M3Drop 0.4.49__py3-none-any.whl → 0.4.50__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- m3Drop/NormalizationGPU.py +197 -29
- {m3drop-0.4.49.dist-info → m3drop-0.4.50.dist-info}/METADATA +1 -1
- {m3drop-0.4.49.dist-info → m3drop-0.4.50.dist-info}/RECORD +6 -6
- {m3drop-0.4.49.dist-info → m3drop-0.4.50.dist-info}/WHEEL +0 -0
- {m3drop-0.4.49.dist-info → m3drop-0.4.50.dist-info}/licenses/LICENSE +0 -0
- {m3drop-0.4.49.dist-info → m3drop-0.4.50.dist-info}/top_level.txt +0 -0
m3Drop/NormalizationGPU.py
CHANGED
|
@@ -6,10 +6,13 @@ import h5py
|
|
|
6
6
|
import anndata
|
|
7
7
|
import pandas as pd
|
|
8
8
|
import os
|
|
9
|
+
import matplotlib.pyplot as plt
|
|
10
|
+
import seaborn as sns
|
|
9
11
|
|
|
10
12
|
try:
|
|
11
13
|
import cupy
|
|
12
14
|
from cupy.sparse import csr_matrix as cp_csr_matrix
|
|
15
|
+
import cupyx
|
|
13
16
|
HAS_GPU = True
|
|
14
17
|
except ImportError:
|
|
15
18
|
cupy = None
|
|
@@ -19,7 +22,6 @@ except ImportError:
|
|
|
19
22
|
try:
|
|
20
23
|
from .ControlDeviceGPU import ControlDevice
|
|
21
24
|
except ImportError:
|
|
22
|
-
# Fallback for direct script execution (debugging)
|
|
23
25
|
try:
|
|
24
26
|
from ControlDeviceGPU import ControlDevice
|
|
25
27
|
except ImportError:
|
|
@@ -58,11 +60,14 @@ def NBumiPearsonResidualsCombinedGPU(
|
|
|
58
60
|
stats_filename: str,
|
|
59
61
|
output_filename_full: str,
|
|
60
62
|
output_filename_approx: str,
|
|
63
|
+
plot_summary_filename: str = None,
|
|
64
|
+
plot_detail_filename: str = None,
|
|
61
65
|
mode: str = "auto",
|
|
62
66
|
manual_target: int = 3000
|
|
63
67
|
):
|
|
64
68
|
"""
|
|
65
|
-
|
|
69
|
+
Calculates Full and Approximate residuals in a SINGLE PASS.
|
|
70
|
+
Includes "Sidecar" Visualization logic (Streaming Stats + Subsampling).
|
|
66
71
|
"""
|
|
67
72
|
start_time = time.perf_counter()
|
|
68
73
|
print(f"FUNCTION: NBumiPearsonResidualsCombined() | FILE: {raw_filename}")
|
|
@@ -73,22 +78,22 @@ def NBumiPearsonResidualsCombinedGPU(
|
|
|
73
78
|
ng_filtered = int(cupy.sum(mask_gpu))
|
|
74
79
|
|
|
75
80
|
# 2. Manual Init
|
|
76
|
-
with h5py.File(raw_filename, 'r') as f:
|
|
81
|
+
with h5py.File(raw_filename, 'r') as f:
|
|
82
|
+
indptr_cpu = f['X']['indptr'][:]
|
|
83
|
+
total_rows = len(indptr_cpu) - 1
|
|
84
|
+
|
|
77
85
|
device = ControlDevice(indptr=indptr_cpu, total_rows=total_rows, n_genes=ng_filtered, mode=mode, manual_target=manual_target)
|
|
78
86
|
nc = device.total_rows
|
|
79
87
|
|
|
80
88
|
print("Phase [1/2]: Initializing parameters...")
