ~=1.5.2
|
24
|
+
Requires-Dist: PyYAML ~=6.0
|
25
|
+
Requires-Dist: setuptools ~=68.0.0
|
26
|
+
Requires-Dist: Sphinx ~=5.3.0
|
27
|
+
Requires-Dist: SQLAlchemy ~=1.4.47
|
28
|
+
Requires-Dist: torch ~=1.13.1
|
29
|
+
Requires-Dist: datetime ~=5.1
|
30
|
+
Requires-Dist: scikit-learn ~=1.1.1
|
31
|
+
Requires-Dist: sphinx-jsonschema ==1.19.1
|
32
|
+
Requires-Dist: sphinx-rtd-dark-mode ==1.2.4
|
33
|
+
Requires-Dist: plotly ==5.19.0
|
34
|
+
Requires-Dist: optuna ==3.5.0
|
35
|
+
Requires-Dist: mysql
|
36
|
+
Requires-Dist: mysql-connector-python
|
37
|
+
|
38
|
+
# MEDfl : Federated Learning and Differential Privacy Simulation Tool for Tabular Data
|
39
|
+

|
40
|
+

|
41
|
+
|
42
|
+

|
43
|
+

|
44
|
+
|
45
|
+
|
46
|
+
|
47
|
+
|
48
|
+
## Table of Contents
|
49
|
+
* [1. Introduction](#1-introduction)
|
50
|
+
* [2. Installation](#2-installation)
|
51
|
+
* [3. Documentation](#3-documentation)
|
52
|
+
* [4. Getting started](#4-Getting-started)
|
53
|
+
* [5. Acknowledgement](#5-acknowledgement)
|
54
|
+
* [6. Authors](#6-authors)
|
55
|
+
* [7. Statement](#7-statement)
|
56
|
+
|
57
|
+
## 1. Introduction
|
58
|
+
This Python package is an open-source tool designed for simulating federated learning and incorporating differential privacy. It empowers researchers and developers to effortlessly create, execute, and assess federated learning pipelines while seamlessly working with various tabular datasets.
|
59
|
+
|
60
|
+
|
61
|
+
|
62
|
+
|
63
|
+
|
64
|
+
## 2. Installation
|
65
|
+
|
66
|
+
### Python installation
|
67
|
+
The MEDfl package requires *python 3.9* or more to be run. If you don't have it installed on your machine, check out the following link [Python ](https://www.python.org/downloads/).
|
68
|
+
It also requires MySQL database
|
69
|
+
|
70
|
+
### Package installation
|
71
|
+
For now, you can install the ``MEDfl``package as:
|
72
|
+
```
|
73
|
+
git clone https://github.com/MEDomics-UdeS/MEDfl.git
|
74
|
+
cd MEDfl
|
75
|
+
pip install -e .
|
76
|
+
```
|
77
|
+
### MySQL DB configuration
|
78
|
+
MEDfl requires a MySQL DB connection, and this is in order to allow users to work with their own tabular datasets, we have created a bash script to install and configure A MySQL DB with phpmyadmin monitoring system, run the following command then change your credential on the MEDfl/scripts/base.py and MEDfl/scripts/db_config.ini files
|
79
|
+
```
|
80
|
+
sudo bash MEDfl/scripts/setup_mysql.sh
|
81
|
+
```
|
82
|
+
|
83
|
+
### Project Base URL Update
|
84
|
+
Please ensure to modify the `base_url` parameter in the `MEDfl/global_params.yaml` file. The `base_url` represents the path to the MEDfl project on your local machine. Update this value accordingly.
