LoopStructural 1.6.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of LoopStructural might be problematic. Click here for more details.
- LoopStructural/__init__.py +52 -0
- LoopStructural/datasets/__init__.py +23 -0
- LoopStructural/datasets/_base.py +301 -0
- LoopStructural/datasets/_example_models.py +10 -0
- LoopStructural/datasets/data/claudius.csv +21049 -0
- LoopStructural/datasets/data/claudiusbb.txt +2 -0
- LoopStructural/datasets/data/duplex.csv +126 -0
- LoopStructural/datasets/data/duplexbb.txt +2 -0
- LoopStructural/datasets/data/fault_trace/fault_trace.cpg +1 -0
- LoopStructural/datasets/data/fault_trace/fault_trace.dbf +0 -0
- LoopStructural/datasets/data/fault_trace/fault_trace.prj +1 -0
- LoopStructural/datasets/data/fault_trace/fault_trace.shp +0 -0
- LoopStructural/datasets/data/fault_trace/fault_trace.shx +0 -0
- LoopStructural/datasets/data/geological_map_data/bbox.csv +2 -0
- LoopStructural/datasets/data/geological_map_data/contacts.csv +657 -0
- LoopStructural/datasets/data/geological_map_data/fault_displacement.csv +7 -0
- LoopStructural/datasets/data/geological_map_data/fault_edges.txt +2 -0
- LoopStructural/datasets/data/geological_map_data/fault_locations.csv +79 -0
- LoopStructural/datasets/data/geological_map_data/fault_orientations.csv +19 -0
- LoopStructural/datasets/data/geological_map_data/stratigraphic_order.csv +13 -0
- LoopStructural/datasets/data/geological_map_data/stratigraphic_orientations.csv +207 -0
- LoopStructural/datasets/data/geological_map_data/stratigraphic_thickness.csv +13 -0
- LoopStructural/datasets/data/intrusion.csv +1017 -0
- LoopStructural/datasets/data/intrusionbb.txt +2 -0
- LoopStructural/datasets/data/onefoldbb.txt +2 -0
- LoopStructural/datasets/data/onefolddata.csv +2226 -0
- LoopStructural/datasets/data/refolded_bb.txt +2 -0
- LoopStructural/datasets/data/refolded_fold.csv +205 -0
- LoopStructural/datasets/data/tabular_intrusion.csv +23 -0
- LoopStructural/datatypes/__init__.py +4 -0
- LoopStructural/datatypes/_bounding_box.py +422 -0
- LoopStructural/datatypes/_point.py +166 -0
- LoopStructural/datatypes/_structured_grid.py +94 -0
- LoopStructural/datatypes/_surface.py +184 -0
- LoopStructural/export/exporters.py +554 -0
- LoopStructural/export/file_formats.py +15 -0
- LoopStructural/export/geoh5.py +100 -0
- LoopStructural/export/gocad.py +126 -0
- LoopStructural/export/omf_wrapper.py +88 -0
- LoopStructural/interpolators/__init__.py +105 -0
- LoopStructural/interpolators/_api.py +143 -0
- LoopStructural/interpolators/_builders.py +149 -0
- LoopStructural/interpolators/_cython/__init__.py +0 -0
- LoopStructural/interpolators/_discrete_fold_interpolator.py +183 -0
- LoopStructural/interpolators/_discrete_interpolator.py +692 -0
- LoopStructural/interpolators/_finite_difference_interpolator.py +470 -0
- LoopStructural/interpolators/_geological_interpolator.py +380 -0
- LoopStructural/interpolators/_interpolator_factory.py +89 -0
- LoopStructural/interpolators/_non_linear_discrete_interpolator.py +0 -0
- LoopStructural/interpolators/_operator.py +38 -0
- LoopStructural/interpolators/_p1interpolator.py +228 -0
- LoopStructural/interpolators/_p2interpolator.py +277 -0
