IGJSP 1.0.1__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
IGJSP/generador.py
CHANGED
|
@@ -26,6 +26,42 @@ def t(c):
|
|
|
26
26
|
return 4.0704 * np.log(2) / np.log(1 + (c* 2.5093)**3)
|
|
27
27
|
|
|
28
28
|
|
|
29
|
+
# ------- Helpers internos para el DZN -------
|
|
30
|
+
|
|
31
|
+
def _parse_int_var(text, name, default=None):
|
|
32
|
+
"""
|
|
33
|
+
Busca una variable escalar tipo: name = 10;
|
|
34
|
+
"""
|
|
35
|
+
m = re.search(rf'\b{name}\b\s*=\s*([0-9]+)', text)
|
|
36
|
+
if m:
|
|
37
|
+
return int(m.group(1))
|
|
38
|
+
if default is not None:
|
|
39
|
+
return default
|
|
40
|
+
raise ValueError(f"No se encontró la variable entera '{name}' en el fichero DZN.")
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def _parse_array_var(text, name):
|
|
44
|
+
"""
|
|
45
|
+
Busca una variable array tipo:
|
|
46
|
+
name = [1, 2, 3];
|
|
47
|
+
o
|
|
48
|
+
name = [1 2 3];
|
|
49
|
+
Devuelve un np.array de ints o None si no está.
|
|
50
|
+
"""
|
|
51
|
+
m = re.search(rf'\b{name}\b\s*=.*?\[(.*?)\];', text, re.DOTALL)
|
|
52
|
+
if not m:
|
|
53
|
+
return None
|
|
54
|
+
|
|
55
|
+
inner = m.group(1).strip()
|
|
56
|
+
if not inner:
|
|
57
|
+
return np.array([], dtype=int)
|
|
58
|
+
|
|
59
|
+
# Separar por comas o espacios
|
|
60
|
+
tokens = re.split(r'[\s,]+', inner)
|
|
61
|
+
tokens = [t for t in tokens if t != '']
|
|
62
|
+
|
|
63
|
+
return np.array([int(t) for t in tokens], dtype=int)
|
|
64
|
+
|
|
29
65
|
#################################################################################
|
|
30
66
|
# #
|
|
31
67
|
# JSP #
|
|
@@ -124,10 +160,325 @@ class JSP:
|
|
|
124
160
|
else:
|
|
125
161
|
return expon(loc=duration, scale=duration/2).rvs()
|
|
126
162
|
|
|
127
|
-
def
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
163
|
+
def loadPythonFile(path):
|
|
164
|
+
"""
|
|
165
|
+
Carga un fichero .pkl generado por savePythonFile y devuelve un JSP.
|
|
166
|
+
"""
|
|
167
|
+
with open(path, 'rb') as f:
|
|
168
|
+
obj = pickle.load(f)
|
|
169
|
+
|
|
170
|
+
# Si ya es un JSP, lo devolvemos tal cual
|
|
171
|
+
if isinstance(obj, JSP):
|
|
172
|
+
return obj
|
|
173
|
+
|
|
174
|
+
# Si es un dict con la misma estructura que usamos en loadJsonFile, construimos el JSP
|
|
175
|
+
if isinstance(obj, dict) and all(
|
|
176
|
+
k in obj for k in ['jobs', 'machines', 'ProcessingTime', 'EnergyConsumption', 'ReleaseDateDueDate', 'Orden']
|
|
177
|
+
):
|
|
178
|
+
return JSP(**obj)
|
|
179
|
+
|
|
180
|
+
raise TypeError(
|
|
181
|
+
f"El objeto cargado desde {path} no es un JSP ni un diccionario compatible para construir uno."
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
def loadDznFile(path):
|
|
185
|
+
"""
|
|
186
|
+
Carga un .dzn generado por saveDznFile y devuelve un JSP.
|
|
187
|
+
Soporta rddd = 0, 1, 2 (sin fechas, fechas por job, fechas por operación).