|
|
81
|
-
# Load parameters
|
|
89
|
+
# Load parameters
|
|
82
90
|
with open(fit_filename, 'rb') as f: fit = pickle.load(f)
|
|
83
|
-
with open(stats_filename, 'rb') as f: stats = pickle.load(f)
|
|
84
91
|
|
|
85
92
|
# Common params
|
|
86
93
|
total = fit['vals']['total']
|
|
87
94
|
tjs_gpu = cupy.asarray(fit['vals']['tjs'].values, dtype=cupy.float64)
|
|
88
95
|
tis_gpu = cupy.asarray(fit['vals']['tis'].values, dtype=cupy.float64)
|
|
89
|
-
|
|
90
|
-
# Specific params
|
|
91
|
-
sizes_gpu = cupy.asarray(fit['sizes'].values, dtype=cupy.float64) # For Full
|
|
96
|
+
sizes_gpu = cupy.asarray(fit['sizes'].values, dtype=cupy.float64)
|
|
92
97
|
|
|
93
98
|
# Setup Output Files
|
|
94
99
|
adata_in = anndata.read_h5ad(raw_filename, backed='r')
|
|
@@ -101,29 +106,46 @@ def NBumiPearsonResidualsCombinedGPU(
|
|
|
101
106
|
adata_out_approx = anndata.AnnData(obs=adata_in.obs, var=filtered_var)
|
|
102
107
|
adata_out_approx.write_h5ad(output_filename_approx, compression=None)
|
|
103
108
|
|
|
104
|
-
# ---
|
|
105
|
-
#
|
|
106
|
-
|
|
109
|
+
# --- VISUALIZATION SETUP (THE SIDECAR) ---
|
|
110
|
+
# 1. Sampling Rate (Target 5 Million Max)
|
|
111
|
+
TARGET_SAMPLES = 5_000_000
|
|
112
|
+
total_points = nc * ng_filtered
|
|
107
113
|
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
114
|
+
if total_points <= TARGET_SAMPLES:
|
|
115
|
+
sampling_rate = 1.0 # Take everything
|
|
116
|
+
else:
|
|
117
|
+
sampling_rate = TARGET_SAMPLES / total_points
|
|
111
118
|
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
#
|
|
119
|
+
print(f" > Visualization Sampling Rate: {sampling_rate*100:.4f}% (Target: {TARGET_SAMPLES:,} points)")
|
|
120
|
+
|
|
121
|
+
# 2. Accumulators for Plot 1 (Variance) - EXACT MATH
|
|
122
|
+
# We need Sum(x) and Sum(x^2) for: Raw, Approx, Full
|
|
123
|
+
acc_raw_sum = cupy.zeros(ng_filtered, dtype=cupy.float64)
|
|
124
|
+
# acc_raw_sq = cupy.zeros(ng_filtered, dtype=cupy.float64) # Not strictly needed for Mean X-axis, but good for completeness. Skipping to save VRAM.
|
|
125
|
+
|
|
126
|
+
acc_approx_sum = cupy.zeros(ng_filtered, dtype=cupy.float64)
|
|
127
|
+
acc_approx_sq = cupy.zeros(ng_filtered, dtype=cupy.float64)
|
|
115
128
|
|
|
116
|
-
|
|
129
|
+
acc_full_sum = cupy.zeros(ng_filtered, dtype=cupy.float64)
|
|
130
|
+
acc_full_sq = cupy.zeros(ng_filtered, dtype=cupy.float64)
|
|
131
|
+
|
|
132
|
+
# 3. Lists for Plots 2 & 3 (Scatter/KDE) - SAMPLED
|
|
133
|
+
viz_approx_samples = []
|
|
134
|
+
viz_full_samples = []
|
|
135
|
+
# -----------------------------------------
|
|
136
|
+
|
|
137
|
+
# Storage Chunk Calc
|
|
138
|
+