- LoopStructural/interpolators/_surfe_wrapper.py +174 -0
- LoopStructural/interpolators/supports/_2d_base_unstructured.py +340 -0
- LoopStructural/interpolators/supports/_2d_p1_unstructured.py +68 -0
- LoopStructural/interpolators/supports/_2d_p2_unstructured.py +288 -0
- LoopStructural/interpolators/supports/_2d_structured_grid.py +462 -0
- LoopStructural/interpolators/supports/_2d_structured_tetra.py +0 -0
- LoopStructural/interpolators/supports/_3d_base_structured.py +467 -0
- LoopStructural/interpolators/supports/_3d_p2_tetra.py +331 -0
- LoopStructural/interpolators/supports/_3d_structured_grid.py +470 -0
- LoopStructural/interpolators/supports/_3d_structured_tetra.py +746 -0
- LoopStructural/interpolators/supports/_3d_unstructured_tetra.py +637 -0
- LoopStructural/interpolators/supports/__init__.py +55 -0
- LoopStructural/interpolators/supports/_aabb.py +77 -0
- LoopStructural/interpolators/supports/_base_support.py +114 -0
- LoopStructural/interpolators/supports/_face_table.py +70 -0
- LoopStructural/interpolators/supports/_support_factory.py +32 -0
- LoopStructural/modelling/__init__.py +29 -0
- LoopStructural/modelling/core/__init__.py +0 -0
- LoopStructural/modelling/core/geological_model.py +1867 -0
- LoopStructural/modelling/features/__init__.py +32 -0
- LoopStructural/modelling/features/_analytical_feature.py +79 -0
- LoopStructural/modelling/features/_base_geological_feature.py +364 -0
- LoopStructural/modelling/features/_cross_product_geological_feature.py +100 -0
- LoopStructural/modelling/features/_geological_feature.py +288 -0
- LoopStructural/modelling/features/_lambda_geological_feature.py +93 -0
- LoopStructural/modelling/features/_region.py +18 -0
- LoopStructural/modelling/features/_structural_frame.py +186 -0
- LoopStructural/modelling/features/_unconformity_feature.py +83 -0
- LoopStructural/modelling/features/builders/__init__.py +5 -0
- LoopStructural/modelling/features/builders/_base_builder.py +111 -0
- LoopStructural/modelling/features/builders/_fault_builder.py +590 -0
- LoopStructural/modelling/features/builders/_folded_feature_builder.py +129 -0
- LoopStructural/modelling/features/builders/_geological_feature_builder.py +543 -0
- LoopStructural/modelling/features/builders/_structural_frame_builder.py +237 -0
- LoopStructural/modelling/features/fault/__init__.py +3 -0
- LoopStructural/modelling/features/fault/_fault_function.py +444 -0
- LoopStructural/modelling/features/fault/_fault_function_feature.py +82 -0
- LoopStructural/modelling/features/fault/_fault_segment.py +505 -0
- LoopStructural/modelling/features/fold/__init__.py +9 -0
- LoopStructural/modelling/features/fold/_fold.py +167 -0
- LoopStructural/modelling/features/fold/_fold_rotation_angle.py +149 -0
- LoopStructural/modelling/features/fold/_fold_rotation_angle_feature.py +67 -0
- LoopStructural/modelling/features/fold/_foldframe.py +194 -0
- LoopStructural/modelling/features/fold/_svariogram.py +188 -0
- LoopStructural/modelling/input/__init__.py +2 -0
- LoopStructural/modelling/input/fault_network.py +80 -0
- LoopStructural/modelling/input/map2loop_processor.py +165 -0
- LoopStructural/modelling/input/process_data.py +650 -0
