JSTprove 1.0.0__py3-none-macosx_11_0_arm64.whl → 1.2.0__py3-none-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of JSTprove might be problematic. Click here for more details.

Files changed (61) hide show
  1. {jstprove-1.0.0.dist-info → jstprove-1.2.0.dist-info}/METADATA +3 -3
  2. {jstprove-1.0.0.dist-info → jstprove-1.2.0.dist-info}/RECORD +60 -25
  3. python/core/binaries/onnx_generic_circuit_1-2-0 +0 -0
  4. python/core/circuit_models/generic_onnx.py +43 -9
  5. python/core/circuits/base.py +231 -71
  6. python/core/model_processing/converters/onnx_converter.py +114 -59
  7. python/core/model_processing/onnx_custom_ops/batchnorm.py +64 -0
  8. python/core/model_processing/onnx_custom_ops/maxpool.py +1 -1
  9. python/core/model_processing/onnx_custom_ops/mul.py +66 -0
  10. python/core/model_processing/onnx_custom_ops/relu.py +1 -1
  11. python/core/model_processing/onnx_quantizer/layers/add.py +54 -0
  12. python/core/model_processing/onnx_quantizer/layers/base.py +188 -1
  13. python/core/model_processing/onnx_quantizer/layers/batchnorm.py +224 -0
  14. python/core/model_processing/onnx_quantizer/layers/constant.py +1 -1
  15. python/core/model_processing/onnx_quantizer/layers/conv.py +20 -68
  16. python/core/model_processing/onnx_quantizer/layers/gemm.py +20 -66
  17. python/core/model_processing/onnx_quantizer/layers/maxpool.py +53 -43
  18. python/core/model_processing/onnx_quantizer/layers/mul.py +53 -0
  19. python/core/model_processing/onnx_quantizer/layers/relu.py +20 -35
  20. python/core/model_processing/onnx_quantizer/layers/sub.py +54 -0
  21. python/core/model_processing/onnx_quantizer/onnx_op_quantizer.py +43 -1
  22. python/core/utils/general_layer_functions.py +17 -12
  23. python/core/utils/model_registry.py +6 -3
  24. python/scripts/gen_and_bench.py +2 -2
  25. python/tests/circuit_e2e_tests/other_e2e_test.py +202 -9
  26. python/tests/circuit_parent_classes/test_circuit.py +561 -38
  27. python/tests/circuit_parent_classes/test_onnx_converter.py +22 -13
  28. python/tests/onnx_quantizer_tests/__init__.py +1 -0
  29. python/tests/onnx_quantizer_tests/layers/__init__.py +13 -0
  30. python/tests/onnx_quantizer_tests/layers/add_config.py +102 -0
  31. python/tests/onnx_quantizer_tests/layers/base.py +279 -0
  32. python/tests/onnx_quantizer_tests/layers/batchnorm_config.py +190 -0
  33. python/tests/onnx_quantizer_tests/layers/constant_config.py +39 -0
  34. python/tests/onnx_quantizer_tests/layers/conv_config.py +154 -0
  35. python/tests/onnx_quantizer_tests/layers/factory.py +142 -0
  36. python/tests/onnx_quantizer_tests/layers/flatten_config.py +61 -0
  37. python/tests/onnx_quantizer_tests/layers/gemm_config.py +160 -0
  38. python/tests/onnx_quantizer_tests/layers/maxpool_config.py +82 -0
  39. python/tests/onnx_quantizer_tests/layers/mul_config.py +102 -0
  40. python/tests/onnx_quantizer_tests/layers/relu_config.py +61 -0
  41. python/tests/onnx_quantizer_tests/layers/reshape_config.py +61 -0
  42. python/tests/onnx_quantizer_tests/layers/sub_config.py +102 -0
  43. python/tests/onnx_quantizer_tests/layers_tests/__init__.py +0 -0
  44. python/tests/onnx_quantizer_tests/layers_tests/base_test.py +94 -0
  45. python/tests/onnx_quantizer_tests/layers_tests/test_check_model.py +115 -0
  46. python/tests/onnx_quantizer_tests/layers_tests/test_e2e.py +196 -0
  47. python/tests/onnx_quantizer_tests/layers_tests/test_error_cases.py +59 -0
  48. python/tests/onnx_quantizer_tests/layers_tests/test_integration.py +198 -0
  49. python/tests/onnx_quantizer_tests/layers_tests/test_quantize.py +267 -0
  50. python/tests/onnx_quantizer_tests/layers_tests/test_scalability.py +109 -0
  51. python/tests/onnx_quantizer_tests/layers_tests/test_validation.py +45 -0
  52. python/tests/onnx_quantizer_tests/test_base_layer.py +228 -0
  53. python/tests/onnx_quantizer_tests/test_exceptions.py +99 -0
  54. python/tests/onnx_quantizer_tests/test_onnx_op_quantizer.py +246 -0
  55. python/tests/onnx_quantizer_tests/test_registered_quantizers.py +121 -0
  56. python/tests/onnx_quantizer_tests/testing_helper_functions.py +17 -0
  57. python/core/binaries/onnx_generic_circuit_1-0-0 +0 -0
  58. {jstprove-1.0.0.dist-info → jstprove-1.2.0.dist-info}/WHEEL +0 -0
  59. {jstprove-1.0.0.dist-info → jstprove-1.2.0.dist-info}/entry_points.txt +0 -0
  60. {jstprove-1.0.0.dist-info → jstprove-1.2.0.dist-info}/licenses/LICENSE +0 -0
  61. {jstprove-1.0.0.dist-info → jstprove-1.2.0.dist-info}/top_level.txt +0 -0
@@ -1,13 +1,15 @@
1
+ # ruff: noqa: S603
1
2
  import json
2
3
  import subprocess
3
4
  import sys
5
+ from collections.abc import Generator
4
6
  from pathlib import Path
5
- from typing import Generator
6
7
 