|
|
188
|
+
"""
|
|
189
|
+
with open(path, 'r', encoding='utf-8') as f:
|
|
190
|
+
text = f.read()
|
|
191
|
+
|
|
192
|
+
numJobs = _parse_int_var(text, 'jobs')
|
|
193
|
+
numMchs = _parse_int_var(text, 'machines')
|
|
194
|
+
speed = _parse_int_var(text, 'Speed', default=1)
|
|
195
|
+
|
|
196
|
+
time_flat = _parse_array_var(text, 'time')
|
|
197
|
+
energy_flat = _parse_array_var(text, 'energy')
|
|
198
|
+
prec_flat = _parse_array_var(text, 'precedence')
|
|
199
|
+
|
|
200
|
+
if time_flat is None or energy_flat is None or prec_flat is None:
|
|
201
|
+
raise ValueError("Faltan variables obligatorias (time, energy o precedence) en el fichero DZN.")
|
|
202
|
+
|
|
203
|
+
# Comprobar tamaños
|
|
204
|
+
expected_te = numJobs * numMchs * speed
|
|
205
|
+
if time_flat.size != expected_te or energy_flat.size != expected_te:
|
|
206
|
+
raise ValueError(
|
|
207
|
+
f"Tamaños incompatibles en time/energy: esperado {expected_te}, "
|
|
208
|
+
f"time={time_flat.size}, energy={energy_flat.size}"
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
expected_prec = numJobs * numMchs
|
|
212
|
+
if prec_flat.size != expected_prec:
|
|
213
|
+
raise ValueError(
|
|
214
|
+
f"Tamaño incompatible en precedence: esperado {expected_prec}, precedence={prec_flat.size}"
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
ProcessingTime = time_flat.reshape((numJobs, numMchs, speed))
|
|
218
|
+
EnergyConsumption = energy_flat.reshape((numJobs, numMchs, speed))
|
|
219
|
+
precedence = prec_flat.reshape((numJobs, numMchs))
|
|
220
|
+
|
|
221
|
+
# Reconstruir Orden a partir de la precedencia (cada fila es posiciones 0..numMchs-1 por máquina)
|
|
222
|
+
Orden = np.zeros((numJobs, numMchs), dtype=int)
|
|
223
|
+
for j in range(numJobs):
|
|
224
|
+
# precedence[j, m] = posición de la máquina m en la secuencia
|
|
225
|
+
# argsort da el índice de la máquina por orden de prioridad
|
|
226
|
+
Orden[j, :] = np.argsort(precedence[j, :])
|
|
227
|
+
|
|
228
|
+
# Release / Due dates (pueden no existir)
|
|
229
|
+
release_flat = _parse_array_var(text, 'releaseDate')
|
|
230
|
+
due_flat = _parse_array_var(text, 'dueDate')
|
|
231
|
+
|
|
232
|
+
if release_flat is None or due_flat is None:
|
|
233
|
+
# rddd = 0
|
|
234
|
+
ReleaseDueDate = np.array([])
|
|
235
|
+
else:
|
|
236
|
+
# O bien vector por job, o matriz jobs x machines
|
|
237
|
+
if release_flat.size == numJobs and due_flat.size == numJobs:
|
|
238
|
+
# rddd = 1 → (numJobs, 2)
|
|
239
|
+
ReleaseDueDate = np.zeros((numJobs, 2), dtype=int)
|
|
240
|
+
ReleaseDueDate[:, 0] = release_flat
|
|
241
|
+
ReleaseDueDate[:, 1] = due_flat
|
|
242
|
+
elif release_flat.size == numJobs * numMchs and due_flat.size == numJobs * numMchs:
|
|
243
|
+
# rddd = 2 → (numJobs, numMchs, 2)
|
|
244
|
+
ReleaseDueDate = np.zeros((numJobs, numMchs, 2), dtype=int)
|
|
245
|
+
ReleaseDueDate[:, :, 0] = release_flat.reshape((numJobs, numMchs))
|
|
246
|
+
ReleaseDueDate[:, :, 1] = due_flat.reshape((numJobs, numMchs))
|
|
247
|
+
else:
|
|
248
|
+
raise ValueError(
|
|
249
|
+
"Los tamaños de releaseDate/dueDate no cuadran ni con rddd=1 ni con rddd=2."