|
85
|
+
|
86
|
+
## 3. Documentation
|
87
|
+
We used sphinx to create the documentation for this project. you can generate and host it locally by compiling the documentation source code using:
|
88
|
+
```
|
89
|
+
cd docs
|
90
|
+
make clean
|
91
|
+
make html
|
92
|
+
```
|
93
|
+
|
94
|
+
Then open it locally using:
|
95
|
+
|
96
|
+
```
|
97
|
+
cd _build/html
|
98
|
+
python -m http.server
|
99
|
+
```
|
100
|
+
|
101
|
+
## 4. Getting started
|
102
|
+
|
103
|
+
We have created a complete tutorial for the different functionalities of the package. it can be found here [tutorial](https://github.com/MEDomics-UdeS/MEDfl/notebooks/First_tuto.ipynb)
|
104
|
+
|
105
|
+
|
106
|
+
|
107
|
+
## 5. Acknowledgment
|
108
|
+
MEDfl is an open-source package that welcomes any contribution and feedback. We wish that this package could serve the growing private AI research community.
|
109
|
+
|
110
|
+
## 6. Authors
|
111
|
+
* [MEDomics](https://github.com/medomics/): MEDomics consortium.
|
112
|
+
|
113
|
+
## 7. Statement
|
114
|
+
|
115
|
+
This package is part of https://github.com/medomics, a package providing research utility tools for developing precision medicine applications.
|
116
|
+
|
117
|
+
```
|
118
|
+
MIT License
|
119
|
+
|
120
|
+
Copyright (C) 2022 MEDomics consortium
|
121
|
+
|
122
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
123
|
+
|
124
|
+
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
125
|
+
|
126
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
127
|
+
```
|
@@ -0,0 +1,34 @@
|
|
1
|
+
Medfl/__init__.py,sha256=pMyTkws4slDkLQgPpPdKoWdQf1rZGHXAlNxfPFFZM-I,81
|
2
|
+
Medfl/LearningManager/__init__.py,sha256=mvlAmHEHljXGaB6Ij0EPN0Txw21qX25ELK3X7QkoVwA,358
|
3
|
+
Medfl/LearningManager/client.py,sha256=9WyLYCsI9JuHjneLbbzDf7HtzjYINuLfqwkbxOsrBrE,6083
|
4
|
+
Medfl/LearningManager/dynamicModal.py,sha256=0mTvDJlss0uSJ3_EXOuL_d-zRmFyXaKB4W4ql-uEX8Y,10821
|
5
|
+
Medfl/LearningManager/federated_dataset.py,sha256=fQqIbhO6LSk16Ob9z6RohaZ8X71Ff-yueynjulrl4M0,2141
|
6
|
+
Medfl/LearningManager/flpipeline.py,sha256=M4-OL4nlogv08J_YsyDsGHXR6xe8BWx4HIsuL1QyUvY,7303
|
7
|
+
Medfl/LearningManager/model.py,sha256=DA7HP34Eq1Ra65OlkBmjH9d2MD7OEbsOhfxD48l4QOk,7679
|
8
|
+
Medfl/LearningManager/params.yaml,sha256=5I-NljhnSaqzjkWVNzrOtrB8z7tnHBKiBmY-mKGhBQM,450
|
9
|
+
Medfl/LearningManager/params_optimiser.py,sha256=pjhDskhSPuca-jnarYoJcFVBvRkdD9tD3992q_eMPSE,18060
|
10
|
+
Medfl/LearningManager/plot.py,sha256=iPqMV9rVd7hquoFixDL20OzXI5bMpBW41bkVmTKIWtE,7927
|
11
|
+
Medfl/LearningManager/server.py,sha256=7edxPkZ9Ju3Mep_BSHQpUNgW9HKfCui3_l996buJVlU,7258
|
12
|
+
Medfl/LearningManager/strategy.py,sha256=n0asQajkHfGLDX3QbbV5qntQA-xuJZU8Z92XccZENsA,3517
|
13
|
+
Medfl/LearningManager/utils.py,sha256=vEhkpyC7iLsn4wp1wDh7GzAn5MCJ7T69jkS9lfmKA1Y,9936
|
14
|
+
Medfl/NetManager/__init__.py,sha256=RhO9Ya6wXOdM6qO58wjTD-lNL7-q8KvPDvSccYP9wUY,246
|
15
|
+
Medfl/NetManager/database_connector.py,sha256=JKfFLom7I4zuykb8m7aY4cUYZy4j0-i9w3R_jkPzjXY,1516