- LoopStructural/modelling/input/project_file.py +84 -0
- LoopStructural/modelling/intrusions/__init__.py +25 -0
- LoopStructural/modelling/intrusions/geom_conceptual_models.py +142 -0
- LoopStructural/modelling/intrusions/geometric_scaling_functions.py +123 -0
- LoopStructural/modelling/intrusions/intrusion_builder.py +672 -0
- LoopStructural/modelling/intrusions/intrusion_feature.py +410 -0
- LoopStructural/modelling/intrusions/intrusion_frame_builder.py +971 -0
- LoopStructural/modelling/intrusions/intrusion_support_functions.py +460 -0
- LoopStructural/utils/__init__.py +38 -0
- LoopStructural/utils/_surface.py +143 -0
- LoopStructural/utils/_transformation.py +76 -0
- LoopStructural/utils/config.py +18 -0
- LoopStructural/utils/dtm_creator.py +17 -0
- LoopStructural/utils/exceptions.py +31 -0
- LoopStructural/utils/helper.py +292 -0
- LoopStructural/utils/json_encoder.py +18 -0
- LoopStructural/utils/linalg.py +8 -0
- LoopStructural/utils/logging.py +79 -0
- LoopStructural/utils/maths.py +245 -0
- LoopStructural/utils/regions.py +103 -0
- LoopStructural/utils/typing.py +7 -0
- LoopStructural/utils/utils.py +68 -0
- LoopStructural/version.py +1 -0
- LoopStructural/visualisation/__init__.py +11 -0
- LoopStructural-1.6.1.dist-info/LICENSE +21 -0
- LoopStructural-1.6.1.dist-info/METADATA +81 -0
- LoopStructural-1.6.1.dist-info/RECORD +129 -0
- LoopStructural-1.6.1.dist-info/WHEEL +5 -0
- LoopStructural-1.6.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,410 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
import numpy as np
|
|
3
|
+
import pandas as pd
|
|
4
|
+
from LoopStructural.modelling.features import BaseFeature
|
|
5
|
+
from LoopStructural.modelling.features import FeatureType
|
|
6
|
+
|
|
7
|
+
# import logging
|
|
8
|
+
from ...utils import getLogger
|
|
9
|
+
from scipy.interpolate import Rbf
|
|
10
|
+
|
|
11
|
+
logger = getLogger(__name__)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class IntrusionFeature(BaseFeature):
|
|
15
|
+
"""
|
|
16
|
+
Intrusion feature is a class to represent an intrusion, using a distance scalar field to the intrusion contact.
|
|
17
|
+
Threshold distances are simulated along the intrusion frame coordinates, and simulation are constrained
|
|
18
|
+
with conceptual geometrical model of the lateral and vertical intrusion extent.
|
|
19
|
+
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
def __init__(
|
|
23
|
+
self,
|
|
24
|
+
frame,
|
|
25
|
+
builder,
|
|
26
|
+
# faults=[],
|
|
27
|
+
name="UnnamedIntrusion",
|
|
28
|
+
model=None,
|
|
29
|
+
):
|
|
30
|
+
"""
|
|
31
|
+
Parameters
|
|
32
|
+
----------
|
|
33
|
+
name: string
|
|
34
|
+
|
|
35
|
+
model: GeologicalModel
|
|
36
|
+
|
|
37
|
+
Returns
|
|
38
|
+
----------
|
|
39
|
+
intrusion_feature : IntrusionFeature
|
|
40
|
+
|
|
41
|
+
"""
|
|
42
|
+
|
|
43
|
+
BaseFeature.__init__(self, name=name, builder=builder, model=model)
|
|
44
|
+
|
|
45
|
+
self.intrusion_frame = frame
|
|
46
|
+
self.type = FeatureType.INTRUSION
|
|
47
|
+
self.assisting_faults = {}
|
|
48
|
+
|
|
49
|
+
def set_intrusion_frame(self, intrusion_frame):
|
|
50
|
+
self.intrusion_feature_frame = intrusion_frame
|
|
51
|
+
|
|
52
|
+