7
8
  import numpy as np
8
9
  import onnx
9
10
  import pytest
10
- from onnx import helper, numpy_helper
11
+ import torch
12
+ from onnx import TensorProto, helper, numpy_helper
11
13
 
12
14
 
13
15
  def create_simple_gemm_onnx_model(
@@ -19,14 +21,14 @@ def create_simple_gemm_onnx_model(
19
21
  # Define input
20
22
  input_tensor = helper.make_tensor_value_info(
21
23
  "input",
22
- onnx.TensorProto.FLOAT,
24
+ TensorProto.FLOAT,
23
25
  [1, input_size],
24
26
  )
25
27
 
26
28
  # Define output
27
29
  output_tensor = helper.make_tensor_value_info(
28
30
  "output",
29
- onnx.TensorProto.FLOAT,
31
+ TensorProto.FLOAT,
30
32
  [1, output_size],
31
33
  )
32
34
 
@@ -67,7 +69,7 @@ def create_simple_gemm_onnx_model(
67
69
  onnx.save(model, str(model_path))
68
70
 
69
71
 
70
- @pytest.mark.e2e()
72
+ @pytest.mark.e2e
71
73
  def test_parallel_compile_and_witness_two_simple_models( # noqa: PLR0915
72
74
  tmp_path: str,
73
75
  capsys: Generator[pytest.CaptureFixture[str], None, None],
@@ -115,7 +117,7 @@ def test_parallel_compile_and_witness_two_simple_models( # noqa: PLR0915
115
117
 
116
118
  # Run compile commands
117
119
  result1 = subprocess.run(
118
- compile_cmd1, # noqa: S603
120
+ compile_cmd1,
119
121
  capture_output=True,
120
122
  text=True,
121
123
  check=False,
@@ -123,7 +125,7 @@ def test_parallel_compile_and_witness_two_simple_models( # noqa: PLR0915
123
125
  assert result1.returncode == 0, f"Compile failed for model1: {result1.stderr}"
124
126
 