|
16
|
+
Medfl/NetManager/dataset.py,sha256=eEuVzCp5dGD4tvDVKq6jlSReecge7T20ByG4d7_cnXU,2869
|
17
|
+
Medfl/NetManager/flsetup.py,sha256=CS7531I08eLm6txMIDWFMCIrPP-dNpOLBTaR2BR6X0c,11754
|
18
|
+
Medfl/NetManager/net_helper.py,sha256=T5Y-03SVskK8oXXIpiXzASyEDPQJbcuGVpIS9FnmzI8,7066
|
19
|
+
Medfl/NetManager/net_manager_queries.py,sha256=bJ7V6NZAjLM0sEPrczN7vUeB7sMZZzYZjO-rnUCpQPc,4228
|
20
|
+
Medfl/NetManager/network.py,sha256=D7liCx-1PGx9Z3pctI1_NOGG--gGtvzfr_-BCOdwsOg,7023
|
21
|
+
Medfl/NetManager/node.py,sha256=Azye74P4ZUDQxPrQOId4BK8hX-9RzFtN2Ji8NXbDCEM,6726
|
22
|
+
Medfl/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
23
|
+
Medfl/scripts/base.py,sha256=pR7StIt3PpX30aoh53gMkpeNJMHytAPhdc7N09tCITA,781
|
24
|
+
Medfl/scripts/create_db.py,sha256=PgA6N68iTSfnrt6zy7FDZX2lLjQQ7Ual1Y0efve8gf4,3943
|
25
|
+
alembic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
26
|
+
alembic/env.py,sha256=a4zJAzPNLHnIrUlXCqf_8vuAlFu0pceFJJKM1PQaOI4,1649
|
27
|
+
scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
28
|
+
scripts/base.py,sha256=pR7StIt3PpX30aoh53gMkpeNJMHytAPhdc7N09tCITA,781
|
29
|
+
scripts/config.ini,sha256=tDQQlpwZbCFQuSS017yjEiLglLihp6wETbWtNrSWeAA,82
|
30
|
+
scripts/create_db.py,sha256=iWE1z33rU_KbIeqoVzdWLhDRLk00TcRf2iYuqpDzOjw,4494
|
31
|
+
MEDfl-0.1.32.dist-info/METADATA,sha256=CRkLasq6gCSG73VSFARBVssUEGtbp819nnXnr9hwuZI,5582
|
32
|
+
MEDfl-0.1.32.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
33
|
+
MEDfl-0.1.32.dist-info/top_level.txt,sha256=dIL9X8HOFuaVSzpg40DVveDPrymWRoShHtspH7kkjdI,14
|
34
|
+
MEDfl-0.1.32.dist-info/RECORD,,
|
@@ -1,13 +1,13 @@
|
|
1
|
-
# # MEDfl/LearningManager/__init__.py
|
2
|
-
|
3
|
-
# # Import modules from this package
|
4
|
-
# from .client import *
|
5
|
-
# from .dynamicModal import *
|
6
|
-
# from .flpipeline import *
|
7
|
-
# from .federated_dataset import *
|
8
|
-
# from .model import *
|
9
|
-
# from .params_optimiser import *
|
10
|
-
# from .plot import *
|
11
|
-
# from .server import *
|
12
|
-
# from .strategy import *
|
13
|
-
# from .utils import *
|
1
|
+
# # MEDfl/LearningManager/__init__.py
|
2
|
+
|
3
|
+
# # Import modules from this package
|
4
|
+
# from .client import *
|
5
|
+
# from .dynamicModal import *
|
6
|
+
# from .flpipeline import *
|
7
|
+
# from .federated_dataset import *
|
8
|
+
# from .model import *
|
9
|
+
# from .params_optimiser import *
|
10
|
+
# from .plot import *
|
11
|
+
# from .server import *
|
12
|
+
# from .strategy import *
|
13
|
+
# from .utils import *
|
Medfl/LearningManager/client.py
CHANGED
@@ -1,150 +1,150 @@
|
|
1
|
-
#!/usr/bin/env python3
|
2
|
-
import flwr as fl
|
3
|
-
from opacus import PrivacyEngine
|
4
|
-
from torch.utils.data import DataLoader
|
5
|
-
|
6
|
-
from .model import Model
|
7
|
-
from .utils import params
|
8
|
-
import torch
|
9
|
-
|
10
|
-
class FlowerClient(fl.client.NumPyClient):
|
11
|
-
"""
|
12
|
-
FlowerClient class for creating MEDfl clients.
