GuardianUnivalle-Benito-Yucra 0.1.65__py3-none-any.whl → 0.1.67__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of GuardianUnivalle-Benito-Yucra might be problematic. Click here for more details.

@@ -7,9 +7,9 @@ from typing import Dict, List, Set
7
7
  from django.conf import settings
8
8
  from django.utils.deprecation import MiddlewareMixin
9
9
  from django.http import HttpResponseForbidden
10
- import requests # Necesario para la función de scraping
11
- import re # Necesario para el parseo de IPs/CIDR
12
- from ipaddress import ip_address, IPv4Address, IPv4Network # Necesario para el Escaneo Avanzado (CIDR) check ip
10
+ import requests # ⬅️ Necesario para la función de scraping
11
+ import re # ⬅️ Necesario para el parseo de IPs/CIDR
12
+ from ipaddress import ip_address, IPv4Address, IPv4Network # Necesario para el Escaneo Avanzado (CIDR)
13
13
 
14
14
  # =====================================================
15
15
  # === CONFIGURACIÓN GLOBAL Y LOGGER ===
@@ -27,18 +27,19 @@ if not logger.handlers:
27
27
  # URLs CONCEPTUALES de donde EXTRAERÍAS IPs/CIDR
28
28
  IP_BLACKLIST_SOURCES = [
29
29
  # 1. FireHOL (Agregador General de Nivel 1)
30
- # Resultado: Éxito al obtener
30
+ # Resultado: Éxito al obtener 4438 IPs/CIDR
31
31
  "https://iplists.firehol.org/files/firehol_level1.netset",
32
32
 
33
33
  # 2. Abuse.ch Feodo Tracker (Botnets C&C)
34
- # Resultado: Éxito al obtener
34
+ # Resultado: Éxito al obtener 2 IPs/CIDR (puede ser bajo, pero es funcional)
35
35
  "https://feodotracker.abuse.ch/downloads/ipblocklist.txt",
36
36
 
37
37
  # 3. Tor Project (Nodos de Salida)
38
- # Resultado: Éxito al obtener
38
+ # Resultado: Éxito al obtener 1166 IPs/CIDR
39
39
  "https://check.torproject.org/torbulkexitlist?ip=1.1.1.1"
40
40
  ]
41
41
 
42
+ # Cabeceras para simular un navegador
42
43
  SCRAPING_HEADERS = {
43
44
  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
44
45
  }
@@ -157,6 +158,7 @@ def get_client_ip(request) -> str:
157
158
 
158
159
  def limpiar_registro_global():
159
160
  """Elimina IPs sin actividad reciente y desbloquea IPs temporales."""
161
+ # ... (La implementación de limpiar_registro_global permanece igual)
160
162
  ahora = time.time()
161
163
  expiracion = VENTANA_SEGUNDOS * 2
162
164
  inactivas = []
@@ -176,6 +178,7 @@ def limpiar_registro_global():
176
178
 
177
179
  def limpiar_registro(ip: str):
178
180
  """Limpia peticiones antiguas fuera de la ventana de tiempo."""
181
+ # ... (La implementación de limpiar_registro permanece igual)
179
182
  ahora = time.time()
180
183
  if ip not in REGISTRO_SOLICITUDES:
181
184
  REGISTRO_SOLICITUDES[ip] = deque()
@@ -185,6 +188,7 @@ def limpiar_registro(ip: str):
185
188
 
186
189
  def calcular_nivel_amenaza_dos(tasa_peticion: int, limite: int = LIMITE_PETICIONES) -> float:
187
190
  """Calcula la puntuación de amenaza DoS (Rate Limiting)."""
191
+ # ... (La implementación de calcular_nivel_amenaza_dos permanece igual)
188
192
  proporcion = tasa_peticion / max(limite, 1)
189
193
  s_dos = PESO_DOS * min(proporcion, 2.0)
190
194
  return round(min(s_dos, 1.0), 3)
@@ -214,6 +218,7 @@ def registrar_evento(tipo: str, descripcion: str, severidad: str = "MEDIA"):
214
218
 