def set_model(self, model):
|
|
53
|
+
self.model = model
|
|
54
|
+
|
|
55
|
+
def add_assisting_faults(self, faults_dictionary):
|
|
56
|
+
|
|
57
|
+
self.assisting_faults = faults_dictionary
|
|
58
|
+
|
|
59
|
+
def interpolate_lateral_thresholds(self, points_coord1):
|
|
60
|
+
|
|
61
|
+
conceptual_model = self.builder.lateral_extent_model
|
|
62
|
+
inputsimdata_minL = self.builder.data_for_lateral_extent_calculation[0]
|
|
63
|
+
inputsimdata_maxL = self.builder.data_for_lateral_extent_calculation[1]
|
|
64
|
+
|
|
65
|
+
minL_inputdata_coord1 = inputsimdata_minL.coord1.to_numpy()
|
|
66
|
+
# minL_inputdata_coord2 = inputsimdata_minL.coord2.to_numpy()
|
|
67
|
+
minL_inputdata_residual = inputsimdata_minL.l_residual.to_numpy()
|
|
68
|
+
# minL_inputdata_conceptual = inputsimdata_minL.l_conceptual.to_numpy()
|
|
69
|
+
|
|
70
|
+
maxL_inputdata_coord1 = inputsimdata_maxL.coord1.to_numpy()
|
|
71
|
+
# maxL_inputdata_coord2 = inputsimdata_maxL.coord2.to_numpy()
|
|
72
|
+
maxL_inputdata_residual = inputsimdata_maxL.l_residual.to_numpy()
|
|
73
|
+
# maxL_inputdata_conceptual = inputsimdata_maxL.l_conceptual.to_numpy()
|
|
74
|
+
|
|
75
|
+
# min,max P and L should be the same as in conceptual models
|
|
76
|
+
minP = self.builder.conceptual_model_parameters.get("minP")
|
|
77
|
+
maxP = self.builder.conceptual_model_parameters.get("maxP")
|
|
78
|
+
minL = self.builder.conceptual_model_parameters.get("minL")
|
|
79
|
+
maxL = self.builder.conceptual_model_parameters.get("maxL")
|
|
80
|
+
|
|
81
|
+
points_coord_df = pd.DataFrame(points_coord1, columns=["coord1"])
|
|
82
|
+
residual_values = []
|
|
83
|
+
thresholds_values = []
|
|
84
|
+
conceptual_values = []
|
|
85
|
+
|
|
86
|
+
# min side
|
|
87
|
+
minL_residual_interpolator = Rbf(
|
|
88
|
+
minL_inputdata_coord1, minL_inputdata_residual, function="linear"
|
|
89
|
+
)
|
|
90
|
+
minL_conceptual_model = conceptual_model(
|
|
91
|
+
points_coord_df, minP=minP, maxP=maxP, minS=minL, maxS=maxL
|
|
92
|
+
)[:, 1]
|
|
93
|
+
|
|
94
|
+
minL_minP = np.min(minL_inputdata_coord1)
|
|
95
|
+
minL_minP_val = minL_residual_interpolator(minL_minP)
|
|
96
|
+
minL_maxP = np.max(minL_inputdata_coord1)
|
|
97
|
+
minL_maxP_val = minL_residual_interpolator(minL_maxP)
|
|
98
|
+
|
|
99
|
+
residuals = minL_residual_interpolator(points_coord1)
|
|
100
|
+
residuals[points_coord1 > minL_maxP] = minL_maxP_val
|
|
101
|
+
residuals[points_coord1 < minL_minP] = minL_minP_val
|
|
102
|
+
|
|
103
|
+
values = minL_conceptual_model - residuals
|
|
104
|
+
values[points_coord1 < minP] = 0
|
|
105
|
+
values[points_coord1 > maxP] = 0
|
|
106
|
+
|
|
107
|
+
residual_values.append(residuals)
|
|
108
|
+
thresholds_values.append(values)
|
|
109
|
+
conceptual_values.append(minL_conceptual_model)
|
|
110
|
+
|
|
111
|
+
# max side
|
|
112
|
+
maxL_residual_interpolator = Rbf(
|
|
113
|
+
maxL_inputdata_coord1, maxL_inputdata_residual, function="linear"
|
|
114
|
+
)
|
|
115
|
+
maxL_conceptual_model = conceptual_model(
|
|
116
|
+
points_coord_df, minP=minP, maxP=maxP, minS=minL, maxS=maxL
|
|
117
|
+
)[:, 0]
|
|
118
|
+
|
|
119
|
+
maxL_minP = np.min(maxL_inputdata_coord1)
|
|
120
|
+