storage_chunk_rows = int(1_000_000_000 / (ng_filtered * 8))
|
|
139
|
+
if storage_chunk_rows > nc: storage_chunk_rows = nc
|
|
140
|
+
if storage_chunk_rows < 1: storage_chunk_rows = 1
|
|
141
|
+
|
|
142
|
+
# Open files
|
|
117
143
|
with h5py.File(output_filename_full, 'a') as f_full, h5py.File(output_filename_approx, 'a') as f_approx:
|
|
118
144
|
if 'X' in f_full: del f_full['X']
|
|
119
145
|
if 'X' in f_approx: del f_approx['X']
|
|
120
146
|
|
|
121
|
-
out_x_full = f_full.create_dataset(
|
|
122
|
-
|
|
123
|
-
)
|
|
124
|
-
out_x_approx = f_approx.create_dataset(
|
|
125
|
-
'X', shape=(nc, ng_filtered), chunks=(storage_chunk_rows, ng_filtered), dtype='float64'
|
|
126
|
-
)
|
|
147
|
+
out_x_full = f_full.create_dataset('X', shape=(nc, ng_filtered), chunks=(storage_chunk_rows, ng_filtered), dtype='float64')
|
|
148
|
+
out_x_approx = f_approx.create_dataset('X', shape=(nc, ng_filtered), chunks=(storage_chunk_rows, ng_filtered), dtype='float64')
|
|
127
149
|
|
|
128
150
|
with h5py.File(raw_filename, 'r') as f_in:
|
|
129
151
|
h5_indptr = f_in['X']['indptr']
|
|
@@ -132,7 +154,8 @@ def NBumiPearsonResidualsCombinedGPU(
|
|
|
132
154
|
|
|
133
155
|
current_row = 0
|
|
134
156
|
while current_row < nc:
|
|
135
|
-
|
|
157
|
+
# [SAFE MODE] Multiplier 3.0 is safe for Index Sampling
|
|
158
|
+
end_row = device.get_next_chunk(current_row, mode='dense', overhead_multiplier=3.0)
|
|
136
159
|
if end_row is None or end_row <= current_row: break
|
|
137
160
|
|
|
138
161
|
chunk_size = end_row - current_row
|
|
@@ -140,7 +163,7 @@ def NBumiPearsonResidualsCombinedGPU(
|
|
|
140
163
|
|
|
141
164
|
start_idx, end_idx = h5_indptr[current_row], h5_indptr[end_row]
|
|
142
165
|
|
|
143
|
-
# Load
|
|
166
|
+
# Load Raw
|
|
144
167
|
data_gpu_raw = cupy.asarray(h5_data[start_idx:end_idx], dtype=cupy.float64)
|
|
145
168
|
indices_gpu_raw = cupy.asarray(h5_indices[start_idx:end_idx])
|
|
146
169
|
indptr_gpu_raw = cupy.asarray(h5_indptr[current_row:end_row+1] - h5_indptr[current_row])
|
|
@@ -154,7 +177,23 @@ def NBumiPearsonResidualsCombinedGPU(
|
|
|
154
177
|
del chunk_gpu, data_gpu_raw, indices_gpu_raw, indptr_gpu_raw
|
|
155
178
|
cupy.get_default_memory_pool().free_all_blocks()
|
|
156
179
|
|
|
157
|
-
# ---
|
|
180
|
+
# --- VIZ ACCUMULATION 1: RAW MEAN ---
|
|
181
|
+
# Add raw sums to accumulator (column-wise sum)
|
|
182
|
+
acc_raw_sum += cupy.sum(counts_dense, axis=0)
|
|
183
|
+
|
|
184
|
+
# --- VIZ SAMPLING: GENERATE INDICES ---
|
|
185
|
+
# We pick indices NOW so we can grab the same points from both Approx and Full
|
|
186
|
+
chunk_total_items = chunk_size * ng_filtered
|
|
187
|
+