125
127
  result2 = subprocess.run(
126
- compile_cmd2, # noqa: S603
128
+ compile_cmd2,
127
129
  capture_output=True,
128
130
  text=True,
129
131
  check=False,
@@ -179,8 +181,8 @@ def test_parallel_compile_and_witness_two_simple_models( # noqa: PLR0915
179
181
  ]
180
182
 
181
183
  # Start both processes
182
- proc1 = subprocess.Popen(witness_cmd1) # noqa: S603
183
- proc2 = subprocess.Popen(witness_cmd2) # noqa: S603
184
+ proc1 = subprocess.Popen(witness_cmd1)
185
+ proc2 = subprocess.Popen(witness_cmd2)
184
186
 
185
187
  # Wait for both to complete
186
188
  proc1.wait()
@@ -215,3 +217,194 @@ def test_parallel_compile_and_witness_two_simple_models( # noqa: PLR0915
215
217
  len(output2["output"]) == model2_output_size
216
218
  ), f"Output2 should have {model2_output_size} elements,"
217
219
  f" got {len(output2['output'])}"
220
+
221
+
222
+ def create_multi_input_multi_output_model(model_path: Path) -> None:
223
+ """Create a simple ONNX model with two inputs and two outputs."""
224
+ # Define inputs
225
+ x = helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 1, 4, 4])
226
+ w = helper.make_tensor_value_info("W", TensorProto.FLOAT, [1, 1, 4, 4])
227
+
228
+ # Define outputs
229
+ y1 = helper.make_tensor_value_info("sum", TensorProto.FLOAT, [1, 1, 4, 4])
230
+ y2 = helper.make_tensor_value_info("pooled", TensorProto.FLOAT, [1, 1, 2, 2])
231
+
232
+ # Node 1: Add
233
+ add_node = helper.make_node("Add", inputs=["X", "W"], outputs=["sum"])
234
+
235
+ # Node 2: MaxPool
236
+ pool_node = helper.make_node(
237
+ "MaxPool",
238
+ inputs=["sum"],
239
+ outputs=["pooled"],
240
+ kernel_shape=[2, 2],
241
+ strides=[2, 2],
242
+ dilations=[1, 1],
243
+ pads=[0, 0, 0, 0],
244
+ ceil_mode=0,
245
+ )
246
+
247
+ # Build the graph
248
+ graph_def = helper.make_graph(
249
+ [add_node, pool_node],
250
+ "TwoOutputGraph",
251
+ [x, w],
252
+ [y1, y2],
253
+ )
254
+
255
+ model_def = helper.make_model(graph_def, producer_name="pytest-multi-output-model")
256
+ onnx.save(model_def, model_path)
257
+
258
+
259
+ @pytest.mark.e2e
260
+ def test_multi_input_multi_output_model_e2e(tmp_path: Path) -> None:
261
+ """
262
+ E2E test: compile, witness, and verify outputs
263
+ for a multi-input/multi-output ONNX model.
264
+ """
265
+ model_path = tmp_path / "multi_output_no_identity.onnx"
266
+ circuit_path = tmp_path / "circuit.txt"
267
+ input_path = tmp_path / "input.json"
268
+ output_path = tmp_path / "output.json"
269
+ witness_path = tmp_path / "witness.bin"
270
+ proof_path = tmp_path / "proof.bin"
271
+
272
+ # --- Step 1: Generate model ---
273
+ create_multi_input_multi_output_model(model_path)
274
+
275
+ # --- Step 2: Compile model ---
276
+ compile_cmd = [
277
+ sys.executable,
278
+ "-m",
279
+ "python.frontend.cli",
280
+ "compile",
281
+ "-m",
282
+ str(model_path),
283
+ "-c",
284
+ str(circuit_path),
285
+ ]
286
+ result = subprocess.run(compile_cmd, capture_output=True, text=True, check=False)
287
+ assert (
288
+ result.returncode == 0
289
+ ), f"Compile failed:\nSTDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