maxL_minP_val = maxL_residual_interpolator(maxL_minP)
|
|
121
|
+
maxL_maxP = np.max(maxL_inputdata_coord1)
|
|
122
|
+
maxL_maxP_val = maxL_residual_interpolator(maxL_maxP)
|
|
123
|
+
|
|
124
|
+
residuals = maxL_residual_interpolator(points_coord1)
|
|
125
|
+
residuals[points_coord1 > maxL_maxP] = maxL_maxP_val
|
|
126
|
+
residuals[points_coord1 < maxL_minP] = maxL_minP_val
|
|
127
|
+
|
|
128
|
+
values = maxL_conceptual_model - residuals
|
|
129
|
+
values[points_coord1 < minP] = 0
|
|
130
|
+
values[points_coord1 > maxP] = 0
|
|
131
|
+
|
|
132
|
+
residual_values.append(residuals)
|
|
133
|
+
thresholds_values.append(values)
|
|
134
|
+
conceptual_values.append(maxL_conceptual_model)
|
|
135
|
+
|
|
136
|
+
return thresholds_values, residual_values, conceptual_values
|
|
137
|
+
|
|
138
|
+
def interpolate_vertical_thresholds(self, points_coord1, points_coord2):
|
|
139
|
+
|
|
140
|
+
function_rbf = "linear"
|
|
141
|
+
|
|
142
|
+
conceptual_model = self.builder.vertical_extent_model
|
|
143
|
+
inputsimdata_maxG = self.builder.data_for_vertical_extent_calculation[0]
|
|
144
|
+
inputsimdata_minG = self.builder.data_for_vertical_extent_calculation[1]
|
|
145
|
+
|
|
146
|
+
minG_inputdata_coord0 = inputsimdata_minG.coord0.to_numpy()
|
|
147
|
+
minG_inputdata_coord1 = inputsimdata_minG.coord1.to_numpy()
|
|
148
|
+
minG_inputdata_coord2 = inputsimdata_minG.coord2.to_numpy()
|
|
149
|
+
# inputsimdata_minG.coord0.to_numpy()
|
|
150
|
+
|
|
151
|
+
# inputsimdata_maxG.coord0.to_numpy()
|
|
152
|
+
maxG_inputdata_coord1 = inputsimdata_maxG.coord1.to_numpy()
|
|
153
|
+
maxG_inputdata_coord2 = inputsimdata_maxG.coord2.to_numpy()
|
|
154
|
+
maxG_inputdata_residual = inputsimdata_maxG.g_residual.to_numpy()
|
|
155
|
+
# inputsimdata_maxG.g_conceptual.to_numpy()
|
|
156
|
+
|
|
157
|
+
# min,max P and L should be the same as in conceptual models
|
|
158
|
+
minP = self.builder.conceptual_model_parameters.get("minP")
|
|
159
|
+
maxP = self.builder.conceptual_model_parameters.get("maxP")
|
|
160
|
+
minL = self.builder.conceptual_model_parameters.get("minL")
|
|
161
|
+
maxL = self.builder.conceptual_model_parameters.get("maxL")
|
|
162
|
+
mean_G = self.builder.conceptual_model_parameters.get("mean_growth")
|
|
163
|
+
vertex = self.builder.conceptual_model_parameters.get("vertex")
|
|
164
|
+
|
|
165
|
+
points_df = pd.DataFrame()
|
|
166
|
+
points_df["coord1"] = points_coord1
|
|
167
|
+
points_df["coord2"] = points_coord2
|
|
168
|
+
residual_values = []
|
|
169
|
+
threshold_values = []
|
|
170
|
+
conceptual_values = []
|
|
171
|
+
|
|
172
|
+
# max growth
|
|
173
|
+
maxG_residual_interpolator = Rbf(
|
|
174
|
+
maxG_inputdata_coord1,
|
|
175
|
+
maxG_inputdata_coord2,
|
|
176
|
+
maxG_inputdata_residual,
|
|
177
|
+
function=function_rbf,
|
|
178
|
+
)
|
|
179
|
+
maxG_conceptual_model = conceptual_model(
|
|
180
|
+
points_df,
|
|
181
|
+
minP=minP,
|
|
182
|
+
maxP=maxP,
|
|
183
|
+
minS=minL,
|
|
184
|
+
maxS=maxL,
|
|
185
|
+
mean_growth=mean_G,
|
|
186
|
+
vertex=vertex,
|
|
187
|
+
)[:, 1]
|
|
188
|
+
|
|
189
|
+
# maxG_minP = np.min(maxG_inputdata_coord1)
|
|
190
|
+
# maxG_residual_interpolator(
|
|
191
|
+
# maxG_minP,
|