n_samples_chunk = int(chunk_total_items * sampling_rate)
|
|
188
|
+
|
|
189
|
+
if n_samples_chunk > 0:
|
|
190
|
+
# Index Sampling: Zero VRAM overhead compared to Masking
|
|
191
|
+
# Use flatten indices
|
|
192
|
+
sample_indices = cupy.random.choice(chunk_total_items, size=n_samples_chunk, replace=False)
|
|
193
|
+
else:
|
|
194
|
+
sample_indices = None
|
|
195
|
+
|
|
196
|
+
# --- CALC 1: APPROX ---
|
|
158
197
|
approx_out = cupy.empty_like(counts_dense)
|
|
159
198
|
pearson_approx_kernel(
|
|
160
199
|
counts_dense,
|
|
@@ -163,10 +202,22 @@ def NBumiPearsonResidualsCombinedGPU(
|
|
|
163
202
|
total,
|
|
164
203
|
approx_out
|
|
165
204
|
)
|
|
205
|
+
|
|
206
|
+
# [VIZ UPDATE: APPROX]
|
|
207
|
+
acc_approx_sum += cupy.sum(approx_out, axis=0)
|
|
208
|
+
acc_approx_sq += cupy.sum(approx_out**2, axis=0)
|
|
209
|
+
|
|
210
|
+
if sample_indices is not None:
|
|
211
|
+
# Flatten temporarily to sample, then return to CPU
|
|
212
|
+
# Note: take() returns a new array, small size
|
|
213
|
+
sampled_vals = approx_out.ravel().take(sample_indices)
|
|
214
|
+
viz_approx_samples.append(cupy.asnumpy(sampled_vals))
|
|
215
|
+
|
|
216
|
+
# [DISK WRITE: APPROX]
|
|
166
217
|
out_x_approx[current_row:end_row, :] = approx_out.get()
|
|
167
218
|
del approx_out
|
|
168
219
|
|
|
169
|
-
# --- CALC 2: FULL (In-place
|
|
220
|
+
# --- CALC 2: FULL (In-place) ---
|
|
170
221
|
pearson_residual_kernel(
|
|
171
222
|
counts_dense,
|
|
172
223
|
tjs_gpu,
|
|
@@ -175,13 +226,130 @@ def NBumiPearsonResidualsCombinedGPU(
|
|
|
175
226
|
total,
|
|
176
227
|
counts_dense # Overwrite input
|
|
177
228
|
)
|
|
229
|
+
|
|
230
|
+
# [VIZ UPDATE: FULL]
|
|
231
|
+
acc_full_sum += cupy.sum(counts_dense, axis=0)
|
|
232
|
+
acc_full_sq += cupy.sum(counts_dense**2, axis=0)
|
|
233
|
+
|
|
234
|
+
if sample_indices is not None:
|
|
235
|
+
sampled_vals = counts_dense.ravel().take(sample_indices)
|
|
236
|
+
viz_full_samples.append(cupy.asnumpy(sampled_vals))
|
|
237
|
+
|
|
238
|
+
# [DISK WRITE: FULL]
|
|
178
239
|
out_x_full[current_row:end_row, :] = counts_dense.get()
|
|
179
240
|
|
|
180
|
-
del counts_dense
|
|
241
|
+
del counts_dense, sample_indices
|
|
181
242
|
cupy.get_default_memory_pool().free_all_blocks()
|
|
182
243
|
current_row = end_row
|
|
183
244
|
|
|
184
245
|
print(f"\nPhase [2/2]: COMPLETE{' '*50}")
|
|
246
|
+
|
|
247
|
+
# ==========================================
|
|
248
|
+
# VIZ GENERATION (POST-PROCESS)
|
|
249
|
+
# ==========================================
|
|
250
|
+
if plot_summary_filename and plot_detail_filename:
|
|
251
|
+
print("Phase [Viz]: Generating Diagnostics...")