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
sol = {
|
|
253
|
+
'jobs': numJobs,
|
|
254
|
+
'machines': numMchs,
|
|
255
|
+
'ProcessingTime': ProcessingTime,
|
|
256
|
+
'EnergyConsumption': EnergyConsumption,
|
|
257
|
+
'ReleaseDateDueDate': ReleaseDueDate,
|
|
258
|
+
'Orden': Orden
|
|
259
|
+
}
|
|
260
|
+
return JSP(**sol)
|
|
261
|
+
|
|
262
|
+
def loadTaillardFile(path):
|
|
263
|
+
"""
|
|
264
|
+
Carga un fichero de texto generado por saveTaillardStandardFile y devuelve un JSP.
|
|
265
|
+
Formato esperado:
|
|
266
|
+
|
|
267
|
+
Number of jobs: J
|
|
268
|
+
Number of machines: M
|
|
269
|
+
|
|
270
|
+
Processing times:
|
|
271
|
+
... J filas, cada una con M enteros ...
|
|
272
|
+
|
|
273
|
+
Energy consumption:
|
|
274
|
+
... J filas, cada una con M enteros ...
|
|
275
|
+
|
|
276
|
+
Machine order:
|
|
277
|
+
... J filas, cada una con M enteros ...
|
|
278
|
+
"""
|
|
279
|
+
with open(path, 'r') as f:
|
|
280
|
+
lines = [line.strip() for line in f]
|
|
281
|
+
|
|
282
|
+
# Leer encabezado
|
|
283
|
+
# Number of jobs: X
|
|
284
|
+
# Number of machines: Y
|
|
285
|
+
numJobs = None
|
|
286
|
+
numMchs = None
|
|
287
|
+
|
|
288
|
+
i = 0
|
|
289
|
+
while i < len(lines):
|
|
290
|
+
line = lines[i]
|
|
291
|
+
if line.startswith("Number of jobs"):
|
|
292
|
+
numJobs = int(line.split(":")[1].strip())
|
|
293
|
+
elif line.startswith("Number of machines"):
|
|
294
|
+
numMchs = int(line.split(":")[1].strip())
|
|
295
|
+
if numJobs is not None and numMchs is not None:
|
|
296
|
+
i += 1
|
|
297
|
+
break
|
|
298
|
+
i += 1
|
|
299
|
+
|
|
300
|
+
if numJobs is None or numMchs is None:
|
|
301
|
+
raise ValueError("No se pudieron leer numJobs / numMchs del fichero Taillard.")
|
|
302
|
+
|
|
303
|
+
# Saltar líneas vacías hasta "Processing times:"
|
|
304
|
+
while i < len(lines) and lines[i] == "":
|
|
305
|
+
i += 1
|
|
306
|
+
if i >= len(lines) or not lines[i].startswith("Processing times"):
|
|
307
|
+
raise ValueError("No se encontró la sección 'Processing times:' en el fichero Taillard.")
|
|
308
|
+
i += 1 # pasar la línea de cabecera
|
|
309
|
+
|
|
310
|
+
# Leer matriz de tiempos de procesamiento (J filas)
|
|
311
|
+
proc_by_order = np.zeros((numJobs, numMchs), dtype=int)
|
|
312
|
+
for j in range(numJobs):
|
|
313
|
+
while i < len(lines) and lines[i] == "":
|
|
314
|
+
i += 1
|
|
315
|
+
parts = lines[i].split()
|
|
316
|
+
if len(parts) != numMchs:
|
|
317
|
+
raise ValueError(
|
|
318
|
+
f"Línea de tiempos de procesamiento para job {j} tiene {len(parts)} elementos, "
|
|
319
|
+
f"pero se esperaban {numMchs}."
|
|
320
|
+
)
|
|
321
|
+
proc_by_order[j, :] = [int(x) for x in parts]
|
|
322
|
+
i += 1
|
|
323
|
+
|
|
324
|
+
# Saltar hasta "Energy consumption:"
|
|
325
|
+
while i < len(lines) and lines[i] == "":
|
|
326
|
+
i += 1
|
|
327
|
+
if i >= len(lines) or not lines[i].startswith("Energy consumption"):
|
|
328
|
+
raise ValueError("No se encontró la sección 'Energy consumption:' en el fichero Taillard.")
|
|
329
|
+
i += 1 # cabecera
|
|
330
|
+
|
|
331
|
+
energy_by_order = np.zeros((numJobs, numMchs), dtype=int)
|
|
332
|
+
for j in range(numJobs):
|
|
333
|
+
while i < len(lines) and lines[i] == "":
|
|
334
|
+
i += 1
|
|
335
|
+
parts = lines[i].split()
|
|
336
|
+
if len(parts) != numMchs:
|
|
337
|
+
raise ValueError(
|
|
338
|
+
f"Línea de consumo de energía para job {j} tiene {len(parts)} elementos, "
|
|
339
|
+
f"pero se esperaban {numMchs}."