|
192
|
+
# maxG_inputdata_coord2[np.where(maxG_inputdata_coord1 == maxG_minP)][0],
|
|
193
|
+
# )
|
|
194
|
+
# maxG_maxP = np.max(maxG_inputdata_coord1)
|
|
195
|
+
# maxG_residual_interpolator(
|
|
196
|
+
# maxG_maxP,
|
|
197
|
+
# maxG_inputdata_coord2[np.where(maxG_inputdata_coord1 == maxG_maxP)][0],
|
|
198
|
+
# )
|
|
199
|
+
# maxG_minL = np.min(maxG_inputdata_coord2)
|
|
200
|
+
# maxG_residual_interpolator(
|
|
201
|
+
# maxG_inputdata_coord1[np.where(maxG_inputdata_coord2 == maxG_minL)][0],
|
|
202
|
+
# maxG_minL,
|
|
203
|
+
# )
|
|
204
|
+
# maxG_maxL = np.max(maxG_inputdata_coord2)
|
|
205
|
+
# maxG_residual_interpolator(
|
|
206
|
+
# maxG_inputdata_coord1[np.where(maxG_inputdata_coord2 == maxG_maxL)][0],
|
|
207
|
+
# maxG_maxL,
|
|
208
|
+
# )
|
|
209
|
+
|
|
210
|
+
residuals = maxG_residual_interpolator(points_coord1, points_coord2)
|
|
211
|
+
thresholds = maxG_conceptual_model - residuals
|
|
212
|
+
|
|
213
|
+
residual_values.append(residuals)
|
|
214
|
+
threshold_values.append(thresholds)
|
|
215
|
+
conceptual_values.append(maxG_conceptual_model)
|
|
216
|
+
|
|
217
|
+
# intrusion reference contact, conditioning to data
|
|
218
|
+
minG_interpolator = Rbf(
|
|
219
|
+
minG_inputdata_coord1,
|
|
220
|
+
minG_inputdata_coord2,
|
|
221
|
+
minG_inputdata_coord0,
|
|
222
|
+
function=function_rbf,
|
|
223
|
+
)
|
|
224
|
+
thresholds = minG_interpolator(points_coord1, points_coord2)
|
|
225
|
+
minG_conceptual_model = np.zeros(len(points_coord1))
|
|
226
|
+
|
|
227
|
+
threshold_values.append(thresholds)
|
|
228
|
+
conceptual_values.append(minG_conceptual_model)
|
|
229
|
+
|
|
230
|
+
return threshold_values, residual_values, conceptual_values
|
|
231
|
+
|
|
232
|
+
def evaluate_gradient(self, pos):
|
|
233
|
+
## LG TODO check whether it can be implemented
|
|
234
|
+
raise NotImplementedError("Cannot calculate gradient of Intrusion")
|
|
235
|
+
|
|
236
|
+
def evaluate_value(self, pos):
|
|
237
|
+
"""
|
|
238
|
+
Computes a distance scalar field to the intrusion contact (isovalue = 0).
|
|
239
|
+
|
|
240
|
+
Parameters
|
|
241
|
+
------------
|
|
242
|
+
points : numpy array (x,y,z), points where the IntrusionFeature is evaluated.
|
|
243
|
+
|
|
244
|
+
Returns
|
|
245
|
+
------------
|
|
246
|
+
intrusion_sf : numpy array, contains distance to intrusion contact
|
|
247
|
+
|
|
248
|
+
"""
|
|
249
|
+
self.builder.up_to_date()
|
|
250
|
+
|
|
251
|
+
# compute coordinates values for each evaluated point
|
|
252
|
+
intrusion_coord0_pts = self.intrusion_frame[0].evaluate_value(pos)
|
|
253
|
+
intrusion_coord1_pts = self.intrusion_frame[1].evaluate_value(pos)
|
|
254
|
+
intrusion_coord2_pts = self.intrusion_frame[2].evaluate_value(pos)
|
|
255
|
+
|
|
256
|
+
self.evaluated_points = [
|
|
257
|
+
pos,
|
|
258
|
+
intrusion_coord0_pts,
|
|
259
|
+
intrusion_coord1_pts,
|
|
260
|
+
intrusion_coord2_pts,
|
|
261
|
+
]
|
|
262
|
+
|
|
263
|
+
thresholds, residuals, conceptual = self.interpolate_lateral_thresholds(
|
|
264
|
+
intrusion_coord1_pts
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
if self.intrusion_frame.builder.marginal_faults is not None:
|
|
268
|
+