215
219
  def detectar_dos(ip: str, tasa_peticion: int, limite: int = LIMITE_PETICIONES) -> bool:
216
220
  """Evalúa si la tasa de peticiones excede el umbral permitido y aplica mitigación."""
221
+ # ... (La implementación de detectar_dos permanece igual)
217
222
  if tasa_peticion > limite:
218
223
  registrar_evento(
219
224
  tipo="DoS",
@@ -232,6 +237,7 @@ def detectar_dos(ip: str, tasa_peticion: int, limite: int = LIMITE_PETICIONES) -
232
237
 
233
238
  def analizar_headers_avanzado(user_agent: str, referer: str) -> List[str]:
234
239
  """Detecta patrones sospechosos, penalizando User-Agents automatizados."""
240
+ # ... (La implementación de analizar_headers_avanzado permanece igual)
235
241
  sospechas = []
236
242
 
237
243
  if not user_agent or len(user_agent) < 10 or user_agent.lower() == "python-requests/2.25.1":
@@ -0,0 +1,194 @@
1
+ Metadata-Version: 2.4
2
+ Name: GuardianUnivalle-Benito-Yucra
3
+ Version: 0.1.67
4
+ Summary: Middleware y detectores de seguridad (SQLi, XSS, CSRF, DoS) para Django/Flask
5
+ Author-email: Andres Benito Calle Yucra <benitoandrescalle035@gmail.com>
6
+ License: MIT
7
+ Project-URL: Homepage, https://pypi.org/project/guardianunivalle-benito-yucra/
8
+ Project-URL: Bug_Tracker, https://github.com/Andyyupy/guardianunivalle-benito-yucra/issues
9
+ Keywords: security,django,flask,sqli,xss,csrf,middleware
10
+ Classifier: Development Status :: 3 - Alpha
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: Topic :: Security
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Framework :: Django
16
+ Classifier: Framework :: Flask
17
+ Requires-Python: >=3.8
18
+ Description-Content-Type: text/markdown
19
+ License-File: LICENSE
20
+ Requires-Dist: redis>=4.0
21
+ Requires-Dist: django>=3.2
22
+ Dynamic: license-file
23
+
24
+ <!-- Información de la librería -->
25
+
26
+ ![Guardian Univalle – Benito & Junkrat](![Guardian Univalle – Benito & Junkrat](https://raw.githubusercontent.com/Andyyupy/guardianunivalle-benito-yucra/main/docs/logo_guardian.png))
27
+
28
+ 🛡️ Guardian Univalle – Benito & Junkrat
29
+
30
+ Framework de detección y defensa de amenazas web para Django
31
+
32
+ Guardian Univalle es un sistema de seguridad modular desarrollado para fortalecer aplicaciones Django frente a ataques web comunes como XSS, CSRF, inyección SQL, ataques DoS y scraping automatizado.
33
+ Cada módulo opera mediante middleware independientes que analizan el tráfico HTTP en tiempo real, aplican heurísticas inteligentes y registran eventos sospechosos para auditoría y bloqueo adaptativo.
34
+
35
+ ⚙️ Arquitectura general
36
+
37
+ Guardian Univalle está diseñado bajo una arquitectura modular y extensible, donde cada tipo de amenaza se gestiona mediante un middleware especializado.
38
+ Cada middleware:
39
+
40
+ - Se ejecuta en la fase inicial del request (process_request).
41
+ - Analiza cabeceras, cuerpo y metadatos de la petición.
42
+ - Evalúa indicadores de ataque según patrones heurísticos y reglas configurables.
43
+ - Calcula una puntuación de riesgo (score) para cada evento.
44
+ - Anexa la información al objeto request (por ejemplo, request.xss_attack_info) para que otros módulos (como el de auditoría) la procesen.
45
+
46
+ 🧩 Módulos de defensa incluidos
47
+
48
+ 1. 🔐 CSRFDefenseMiddleware
49
+
50