290
+
291
+ # --- Step 3: Create input JSON ---
292
+ # Simple constant tensors (shape [1,1,4,4])
293
+ x = [
294
+ [
295
+ [
296
+ [1.0, 2.0, 3.0, 4.0],
297
+ [5.0, 6.0, 7.0, 8.0],
298
+ [9.0, 10.0, 11.0, 12.0],
299
+ [13.0, 14.0, 15.0, 16.0],
300
+ ],
301
+ ],
302
+ ]
303
+ w = [
304
+ [
305
+ [
306
+ [0.1, 0.2, 0.3, 0.4],
307
+ [0.5, 0.6, 0.7, 0.8],
308
+ [0.9, 1.0, 1.1, 1.2],
309
+ [1.3, 1.4, 1.5, 1.6],
310
+ ],
311
+ ],
312
+ ]
313
+
314
+ with Path.open(input_path, "w") as f:
315
+ json.dump({"X": x, "W": w}, f)
316
+
317
+ # --- Step 4: Run witness ---
318
+ witness_cmd = [
319
+ sys.executable,
320
+ "-m",
321
+ "python.frontend.cli",
322
+ "witness",
323
+ "-c",
324
+ str(circuit_path),
325
+ "-i",
326
+ str(input_path),
327
+ "-o",
328
+ str(output_path),
329
+ "-w",
330
+ str(witness_path),
331
+ ]
332
+ result = subprocess.run(witness_cmd, capture_output=True, text=True, check=False)
333
+ assert (
334
+ result.returncode == 0
335
+ ), f"Witness failed:\nSTDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
336
+
337
+ # --- Step 5: Validate output files ---
338
+ assert output_path.exists(), "Output file not generated"
339
+ assert witness_path.exists(), "Witness file not generated"
340
+
341
+ with Path.open(output_path) as f:
342
+ outputs = json.load(f)
343
+
344
+ output_raw = (
345
+ (torch.as_tensor(x) * 2**18).long() + (torch.as_tensor(w) * 2**18).long()
346
+ ).flatten()
347
+
348
+ second_outputs = output_raw.clone().reshape([1, 1, 4, 4])
349
+
350
+ outputs_2 = torch.max_pool2d(
351
+ second_outputs,
352
+ kernel_size=2,
353
+ stride=2,
354
+ dilation=1,
355
+ padding=0,
356
+ ).flatten()
357
+
358
+ output_raw = torch.cat((output_raw, outputs_2))
359
+
360
+ assert torch.allclose(
361
+ torch.as_tensor(outputs["output"]),
362
+ output_raw,
363
+ rtol=1e-3,
364
+ atol=1e-5,
365
+ ), "Outputs do not match"
366
+
367
+ # --- Step 5: Prove ---
368
+ prove_cmd = [
369
+ sys.executable,
370
+ "-m",
371
+ "python.frontend.cli",
372
+ "prove",
373
+ "-c",
374
+ str(circuit_path),
375
+ "-w",
376
+ str(witness_path),
377
+ "-p",
378
+ str(proof_path),
379
+ ]
380
+ result = subprocess.run(prove_cmd, check=False, capture_output=True, text=True)
381
+ assert (
382
+ result.returncode == 0
383
+ ), f"Prove failed:\nSTDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
384
+
385
+ # --- Step 6: Verify ---
386
+ verify_cmd = [
387
+ sys.executable,
388
+ "-m",
389
+ "python.frontend.cli",
390
+ "verify",
391
+ "-c",
392
+ str(circuit_path),
393
+ "-i",
394
+ str(input_path),
395
+ "-o",
396
+ str(output_path),
397
+ "-w",
398
+ str(witness_path),
399
+ "-p",
400
+ str(proof_path),
401
+ ]
402
+ result = subprocess.run(verify_cmd, check=False, capture_output=True, text=True)
403
+ assert (
404
+ result.returncode == 0
405
+ ), f"Verify failed:\nSTDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
406
+
407
+ # --- Step 7: Validate output ---
408
+ assert output_path.exists(), "Output JSON not generated"
409
+ assert witness_path.exists(), "Witness not generated"
410
+ assert proof_path.exists(), "Proof not generated"