c2_minside_threshold = thresholds[0] # np.zeros_like(intrusion_coord2_pts)
|
|
269
|
+
c2_maxside_threshold = thresholds[1]
|
|
270
|
+
|
|
271
|
+
else:
|
|
272
|
+
c2_minside_threshold = thresholds[0]
|
|
273
|
+
c2_maxside_threshold = thresholds[1]
|
|
274
|
+
|
|
275
|
+
thresholds, residuals, conceptual = self.interpolate_vertical_thresholds(
|
|
276
|
+
intrusion_coord1_pts, intrusion_coord2_pts
|
|
277
|
+
)
|
|
278
|
+
c0_minside_threshold = thresholds[1]
|
|
279
|
+
c0_maxside_threshold = thresholds[0]
|
|
280
|
+
|
|
281
|
+
if len(self.assisting_faults) > 0:
|
|
282
|
+
fault = self.assisting_faults.get("structure")
|
|
283
|
+
weight = self.assisting_faults.get("asymmetry_weight", 1)
|
|
284
|
+
evaluation_points_in_fault = fault[0].evaluate_value(pos)
|
|
285
|
+
c0_maxside_threshold[evaluation_points_in_fault >= 0] = (
|
|
286
|
+
c0_maxside_threshold[evaluation_points_in_fault >= 0] * weight
|
|
287
|
+
)
|
|
288
|
+
|
|
289
|
+
mid_point = c0_minside_threshold + ((c0_maxside_threshold - c0_minside_threshold) / 2)
|
|
290
|
+
|
|
291
|
+
a = intrusion_coord2_pts >= c2_maxside_threshold
|
|
292
|
+
b = intrusion_coord2_pts <= c2_minside_threshold
|
|
293
|
+
c = (
|
|
294
|
+
(c2_minside_threshold < intrusion_coord2_pts)
|
|
295
|
+
* (intrusion_coord2_pts < c2_maxside_threshold)
|
|
296
|
+
* (intrusion_coord0_pts <= c0_minside_threshold)
|
|
297
|
+
)
|
|
298
|
+
d = (
|
|
299
|
+
(c2_minside_threshold < intrusion_coord2_pts)
|
|
300
|
+
* (intrusion_coord2_pts < c2_maxside_threshold)
|
|
301
|
+
* (intrusion_coord0_pts >= c0_maxside_threshold)
|
|
302
|
+
)
|
|
303
|
+
e = (
|
|
304
|
+
(c2_minside_threshold < intrusion_coord2_pts)
|
|
305
|
+
* (intrusion_coord2_pts < c2_maxside_threshold)
|
|
306
|
+
* (mid_point >= intrusion_coord0_pts)
|
|
307
|
+
* (intrusion_coord0_pts > c0_minside_threshold)
|
|
308
|
+
)
|
|
309
|
+
f = (
|
|
310
|
+
(c2_minside_threshold < intrusion_coord2_pts)
|
|
311
|
+
* (intrusion_coord2_pts < c2_maxside_threshold)
|
|
312
|
+
* (mid_point < intrusion_coord0_pts)
|
|
313
|
+
* (intrusion_coord0_pts < c0_maxside_threshold)
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
mod_Smin_thresholds = intrusion_coord2_pts - c2_minside_threshold
|
|
317
|
+
mod_Smax_thresholds = intrusion_coord2_pts - c2_maxside_threshold
|
|
318
|
+
mod_Gmin_thresholds = intrusion_coord0_pts - c0_minside_threshold
|
|
319
|
+
mod_Gmax_thresholds = intrusion_coord0_pts - c0_maxside_threshold
|
|
320
|
+
|
|
321
|
+
intrusion_sf = (
|
|
322
|
+
a * mod_Smax_thresholds
|
|
323
|
+
+ b * abs(mod_Smin_thresholds)
|
|
324
|
+
+ c * abs(mod_Gmin_thresholds)
|
|
325
|
+
+ d * mod_Gmax_thresholds
|
|
326
|
+
- e * mod_Gmin_thresholds
|
|
327
|
+
+ f * mod_Gmax_thresholds
|
|
328
|
+
) * (
|
|
329
|
+
-1
|
|
330
|
+
) # multiply by (-1) so intrusions can be used as unconformities
|
|
331
|
+
|
|
332
|
+
return intrusion_sf
|
|
333
|
+
|
|
334
|
+
def evaluate_value_test(self, points):
|
|
335
|
+
"""
|
|
336
|
+
Computes a distance scalar field to the intrusion contact (isovalue = 0).
|
|
337
|
+
|
|
338
|
+
Parameters
|
|
339
|
+
------------
|
|
340
|
+
points : numpy array (x,y,z), points where the IntrusionFeature is evaluated.