|
|
340
|
+
)
|
|
341
|
+
energy_by_order[j, :] = [int(x) for x in parts]
|
|
342
|
+
i += 1
|
|
343
|
+
|
|
344
|
+
# Saltar hasta "Machine order:"
|
|
345
|
+
while i < len(lines) and lines[i] == "":
|
|
346
|
+
i += 1
|
|
347
|
+
if i >= len(lines) or not lines[i].startswith("Machine order"):
|
|
348
|
+
raise ValueError("No se encontró la sección 'Machine order:' en el fichero Taillard.")
|
|
349
|
+
i += 1 # cabecera
|
|
350
|
+
|
|
351
|
+
Orden = np.zeros((numJobs, numMchs), dtype=int)
|
|
352
|
+
for j in range(numJobs):
|
|
353
|
+
while i < len(lines) and lines[i] == "":
|
|
354
|
+
i += 1
|
|
355
|
+
parts = lines[i].split()
|
|
356
|
+
if len(parts) != numMchs:
|
|
357
|
+
raise ValueError(
|
|
358
|
+
f"Línea de orden de máquinas para job {j} tiene {len(parts)} elementos, "
|
|
359
|
+
f"pero se esperaban {numMchs}."
|
|
360
|
+
)
|
|
361
|
+
Orden[j, :] = [int(x) for x in parts]
|
|
362
|
+
i += 1
|
|
363
|
+
|
|
364
|
+
# Reconstruir ProcessingTime y EnergyConsumption con speed=1
|
|
365
|
+
speed = 1
|
|
366
|
+
ProcessingTime = np.zeros((numJobs, numMchs, speed), dtype=int)
|
|
367
|
+
EnergyConsumption = np.zeros((numJobs, numMchs, speed), dtype=int)
|
|
368
|
+
|
|
369
|
+
for j in range(numJobs):
|
|
370
|
+
for pos in range(numMchs):
|
|
371
|
+
machine = Orden[j, pos]
|
|
372
|
+
ProcessingTime[j, machine, 0] = proc_by_order[j, pos]
|
|
373
|
+
EnergyConsumption[j, machine, 0] = energy_by_order[j, pos]
|
|
374
|
+
|
|
375
|
+
# Taillard estándar: sin release/due dates → rddd=0
|
|
376
|
+
ReleaseDueDate = np.array([])
|
|
377
|
+
|
|
378
|
+
sol = {
|
|
379
|
+
'jobs': numJobs,
|
|
380
|
+
'machines': numMchs,
|
|
381
|
+
'ProcessingTime': ProcessingTime,
|
|
382
|
+
'EnergyConsumption': EnergyConsumption,
|
|
383
|
+
'ReleaseDateDueDate': ReleaseDueDate,
|
|
384
|
+
'Orden': Orden
|
|
385
|
+
}
|
|
386
|
+
return JSP(**sol)
|
|
387
|
+
|
|
388
|
+
def loadJsonFile(path):
|
|
389
|
+
with open(path, "r") as f:
|
|
390
|
+
data = json.load(f)
|
|
391
|
+
numJobs = len(data["nbJobs"])
|
|
392
|
+
numMchs = len(data["nbMchs"])
|
|
393
|
+
speed = data["speed"]
|
|
394
|
+
|
|
395
|
+
# # Load KPIs (opcional)
|
|
396
|
+
# min_makespan = data.get("minMakespan", None)
|
|
397
|
+
# min_energy = data.get("minEnergy", None)
|
|
398
|
+
# max_min_makespan = data.get("maxMinMakespan", None)
|
|
399
|
+
# max_min_energy = data.get("maxMinEnergy", None)
|
|
400
|
+
|
|
401
|
+
# Prepare empty structures
|
|
402
|
+
ProcessingTime = np.zeros((numJobs, numMchs, speed), dtype=int)
|
|
403
|
+
EnergyConsumption = np.zeros((numJobs, numMchs, speed), dtype=int)
|
|
404
|
+