+ Defensa contra Cross-Site Request Forgery (CSRF).
51
+
52
+ Este módulo detecta intentos de falsificación de peticiones mediante:
53
+
54
+ - Verificación de cabeceras Origin y Referer contra el host real.
55
+ - Validación de tokens CSRF en cookies, cabeceras o formularios.
56
+ - Análisis del tipo de contenido (Content-Type) y parámetros sensibles.
57
+ - Detección de peticiones JSON o formularios enviados desde dominios externos.
58
+ - Asignación de un score de riesgo proporcional al número y severidad de señales encontradas.
59
+
60
+ Algoritmos utilizados:
61
+ Heurísticas basadas en cabeceras HTTP, validación semántica de origen, y detección de anomalías en métodos POST, PUT, DELETE y PATCH.
62
+
63
+ 2. 🧬 XSSDefenseMiddleware
64
+
65
+ Defensa contra Cross-Site Scripting (XSS).
66
+
67
+ Analiza en profundidad los datos enviados en el cuerpo y querystring, detectando vectores de inyección HTML/JS mediante:
68
+
69
+ - Patrones de alto riesgo (<script>, javascript:, onload=, eval()).
70
+ - Ofuscaciones con entidades (&#x3C;, %3Cscript).
71
+ - Detección de atributos de eventos (onmouseover, onfocus, etc.).
72
+ - Análisis de URIs maliciosas (data:text/html, vbscript:).
73
+ - Scoring ponderado por severidad (de 0.3 a 0.95).
74
+
75
+ Algoritmos utilizados:
76
+ Detección basada en expresiones regulares avanzadas con pesos heurísticos y uso opcional de la librería Bleach para sanitización comparativa.
77
+
78
+ Salida:
79
+ Agrega request.xss_attack_info con los detalles de detección, la IP de origen, descripción, payload y score total.
80
+
81
+ 3. 💾 SQLIDefenseMiddleware
82
+
83
+ Defensa contra Inyección SQL (SQLi).
84
+
85
+ Identifica intentos de inyección SQL en los parámetros enviados a través de:
86
+
87
+ - Palabras clave peligrosas (UNION, SELECT, DROP, INSERT, UPDATE).
88
+ - Uso de comentarios (--, #, /_ ... _/).
89
+ - Concatenaciones o subconsultas sospechosas.
90
+ - Comportamientos anómalos en parámetros GET, POST o JSON.
91
+
92
+ Algoritmos utilizados:
93
+ Heurísticas sintácticas + patrones combinados con contextos.
94
+ Evalúa combinaciones de operadores y palabras reservadas para minimizar falsos positivos.
95
+
96
+ Resultado:
97
+ Registra el intento en request.sql_injection_info con score calculado y parámetros comprometidos.
98
+
99
+ 4. 🌐 DOSDefenseMiddleware
100
+
101
+ Detección de ataques de Denegación de Servicio (DoS).
102
+
103
+ Monitorea la frecuencia de peticiones por IP y calcula una métrica adaptativa de comportamiento:
104
+
105
+ - Detecta exceso de solicitudes en intervalos cortos.
106
+ - Analiza User-Agent, patrones repetitivos y tamaño de payloads.
107
+ - Aplica límites configurables (MAX_REQUESTS_PER_WINDOW).
108
+ - Marca IPs sospechosas para registro y bloqueo temporal.
109
+
110
+ Algoritmos utilizados:
111
+ Sliding Window con conteo adaptativo en memoria, controlado por señales de frecuencia e intensidad.
112
+
113
+ 5. 🕷️ ScrapingDefenseMiddleware (opcional)
114
+
115
+ Detección de scraping y bots automatizados.
116
+
117
+ Evalúa características típicas de scraping:
118
+
119
+ - User-Agent anómalo o ausente.
120
+ - Patrón de navegación repetitivo o excesivamente rápido.
121
+ - Ausencia de cabeceras humanas (como Accept-Language o Referer).
122