|
13
|
-
|
14
|
-
Attributes:
|
15
|
-
cid (str): Client ID.
|
16
|
-
local_model (Model): Local model of the federated learning network.
|
17
|
-
trainloader (DataLoader): DataLoader for training data.
|
18
|
-
valloader (DataLoader): DataLoader for validation data.
|
19
|
-
diff_priv (bool): Flag indicating whether to use differential privacy.
|
20
|
-
"""
|
21
|
-
def __init__(self, cid: str, local_model: Model, trainloader: DataLoader, valloader: DataLoader, diff_priv: bool = params["diff_privacy"]):
|
22
|
-
"""
|
23
|
-
Initializes the FlowerClient instance.
|
24
|
-
|
25
|
-
Args:
|
26
|
-
cid (str): Client ID.
|
27
|
-
local_model (Model): Local model of the federated learning network.
|
28
|
-
trainloader (DataLoader): DataLoader for training data.
|
29
|
-
valloader (DataLoader): DataLoader for validation data.
|
30
|
-
diff_priv (bool): Flag indicating whether to use differential privacy.
|
31
|
-
"""
|
32
|
-
self.cid = cid
|
33
|
-
self.local_model = local_model
|
34
|
-
self.trainloader = trainloader
|
35
|
-
self.valloader = valloader
|
36
|
-
if torch.cuda.is_available():
|
37
|
-
num_cuda_devices = torch.cuda.device_count()
|
38
|
-
if num_cuda_devices > 0:
|
39
|
-
device_idx = int(self.cid) % num_cuda_devices
|
40
|
-
self.device = torch.device(f"cuda:{device_idx}")
|
41
|
-
self.local_model.model.to(self.device)
|
42
|
-
else:
|
43
|
-
# Handle case where CUDA is available but no CUDA devices are found
|
44
|
-
raise RuntimeError("CUDA is available, but no CUDA devices are found.")
|
45
|
-
else:
|
46
|
-
# Handle case where CUDA is not available
|
47
|
-
self.device = torch.device("cpu")
|
48
|
-
self.local_model.model.to(self.device)
|
49
|
-
|
50
|
-
self.privacy_engine = PrivacyEngine(secure_mode=False)
|
51
|
-
self.diff_priv = diff_priv
|
52
|
-
self.epsilons = []
|
53
|
-
self.accuracies = []
|
54
|
-
self.losses = []
|
55
|
-
if self.diff_priv:
|
56
|
-
model, optimizer, self.trainloader = self.privacy_engine.make_private_with_epsilon(
|
57
|
-
module=self.local_model.model.train(),
|
58
|
-
optimizer=self.local_model.optimizer,
|
59
|
-
data_loader=self.trainloader,
|
60
|
-
epochs=params["train_epochs"],
|
61
|
-
target_epsilon=float(params["EPSILON"]),
|
62
|
-
target_delta= float(params["DELTA"]),
|
63
|
-
max_grad_norm=params["MAX_GRAD_NORM"],
|
64
|
-
)
|
65
|
-
setattr(self.local_model, "model", model)
|
66
|
-
setattr(self.local_model, "optimizer", optimizer)
|
67
|
-
self.validate()
|
68
|
-
|
69
|
-
def validate(self):
|
70
|
-
"""Validates cid, local_model, trainloader, valloader."""