|
|
252
|
+
|
|
253
|
+
# 1. Finalize Variance Stats (GPU -> CPU)
|
|
254
|
+
# Var = E[X^2] - (E[X])^2
|
|
255
|
+
# Mean = Sum / N
|
|
256
|
+
|
|
257
|
+
# Pull everything to CPU once
|
|
258
|
+
raw_sum = cupy.asnumpy(acc_raw_sum)
|
|
259
|
+
|
|
260
|
+
approx_sum = cupy.asnumpy(acc_approx_sum)
|
|
261
|
+
approx_sq = cupy.asnumpy(acc_approx_sq)
|
|
262
|
+
|
|
263
|
+
full_sum = cupy.asnumpy(acc_full_sum)
|
|
264
|
+
full_sq = cupy.asnumpy(acc_full_sq)
|
|
265
|
+
|
|
266
|
+
# Calculate
|
|
267
|
+
mean_raw = raw_sum / nc
|
|
268
|
+
|
|
269
|
+
mean_approx = approx_sum / nc
|
|
270
|
+
mean_sq_approx = approx_sq / nc
|
|
271
|
+
var_approx = mean_sq_approx - (mean_approx**2)
|
|
272
|
+
|
|
273
|
+
mean_full = full_sum / nc
|
|
274
|
+
mean_sq_full = full_sq / nc
|
|
275
|
+
var_full = mean_sq_full - (mean_full**2)
|
|
276
|
+
|
|
277
|
+
# 2. Finalize Samples
|
|
278
|
+
if viz_approx_samples:
|
|
279
|
+
flat_approx = np.concatenate(viz_approx_samples)
|
|
280
|
+
flat_full = np.concatenate(viz_full_samples)
|
|
281
|
+
else:
|
|
282
|
+
flat_approx = np.array([])
|
|
283
|
+
flat_full = np.array([])
|
|
284
|
+
|
|
285
|
+
print(f" > Samples Collected: {len(flat_approx):,} points")
|
|
286
|
+
|
|
287
|
+
# --- FILE 1: SUMMARY (1080p) ---
|
|
288
|
+
print(f" > Saving Summary Plot: {plot_summary_filename}")
|
|
289
|
+
fig1, ax1 = plt.subplots(1, 2, figsize=(16, 7)) # 16x7 inches ~ 1080p aspect
|
|
290
|
+
|
|
291
|
+
# Plot 1: Variance Stabilization
|
|
292
|
+
ax = ax1[0]
|
|
293
|
+
ax.scatter(mean_raw, var_approx, s=2, alpha=0.5, color='red', label='Approx (Poisson)')
|
|
294
|
+
ax.scatter(mean_raw, var_full, s=2, alpha=0.5, color='blue', label='Full (NB Pearson)')
|
|
295
|
+
ax.axhline(1.0, color='black', linestyle='--', linewidth=1)
|
|
296
|
+
ax.set_xscale('log')
|
|
297
|
+
ax.set_yscale('log')
|
|
298
|
+
ax.set_title("Variance Stabilization Check")
|
|
299
|
+
ax.set_xlabel("Mean Raw Expression (log)")
|
|
300
|
+
ax.set_ylabel("Variance of Residuals (log)")
|
|
301
|
+
ax.legend()
|
|
302
|
+
ax.grid(True, alpha=0.3)
|
|
303
|
+
ax.text(0.5, -0.15, "Goal: Blue dots should form a flat line at y=1",
|
|
304
|
+
transform=ax.transAxes, ha='center', fontsize=9,
|
|
305
|
+
bbox=dict(facecolor='#f0f0f0', edgecolor='black', alpha=0.7))
|
|
306
|
+
|
|
307
|
+
# Plot 3: Distribution
|
|
308
|
+
ax = ax1[1]
|
|
309
|
+
if len(flat_approx) > 100:
|
|
310
|
+
# Clip for cleaner KDE
|
|
311
|
+
mask_kde = (flat_approx > -10) & (flat_approx < 10)
|
|
312
|
+
sns.kdeplot(flat_approx[mask_kde], fill=True, color='red', alpha=0.3, label='Approx', ax=ax, warn_singular=False)
|
|
313
|
+
sns.kdeplot(flat_full[mask_kde], fill=True, color='blue', alpha=0.3, label='Full', ax=ax, warn_singular=False)
|
|
314
|
+
ax.set_xlim(-5, 5)
|
|
315
|
+
ax.set_title("Distribution of Residuals")
|
|
316
|
+
ax.set_xlabel("Residual Value")
|
|
317
|
+
ax.legend()
|
|
318
|
+
ax.grid(True, alpha=0.3)
|