Orden_list = [[] for _ in range(numJobs)]
|
|
405
|
+
|
|
406
|
+
# Detect rddd mode
|
|
407
|
+
# rddd = 0 → no release/due dates
|
|
408
|
+
# rddd = 1 → job-level RDF
|
|
409
|
+
# rddd = 2 → operation-level RDF
|
|
410
|
+
rddd = 0
|
|
411
|
+
if data["timeEnergy"]:
|
|
412
|
+
if "release-date" in data["timeEnergy"][0]:
|
|
413
|
+
rddd = 1
|
|
414
|
+
for m in data["timeEnergy"][0]["operations"]:
|
|
415
|
+
if "release-date" in data["timeEnergy"][0]["operations"][m]:
|
|
416
|
+
rddd = 2
|
|
417
|
+
break
|
|
418
|
+
|
|
419
|
+
# Initialize ReleaseDueDate array according to rddd
|
|
420
|
+
if rddd == 1:
|
|
421
|
+
ReleaseDueDate = np.zeros((numJobs, 2), dtype=int)
|
|
422
|
+
elif rddd == 2:
|
|
423
|
+
ReleaseDueDate = np.zeros((numJobs, numMchs, 2), dtype=int)
|
|
424
|
+
else:
|
|
425
|
+
# No dates: devolver array vacío para que __init__ detecte rddd=0
|
|
426
|
+
ReleaseDueDate = np.array([])
|
|
427
|
+
|
|
428
|
+
# -------------------------
|
|
429
|
+
# Load jobs & operations
|
|
430
|
+
# -------------------------
|
|
431
|
+
for job_data in data["timeEnergy"]:
|
|
432
|
+
job = int(job_data["jobId"])
|
|
433
|
+
|
|
434
|
+
# Optional job-level release/due dates
|
|
435
|
+
if rddd == 1:
|
|
436
|
+
ReleaseDueDate[job, 0] = int(job_data["release-date"])
|
|
437
|
+
ReleaseDueDate[job, 1] = int(job_data["due-date"])
|
|
438
|
+
|
|
439
|
+
for machine_str, op_data in job_data["operations"].items():
|
|
440
|
+
machine = int(machine_str)
|
|
441
|
+
Orden_list[job].append(machine)
|
|
442
|
+
|
|
443
|
+
# Load speed-scaling arrays
|
|
444
|
+
proc_times = [int(entry["procTime"]) for entry in op_data["speed-scaling"]]
|
|
445
|
+
energies = [int(entry["energyCons"]) for entry in op_data["speed-scaling"]]
|
|
446
|
+
|
|
447
|
+
# Aseguramos longitud speed
|
|
448
|
+
# Si speed > len(proc_times) -> rellenamos con ceros (o ajustar según tu política)
|
|
449
|
+
proc_arr = np.zeros((speed,), dtype=int)
|
|
450
|
+
en_arr = np.zeros((speed,), dtype=int)
|
|
451
|
+
L = min(len(proc_times), speed)
|
|
452
|
+
proc_arr[:L] = proc_times[:L]
|
|
453
|
+
en_arr[:L] = energies[:L]
|
|
454
|
+
|
|
455
|
+
ProcessingTime[job, machine, :] = proc_arr
|
|
456
|
+
EnergyConsumption[job, machine, :] = en_arr
|
|
457
|
+
|
|
458
|
+
if rddd == 2:
|
|
459
|
+
ReleaseDueDate[job, machine, 0] = int(op_data["release-date"])
|
|
460
|
+
ReleaseDueDate[job, machine, 1] = int(op_data["due-date"])
|
|
461
|
+
|
|
462
|
+
# Convertir Orden a ndarray (shape = numJobs x numMchs)
|
|
463
|
+
Orden = np.zeros((numJobs, numMchs), dtype=int)
|
|
464
|
+
for j in range(numJobs):
|
|
465
|
+
if len(Orden_list[j]) != numMchs:
|
|
466
|
+
# Si por algun motivo no tiene todas las máquinas,
|
|
467
|
+
# rellenamos con -1 o lanzamos error; aquí uso -1.
|
|
468
|
+
row = Orden_list[j] + [-1] * (numMchs - len(Orden_list[j]))
|
|
469
|
+
else:
|
|
470
|
+
row = Orden_list[j]
|
|
471
|
+
Orden[j, :] = np.array(row, dtype=int)
|
|
472
|
+
|
|
473
|
+
sol = {
|
|
474
|
+
'jobs': numJobs,
|
|
475
|
+
'machines': numMchs,
|
|
476
|
+
'ProcessingTime': ProcessingTime,
|
|
477
|
+
'EnergyConsumption': EnergyConsumption,
|
|
478
|
+
'ReleaseDateDueDate': ReleaseDueDate, # <-- ahora es array, no int
|
|
479
|
+
'Orden': Orden
|
|
480
|
+
}
|
|
481
|
+
return JSP(**sol)
|
|
131
482
|
|
|
132
483
|
def saveJsonFile(self, path):
|
|
133
484
|
self.JSP = {
|
|
@@ -150,13 +501,13 @@ class JSP:
|
|
|
150
501
|
for machine in self.Orden[job]:
|
|
151
502
|
machine = int(machine)
|
|
152
503
|
new["operations"][machine] = {"speed-scaling" :
|
|
153
|
-
|
|
504
|
+
[
|
|
154
505
|
{"procTime" : int(proc),
|
|
155
|
-
|
|
506
|
+
"energyCons" : int(energy)
|
|
156
507
|
}
|
|
157
508
|
for proc, energy in zip(self.ProcessingTime[job, machine],self.EnergyConsumption[job, machine])
|
|
158
|
-
|
|
159
|
-
|
|
509
|
+
]
|
|
510
|
+
}
|
|
160
511
|
if self.rddd == 2:
|
|
161
512
|
new["operations"][machine]["release-date"] = int(self.ReleaseDueDate[job][machine][0])
|
|
162
513
|
new["operations"][machine]["due-date"] = int(self.ReleaseDueDate[job][machine][1])
|
|
@@ -192,6 +543,11 @@ class JSP:
|
|
|
192
543
|
|
|
193
544
|
f.write(json_str)
|
|
194
545
|
|
|
546
|
+
def savePythonFile(self, path):
|
|
547
|
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
|
548
|
+
with open(path, 'wb') as f:
|
|
549
|
+
pickle.dump(self, f)
|
|
550
|
+
|
|
195
551
|
def saveDznFile(self, InputDir, OutputDir):
|
|
196
552
|
indexProblema = OutputDir.split("/")[-2]
|
|
197
553
|
OutputDir = "/".join(OutputDir.split("/")[:-2])
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
IGJSP/generador.py,sha256=
|
|
1
|
+
IGJSP/generador.py,sha256=vpopW1e8zwZ5H69uvCSY28KJuP-XGNM6VQPKCTawiAs,48598
|
|
2
2
|
IGJSP/main.py,sha256=Sia5Ss8O3HWBdshvPLJKUMaZIoQPHy6x8yzvojojPFo,2838
|
|
3
3
|
IGJSP/Minizinc/Models/RD/JSP0.mzn,sha256=cfN_E3RQ6nBulGfaOOYTd-zAgA5SI6E2saDlYtKCflg,2282
|
|
4
4
|
IGJSP/Minizinc/Models/RD/JSP1.mzn,sha256=5B8cyw2WyKR8yEL1fFd0TaCAVhjPoxEJRJDPPEjJGEk,2840
|
|
@@ -12,7 +12,7 @@ IGJSP/Minizinc/Types/RD/FJSP/type2.dzn,sha256=Wz1MnkSL5GUPsbh1eq0leoaQRImkNqQqkX
|
|
|
12
12
|
IGJSP/Minizinc/Types/RD/JSP/type0.dzn,sha256=wNuPQkXBXPSpPaPz2WFhp4pGDgfSimtg4I93UfwC01Q,263
|
|
13
13
|
IGJSP/Minizinc/Types/RD/JSP/type1.dzn,sha256=Xbt9StzCgEqqh_HS9tWGrTVtu-OEnf5Yq5Ty91AkzoM,333
|
|
14
14
|
IGJSP/Minizinc/Types/RD/JSP/type2.dzn,sha256=L2nc7bPJEhyuaEwgw0ZCpC52CpVJILQU_WQdKn8GUZs,379
|
|
15
|
-
igjsp-1.
|
|
16
|
-
igjsp-1.
|
|
17
|
-
igjsp-1.
|
|
18
|
-
igjsp-1.
|
|
15
|
+
igjsp-1.1.1.dist-info/METADATA,sha256=JtfzaTnLrHW2GMG__daue2UjaEjh9_0UwgDMFDjVCRI,10609
|
|
16
|
+
igjsp-1.1.1.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
17
|
+
igjsp-1.1.1.dist-info/licenses/LICENSE,sha256=f7RDRO-z_nMoooAya7NAb8sXtrHR6WnttYtyUc9fB-c,1116
|
|
18
|
+
igjsp-1.1.1.dist-info/RECORD,,
|
|
File without changes
|