|
71
|
-
if not isinstance(self.cid, str):
|
72
|
-
raise TypeError("cid argument must be a string")
|
73
|
-
|
74
|
-
if not isinstance(self.local_model, Model):
|
75
|
-
raise TypeError("local_model argument must be a MEDfl.LearningManager.model.Model")
|
76
|
-
|
77
|
-
if not isinstance(self.trainloader, DataLoader):
|
78
|
-
raise TypeError("trainloader argument must be a torch.utils.data.dataloader")
|
79
|
-
|
80
|
-
if not isinstance(self.valloader, DataLoader):
|
81
|
-
raise TypeError("valloader argument must be a torch.utils.data.dataloader")
|
82
|
-
|
83
|
-
if not isinstance(self.diff_priv, bool):
|
84
|
-
raise TypeError("diff_priv argument must be a bool")
|
85
|
-
|
86
|
-
def get_parameters(self, config):
|
87
|
-
"""
|
88
|
-
Returns the current parameters of the local model.
|
89
|
-
|
90
|
-
Args:
|
91
|
-
config: Configuration information.
|
92
|
-
|
93
|
-
Returns:
|
94
|
-
Numpy array: Parameters of the local model.
|
95
|
-
"""
|
96
|
-
print(f"[Client {self.cid}] get_parameters")
|
97
|
-
return self.local_model.get_parameters()
|
98
|
-
|
99
|
-
def fit(self, parameters, config):
|
100
|
-
"""
|
101
|
-
Fits the local model to the received parameters using federated learning.
|
102
|
-
|
103
|
-
Args:
|
104
|
-
parameters: Parameters received from the server.
|
105
|
-
config: Configuration information.
|
106
|
-
|
107
|
-
Returns:
|
108
|
-
Tuple: Parameters of the local model, number of training examples, and privacy information.
|
109
|
-
"""
|
110
|
-
print('\n -------------------------------- \n this is the config of the client')
|
111
|
-
print(f"[Client {self.cid}] fit, config: {config}")
|
112
|
-
# print(config['epochs'])
|
113
|
-
print('\n -------------------------------- \n ')
|
114
|
-
self.local_model.set_parameters(parameters)
|
115
|
-
for _ in range(params["train_epochs"]):
|
116
|
-
epsilon = self.local_model.train(
|
117
|
-
self.trainloader,
|
118
|
-
epoch=_,
|
119
|
-
device=self.device,
|
120
|
-
privacy_engine=self.privacy_engine,
|
121
|
-
diff_priv=self.diff_priv,
|
122
|
-
)
|
123
|
-
self.epsilons.append(epsilon)
|
124
|
-
print(f"epsilon of client {self.cid} : eps = {epsilon}")
|
125
|
-
return (
|
126
|
-
self.local_model.get_parameters(),
|
127
|
-
len(self.trainloader),
|
128
|
-
{"epsilon": epsilon},
|
129
|
-
)
|
130
|
-
|
131
|
-
def evaluate(self, parameters, config):
|
132
|
-
"""
|
133
|
-
Evaluates the local model on the validation data and returns the loss and accuracy.
|
134
|
-
|
135
|
-
Args:
|
136
|
-
parameters: Parameters received from the server.
|
137
|
-
config: Configuration information.
|
138
|
-
|
139
|
-
Returns:
|
140
|
-
Tuple: Loss, number of validation examples, and accuracy information.