|
|
341
|
+
|
|
342
|
+
Returns
|
|
343
|
+
------------
|
|
344
|
+
intrusion_sf : numpy array, contains distance to intrusion contact
|
|
345
|
+
|
|
346
|
+
"""
|
|
347
|
+
self.builder.up_to_date()
|
|
348
|
+
|
|
349
|
+
# compute coordinates values for each evaluated point
|
|
350
|
+
intrusion_coord0_pts = self.intrusion_frame[0].evaluate_value(points)
|
|
351
|
+
intrusion_coord1_pts = self.intrusion_frame[1].evaluate_value(points)
|
|
352
|
+
intrusion_coord2_pts = self.intrusion_frame[2].evaluate_value(points)
|
|
353
|
+
|
|
354
|
+
self.evaluated_points = [
|
|
355
|
+
points,
|
|
356
|
+
intrusion_coord0_pts,
|
|
357
|
+
intrusion_coord1_pts,
|
|
358
|
+
intrusion_coord2_pts,
|
|
359
|
+
]
|
|
360
|
+
|
|
361
|
+
thresholds, residuals, conceptual = self.interpolate_lateral_thresholds(
|
|
362
|
+
intrusion_coord1_pts
|
|
363
|
+
)
|
|
364
|
+
|
|
365
|
+
if self.intrusion_frame.builder.marginal_faults is not None:
|
|
366
|
+
c2_minside_threshold = np.zeros_like(intrusion_coord2_pts)
|
|
367
|
+
c2_maxside_threshold = thresholds[1]
|
|
368
|
+
|
|
369
|
+
else:
|
|
370
|
+
c2_minside_threshold = thresholds[0]
|
|
371
|
+
c2_maxside_threshold = thresholds[1]
|
|
372
|
+
|
|
373
|
+
thresholds, residuals, conceptual = self.interpolate_vertical_thresholds(
|
|
374
|
+
intrusion_coord1_pts, intrusion_coord2_pts
|
|
375
|
+
)
|
|
376
|
+
c0_minside_threshold = thresholds[1]
|
|
377
|
+
c0_maxside_threshold = thresholds[0]
|
|
378
|
+
|
|
379
|
+
mid_point = c0_minside_threshold + ((c0_maxside_threshold - c0_minside_threshold) / 2)
|
|
380
|
+
|
|
381
|
+
mod_intrusion_coord0_pts = intrusion_coord0_pts - mid_point
|
|
382
|
+
mod_c0_minside_threshold = c0_minside_threshold - mid_point
|
|
383
|
+
mod_c0_maxside_threshold = c0_maxside_threshold + mid_point
|
|
384
|
+
|
|
385
|
+
a = (
|
|
386
|
+
(mod_intrusion_coord0_pts >= mid_point)
|
|
387
|
+
* (c2_minside_threshold < intrusion_coord2_pts)
|
|
388
|
+
* (intrusion_coord2_pts < c2_maxside_threshold)
|
|
389
|
+
)
|
|
390
|
+
b = (
|
|
391
|
+
(mod_intrusion_coord0_pts <= mid_point)
|
|
392
|
+
* (c2_minside_threshold < intrusion_coord2_pts)
|
|
393
|
+
* (intrusion_coord2_pts < c2_maxside_threshold)
|
|
394
|
+
)
|
|
395
|
+
c = (
|
|
396
|
+
(mod_intrusion_coord0_pts <= mid_point)
|
|
397
|
+
* (mod_intrusion_coord0_pts >= mod_c0_minside_threshold)
|
|
398
|
+
* (c2_minside_threshold < intrusion_coord2_pts)
|
|
399
|
+
* (intrusion_coord2_pts < c2_maxside_threshold)
|
|
400
|
+
)
|
|
401
|
+
|
|
402
|
+
intrusion_sf = mod_intrusion_coord0_pts
|
|
403
|
+
intrusion_sf[a] = mod_intrusion_coord0_pts[a] - mod_c0_maxside_threshold[a]
|
|
404
|
+
intrusion_sf[b] = abs(mod_c0_minside_threshold[b] + mod_intrusion_coord0_pts[b])
|
|
405
|
+
intrusion_sf[c] = mod_intrusion_coord0_pts[c] - mod_c0_minside_threshold[c]
|
|
406
|
+
|
|
407
|
+
return intrusion_sf
|
|
408
|
+
|
|
409
|
+
def get_data(self, value_map: Optional[dict] = None):
|
|
410
|
+
pass
|