|
319
|
+
ax.text(0.5, -0.15, "Goal: Blue curve should be tighter (narrower) than Red",
|
|
320
|
+
transform=ax.transAxes, ha='center', fontsize=9,
|
|
321
|
+
bbox=dict(facecolor='#f0f0f0', edgecolor='black', alpha=0.7))
|
|
322
|
+
|
|
323
|
+
plt.tight_layout()
|
|
324
|
+
plt.savefig(plot_summary_filename, dpi=120) # 120 DPI * 16 inch = 1920 width
|
|
325
|
+
plt.close()
|
|
326
|
+
|
|
327
|
+
# --- FILE 2: DETAIL (4K) ---
|
|
328
|
+
print(f" > Saving Detail Plot: {plot_detail_filename}")
|
|
329
|
+
fig2, ax2 = plt.subplots(figsize=(20, 11)) # 20x11 inches ~ 4K aspect
|
|
330
|
+
|
|
331
|
+
if len(flat_approx) > 0:
|
|
332
|
+
ax2.scatter(flat_approx, flat_full, s=1, alpha=0.5, color='purple')
|
|
333
|
+
|
|
334
|
+
# Diagonal line
|
|
335
|
+
lims = [
|
|
336
|
+
np.min([ax2.get_xlim(), ax2.get_ylim()]),
|
|
337
|
+
np.max([ax2.get_xlim(), ax2.get_ylim()]),
|
|
338
|
+
]
|
|
339
|
+
ax2.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
|
|
340
|
+
|
|
341
|
+
ax2.set_title("Residual Shrinkage (Sampled)")
|
|
342
|
+
ax2.set_xlabel("Approx Residuals")
|
|
343
|
+
ax2.set_ylabel("Full Residuals")
|
|
344
|
+
ax2.grid(True, alpha=0.3)
|
|
345
|
+
ax2.text(0.5, -0.1, "Goal: Points below diagonal = Dispersion Penalty Working",
|
|
346
|
+
transform=ax2.transAxes, ha='center', fontsize=12,
|
|
347
|
+
bbox=dict(facecolor='#f0f0f0', edgecolor='black', alpha=0.7))
|
|
348
|
+
|
|
349
|
+
plt.tight_layout()
|
|
350
|
+
plt.savefig(plot_detail_filename, dpi=200) # 200 DPI * 20 inch = 4000 width (4Kish)
|
|
351
|
+
plt.close()
|
|
352
|
+
|
|
185
353
|
|
|
186
354
|
if hasattr(adata_in, "file") and adata_in.file is not None: adata_in.file.close()
|
|
187
355
|
print(f"Total time: {time.perf_counter() - start_time:.2f} seconds.\n")
|
|
@@ -5,10 +5,10 @@ m3Drop/CoreGPU.py,sha256=6LToLuWyHxX_7sC2z0Xnvy_qqgmpew5DmnCV0PxmTZQ,19785
|
|
|
5
5
|
m3Drop/DiagnosticsCPU.py,sha256=l0Imkh3F3zo4ovihUjx7cYWYgzPdztWCN1hcBFO43nY,12943
|
|
6
6
|
m3Drop/DiagnosticsGPU.py,sha256=bsatHyHszgbufneeJvFvHBTLzDuY006nP2yHPHs8s7M,14389
|
|
7
7
|
m3Drop/NormalizationCPU.py,sha256=DmqvjcpHwkNZicEb2GBqTDBVyvtBeUSLmFRwRFDk0ms,7458
|
|
8
|
-
m3Drop/NormalizationGPU.py,sha256=
|
|
8
|
+
m3Drop/NormalizationGPU.py,sha256=dePlap2nk85yEo4uUzRUCqTggRBuL16L0bJnAuJHWHI,14760
|
|
9
9
|
m3Drop/__init__.py,sha256=W_TQ9P8_7Tdsa6kDZ6IJKT0FMkX_JFvBqiP821CZIrk,2180
|
|
10
|
-
m3drop-0.4.
|
|
11
|
-
m3drop-0.4.
|
|
12
|
-
m3drop-0.4.
|
|
13
|
-
m3drop-0.4.
|
|
14
|
-
m3drop-0.4.
|
|
10
|
+
m3drop-0.4.50.dist-info/licenses/LICENSE,sha256=44Iqpp8Fc10Xzd5T7cT9UhO31Qftk3gBiCjtpwilP_k,1074
|
|
11
|
+
m3drop-0.4.50.dist-info/METADATA,sha256=SHH4ifncxDvHPZoDw86WgAu48dy0BAs99Gr8zuS6ItI,5248
|
|
12
|
+
m3drop-0.4.50.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
13
|
+
m3drop-0.4.50.dist-info/top_level.txt,sha256=AEULFEFIgFtAwS-KBlIFoYXrqczX_rwqrEcdK46GIrA,7
|
|
14
|
+
m3drop-0.4.50.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|