+ - Combinación con heurísticas de DoS para detectar scrapers agresivos.
123
+
124
+ Algoritmos utilizados:
125
+ Análisis estadístico de cabeceras + patrones de comportamiento a corto plazo.
126
+
127
+ 🧠 Integración y uso
128
+
129
+ Instalar la librería:
130
+
131
+ pip install guardian-univalle
132
+
133
+ En tu archivo settings.py de Django, añadir los middlewares:
134
+
135
+ MIDDLEWARE = [
136
+ "guardian_univalle.detectores.csrf_defense.CSRFDefenseMiddleware",
137
+ "guardian_univalle.detectores.xss_defense.XSSDefenseMiddleware",
138
+ "guardian_univalle.detectores.sql_defense.SQLIDefenseMiddleware",
139
+ "guardian_univalle.detectores.dos_defense.DOSDefenseMiddleware",
140
+ "guardian_univalle.detectores.scraping_defense.ScrapingDefenseMiddleware", # opcional
141
+ ]
142
+
143
+ (Opcional) Configurar umbrales en settings.py:
144
+
145
+ XSS_DEFENSE_THRESHOLD = 0.6
146
+ CSRF_DEFENSE_MIN_SIGNALS = 1
147
+ DOS_DEFENSE_MAX_REQUESTS = 100
148
+ SQLI_DEFENSE_THRESHOLD = 0.5
149
+
150
+ 🧾 Auditoría y correlación de eventos
151
+
152
+ Cada middleware genera un diccionario con detalles de detección:
153
+
154
+ request.xss_attack_info = {
155
+ "ip": "192.168.1.10",
156
+ "tipos": ["XSS"],
157
+ "descripcion": ["Etiqueta <script> detectada"],
158
+ "payload": "{'field': 'comentario', 'snippet': '<script>alert(1)</script>'}",
159
+ "score": 0.92,
160
+ "url": "/comentarios/enviar/",
161
+ }
162
+
163
+ Estos datos pueden ser almacenados por un AuditoriaMiddleware o enviados a un sistema SIEM para correlación y respuesta automatizada.
164
+
165
+ 🧩 Filosofía del proyecto
166
+
167
+ Guardian Univalle – Benito & Junkrat busca proporcionar una capa de defensa proactiva para entornos Django universitarios y empresariales, combinando:
168
+
169
+ Detección heurística,
170
+
171
+ Análisis semántico de cabeceras y payloads, y
172
+
173
+ Escalamiento de score basado en señales múltiples.
174
+
175
+ Su diseño es didáctico y extensible, ideal tanto para proyectos reales como para enseñanza de ciberseguridad aplicada.
176
+
177
+ 🧱 Estructura del paquete
178
+ guardian_univalle/
179
+
180
+ ├── detectores/
181
+ │ ├── csrf_defense.py
182
+ │ ├── xss_defense.py
183
+ │ ├── sql_defense.py
184
+ │ ├── dos_defense.py
185
+ │ ├── scraping_defense.py
186
+
187
+ ├── auditoria/
188
+ │ └── auditoria_middleware.py
189
+
190
+ └── **init**.py
191
+
192
+ 🧾 Licencia
193
+
194
+ Este proyecto se distribuye bajo la licencia MIT, permitiendo libre uso y modificación con atribución.
@@ -5,16 +5,15 @@ GuardianUnivalle_Benito_Yucra/criptografia/cifrado_aead.py,sha256=wfoRpaKvOqPbol
5
5
  GuardianUnivalle_Benito_Yucra/criptografia/intercambio_claves.py,sha256=9djnlzb022hUhrDbQyWz7lWLbkn_vQZ4K7qar1FXYmo,829
6
6
  GuardianUnivalle_Benito_Yucra/criptografia/kdf.py,sha256=_sbepEY1qHEKga0ExrX2WRg1HeCPY5MC5CfXZWYyl-A,709
7
7
  GuardianUnivalle_Benito_Yucra/detectores/detector_csrf.py,sha256=VASJJztJtKwYpjuEUXc-biHSVbIYXhwCzOPrLNXu3qY,7832
8
- GuardianUnivalle_Benito_Yucra/detectores/detector_dos.py,sha256=31riNrqe87uaKPcP3tSduknSOp2YYJReP9mw7fZRmoA,14514
9
- GuardianUnivalle_Benito_Yucra/detectores/detector_keylogger.py,sha256=L5RQ0Sdgg7hTU1qkZYwt7AcDqtAzT6u-jwBGo7YWfsw,8078
8
+ GuardianUnivalle_Benito_Yucra/detectores/detector_dos.py,sha256=Jy4fhI-6n9wQR0quzpondcUyCA2447lDq4fmOFeM1jA,14989
10
9