|
141
|
-
"""
|
142
|
-
print(f"[Client {self.cid}] evaluate, config: {config}")
|
143
|
-
self.local_model.set_parameters(parameters)
|
144
|
-
loss, accuracy , auc = self.local_model.evaluate(
|
145
|
-
self.valloader, device=self.device
|
146
|
-
)
|
147
|
-
self.losses.append(loss)
|
148
|
-
self.accuracies.append(accuracy)
|
149
|
-
|
150
|
-
return float(loss), len(self.valloader), {"accuracy": float(accuracy)}
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
import flwr as fl
|
3
|
+
from opacus import PrivacyEngine
|
4
|
+
from torch.utils.data import DataLoader
|
5
|
+
|
6
|
+
from .model import Model
|
7
|
+
from .utils import params
|
8
|
+
import torch
|
9
|
+
|
10
|
+
class FlowerClient(fl.client.NumPyClient):
|
11
|
+
"""
|
12
|
+
FlowerClient class for creating MEDfl clients.
|
13
|
+
|
14
|
+
Attributes:
|
15
|
+
cid (str): Client ID.
|
16
|
+
local_model (Model): Local model of the federated learning network.
|
17
|
+
trainloader (DataLoader): DataLoader for training data.
|
18
|
+
valloader (DataLoader): DataLoader for validation data.
|
19
|
+
diff_priv (bool): Flag indicating whether to use differential privacy.
|
20
|
+
"""
|
21
|
+
def __init__(self, cid: str, local_model: Model, trainloader: DataLoader, valloader: DataLoader, diff_priv: bool = params["diff_privacy"]):
|
22
|
+
"""
|
23
|
+
Initializes the FlowerClient instance.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
cid (str): Client ID.
|
27
|
+
local_model (Model): Local model of the federated learning network.
|
28
|
+
trainloader (DataLoader): DataLoader for training data.
|
29
|
+
valloader (DataLoader): DataLoader for validation data.
|
30
|
+
diff_priv (bool): Flag indicating whether to use differential privacy.
|
31
|
+
"""
|
32
|
+
self.cid = cid
|
33
|
+
self.local_model = local_model
|
34
|
+
self.trainloader = trainloader
|
35
|
+
self.valloader = valloader
|
36
|
+
if torch.cuda.is_available():
|
37
|
+
num_cuda_devices = torch.cuda.device_count()
|
38
|
+
if num_cuda_devices > 0:
|
39
|
+
device_idx = int(self.cid) % num_cuda_devices
|
40
|
+
self.device = torch.device(f"cuda:{device_idx}")
|
41
|
+
self.local_model.model.to(self.device)
|
42
|
+
else:
|
43
|
+
# Handle case where CUDA is available but no CUDA devices are found
|
44
|
+
raise RuntimeError("CUDA is available, but no CUDA devices are found.")
|
45
|
+
else:
|
46
|
+
# Handle case where CUDA is not available
|
47
|
+
self.device = torch.device("cpu")
|
48
|
+
self.local_model.model.to(self.device)
|
49
|
+
|
50
|
+
self.privacy_engine = PrivacyEngine(secure_mode=False)
|
51
|
+
self.diff_priv = diff_priv
|
52
|
+
self.epsilons = []
|
53
|
+
self.accuracies = []
|
54
|
+
self.losses = []
|
55
|
+
if self.diff_priv:
|
56
|
+
model, optimizer, self.trainloader = self.privacy_engine.make_private_with_epsilon(
|
57
|
+
module=self.local_model.model.train(),
|
58
|
+
optimizer=self.local_model.optimizer,
|
59
|
+
data_loader=self.trainloader,
|
60
|
+
epochs=params["train_epochs"],
|
61
|
+
target_epsilon=float(params["EPSILON"]),
|
62
|
+
target_delta= float(params["DELTA"]),
|
63
|
+
max_grad_norm=params["MAX_GRAD_NORM"],
|
64
|
+
)
|
65
|
+
setattr(self.local_model, "model", model)
|
66
|
+
setattr(self.local_model, "optimizer", optimizer)
|
67
|
+
self.validate()
|
68
|
+
|
69
|
+
def validate(self):
|
70
|
+
"""Validates cid, local_model, trainloader, valloader."""