  GuardianUnivalle_Benito_Yucra/detectores/detector_sql.py,sha256=toYXgxLo1Wy_QCnqcboD7_qYbgudPtP4kEzci7GoDkA,12089
11
10
  GuardianUnivalle_Benito_Yucra/detectores/detector_xss.py,sha256=Cirjf1fo0j-wOO2baG8GFehAvjPy5JUF9krUg5AtofU,14452
12
11
  GuardianUnivalle_Benito_Yucra/middleware_web/middleware_web.py,sha256=23pLLYqliUoMrIC6ZEwz3hKXeDjWfHSm9vYPWGmDDik,495
13
12
  GuardianUnivalle_Benito_Yucra/mitigacion/limitador_peticion.py,sha256=ipMOebYhql-6mSyHs0ddYXOcXq9w8P_IXLlpiIqGncw,246
14
13
  GuardianUnivalle_Benito_Yucra/mitigacion/lista_bloqueo.py,sha256=6AYWII4mrmwCLHCvGTyoBxR4Oasr4raSHpFbVjqn7d8,193
15
14
  GuardianUnivalle_Benito_Yucra/puntuacion/puntuacion_amenaza.py,sha256=Wx5XfcII4oweLvZsTBEJ7kUc9pMpP5-36RfI5C5KJXo,561
16
- guardianunivalle_benito_yucra-0.1.65.dist-info/licenses/LICENSE,sha256=5e4IdL542v1E8Ft0A24GZjrxZeTsVK7XrS3mZEUhPtM,37
17
- guardianunivalle_benito_yucra-0.1.65.dist-info/METADATA,sha256=4m-wJsof2PGapob-mYLjxeq3q3OQWSVgshHGoCec4ok,1893
18
- guardianunivalle_benito_yucra-0.1.65.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
19
- guardianunivalle_benito_yucra-0.1.65.dist-info/top_level.txt,sha256=HTWfZM64WAV_QYr5cnXnLuabQt92dvlxqlR3pCwpbDQ,30
20
- guardianunivalle_benito_yucra-0.1.65.dist-info/RECORD,,
15
+ guardianunivalle_benito_yucra-0.1.67.dist-info/licenses/LICENSE,sha256=5e4IdL542v1E8Ft0A24GZjrxZeTsVK7XrS3mZEUhPtM,37
16
+ guardianunivalle_benito_yucra-0.1.67.dist-info/METADATA,sha256=ULHeOjATiTpxu8T2Qoh_4YhIXsZGEQS97a3mFiMar7I,7714
17
+ guardianunivalle_benito_yucra-0.1.67.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
18
+ guardianunivalle_benito_yucra-0.1.67.dist-info/top_level.txt,sha256=HTWfZM64WAV_QYr5cnXnLuabQt92dvlxqlR3pCwpbDQ,30
19
+ guardianunivalle_benito_yucra-0.1.67.dist-info/RECORD,,
@@ -1,219 +0,0 @@
1
- from __future__ import annotations
2
- import psutil
3
- import os
4
- import logging
5
- import platform
6
- import subprocess
7
- from typing import List, Dict
8
- from django.conf import settings
9
- from ..auditoria.registro_auditoria import registrar_evento
10
-
11
- # =====================================================
12
- # === CONFIGURACIÓN DEL LOGGER ===
13
- # =====================================================
14
- logger = logging.getLogger("keyloggerdefense")
15
- logger.setLevel(logging.INFO)
16
- if not logger.handlers:
17
- handler = logging.StreamHandler()
18
- handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
19
- logger.addHandler(handler)
20
- # =========================================
21
- # Middleware de Keylogger para Django
22
- # =========================================
23
- from django.utils.deprecation import MiddlewareMixin
24
-
25
-
26
- class KEYLOGGERDefenseMiddleware(MiddlewareMixin):
27
- """
28
- Middleware que ejecuta el escaneo de keyloggers
29
- en cada request entrante.
30
- """
31
-
32
- def __init__(self, get_response=None):
33
- super().__init__(get_response)
34
- # Importa tu clase de detección
35
- from .detector_keylogger import KEYLOGGERDefense
36
-
37
- self.detector = KEYLOGGERDefense()
38
-
39
- def process_request(self, request):
40
- """
41
- Ejecuta el escaneo antes de procesar la vista.
42
- Guarda los resultados en el objeto request para uso posterior.
43
- """
44
- try:
45
- # Detecta en modo interactivo
46