|
71
|
+
if not isinstance(self.cid, str):
|
72
|
+
raise TypeError("cid argument must be a string")
|
73
|
+
|
74
|
+
if not isinstance(self.local_model, Model):
|
75
|
+
raise TypeError("local_model argument must be a MEDfl.LearningManager.model.Model")
|
76
|
+
|
77
|
+
if not isinstance(self.trainloader, DataLoader):
|
78
|
+
raise TypeError("trainloader argument must be a torch.utils.data.dataloader")
|
79
|
+
|
80
|
+
if not isinstance(self.valloader, DataLoader):
|
81
|
+
raise TypeError("valloader argument must be a torch.utils.data.dataloader")
|
82
|
+
|
83
|
+
if not isinstance(self.diff_priv, bool):
|
84
|
+
raise TypeError("diff_priv argument must be a bool")
|
85
|
+
|
86
|
+
def get_parameters(self, config):
|
87
|
+
"""
|
88
|
+
Returns the current parameters of the local model.
|
89
|
+
|
90
|
+
Args:
|
91
|
+
config: Configuration information.
|
92
|
+
|
93
|
+
Returns:
|
94
|
+
Numpy array: Parameters of the local model.
|
95
|
+
"""
|
96
|
+
print(f"[Client {self.cid}] get_parameters")
|
97
|
+
return self.local_model.get_parameters()
|
98
|
+
|
99
|
+
def fit(self, parameters, config):
|
100
|
+
"""
|
101
|
+
Fits the local model to the received parameters using federated learning.
|
102
|
+
|
103
|
+
Args:
|
104
|
+
parameters: Parameters received from the server.
|
105
|
+
config: Configuration information.
|
106
|
+
|
107
|
+
Returns:
|
108
|
+
Tuple: Parameters of the local model, number of training examples, and privacy information.
|
109
|
+
"""
|
110
|
+
print('\n -------------------------------- \n this is the config of the client')
|
111
|
+
print(f"[Client {self.cid}] fit, config: {config}")
|
112
|
+
# print(config['epochs'])
|
113
|
+
print('\n -------------------------------- \n ')
|
114
|
+
self.local_model.set_parameters(parameters)
|
115
|
+
for _ in range(params["train_epochs"]):
|
116
|
+
epsilon = self.local_model.train(
|
117
|
+
self.trainloader,
|
118
|
+
epoch=_,
|
119
|
+
device=self.device,
|
120
|
+
privacy_engine=self.privacy_engine,
|
121
|
+
diff_priv=self.diff_priv,
|
122
|
+
)
|
123
|
+
self.epsilons.append(epsilon)
|
124
|
+
print(f"epsilon of client {self.cid} : eps = {epsilon}")
|
125
|
+
return (
|
126
|
+
self.local_model.get_parameters(),
|
127
|
+
len(self.trainloader),
|
128
|
+
{"epsilon": epsilon},
|
129
|
+
)
|
130
|
+
|
131
|
+
def evaluate(self, parameters, config):
|
132
|
+
"""
|
133
|
+
Evaluates the local model on the validation data and returns the loss and accuracy.
|
134
|
+
|
135
|
+
Args:
|
136
|
+
parameters: Parameters received from the server.
|
137
|
+
config: Configuration information.
|
138
|
+
|
139
|
+
Returns:
|
140
|
+
Tuple: Loss, number of validation examples, and accuracy information.
|
141
|
+
"""
|
142
|
+
print(f"[Client {self.cid}] evaluate, config: {config}")
|
143
|
+
self.local_model.set_parameters(parameters)
|
144
|
+
loss, accuracy , auc = self.local_model.evaluate(
|
145
|
+
self.valloader, device=self.device
|
146
|
+
)
|
147
|
+
self.losses.append(loss)
|
148
|
+
self.accuracies.append(accuracy)
|
149
|
+
|
150
|
+
return float(loss), len(self.valloader), {"accuracy": float(accuracy)}
|