- resultado = self.detector.ejecutar_escaneo(modo_interactivo=True)
47
- request.keylogger_attack_info = resultado
48
- except Exception as e:
49
- logger.error("Error en KEYLOGGERDefenseMiddleware: %s", e)
50
-
51
-
52
- # =====================================================
53
- # === CONFIGURACIÓN DE PARÁMETROS ===
54
- # =====================================================
55
- PESO_KEYLOGGER = getattr(settings, "KEYLOGGER_PESO", 0.4)
56
- EXTENSIONES_SOSPECHOSAS = [".exe", ".dll", ".scr", ".bat", ".cmd", ".msi"]
57
- CARPETAS_CRITICAS = [
58
- "C:\\Users\\Public",
59
- "C:\\Users\\%USERNAME%\\AppData\\Roaming",
60
- "C:\\Users\\%USERNAME%\\AppData\\Local\\Temp",
61
- "C:\\ProgramData",
62
- "C:\\Windows\\Temp",
63
- ]
64
- PATRONES_NOMBRES = ["keylogger", "spy", "hook", "keyboard", "capture", "stealer"]
65
-
66
-
67
- # =====================================================
68
- # === FUNCIONES AUXILIARES ===
69
- # =====================================================
70
- def calcular_score_keylogger(total_items: int) -> float:
71
- """Calcula el nivel de amenaza normalizado."""
72
- return round(min(PESO_KEYLOGGER * total_items, 1.0), 3)
73
-
74
-
75
- def detectar_procesos_sospechosos() -> List[Dict]:
76
- """Escanea procesos activos y detecta posibles keyloggers."""
77
- hallazgos = []
78
- for proc in psutil.process_iter(["pid", "name", "exe"]):
79
- try:
80
- nombre = proc.info.get("name", "").lower()
81
- if any(pat in nombre for pat in PATRONES_NOMBRES):
82
- hallazgos.append(proc.info)
83
- registrar_evento("Keylogger", f"Proceso sospechoso: {proc.info}")
84
- except (psutil.NoSuchProcess, psutil.AccessDenied):
85
- continue
86
- return hallazgos
87
-
88
-
89
- def detectar_archivos_sospechosos() -> List[str]:
90
- """
91
- Busca archivos con extensiones peligrosas y nombres relacionados
92
- a keyloggers en carpetas críticas del sistema.
93
- """
94
- hallazgos = []
95
- for base in CARPETAS_CRITICAS:
96
- base = os.path.expandvars(base) # reemplaza %USERNAME%
97
- if not os.path.exists(base):
98
- continue
99
- for root, _, files in os.walk(base):
100
- for file in files:
101
- if any(file.lower().endswith(ext) for ext in EXTENSIONES_SOSPECHOSAS):
102
- if any(pat in file.lower() for pat in PATRONES_NOMBRES):
103
- ruta = os.path.join(root, file)
104
- hallazgos.append(ruta)
105
- registrar_evento("Keylogger", f"Archivo sospechoso: {ruta}")
106
- return hallazgos
107
-
108
-
109
- def detectar_programas_instalados() -> list[str]:
110
- """
111
- Detecta software potencialmente malicioso en Windows usando PowerShell.
112
- """
113
- hallazgos = []
114
- if platform.system() != "Windows":
115
- return hallazgos
116
-
117
- ps_command = (
118
- "Get-ItemProperty HKLM:\\Software\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Uninstall\\*,"
119
- "HKLM:\\Software\\Microsoft\\Windows\\CurrentVersion\\Uninstall\\* | Select-Object DisplayName"
120
- )
121
-
122
- try:
123
- salida = subprocess.check_output(
124
- ["powershell", "-Command", ps_command],
125
- stderr=subprocess.DEVNULL,
126
- shell=True,
127
- ).decode("utf-8", errors="ignore")
128
-
129
- for linea in salida.splitlines():
130
- nombre = linea.strip().lower()
131
- if any(pat in nombre for pat in PATRONES_NOMBRES):
132
- hallazgos.append(nombre)
133
- registrar_evento("Keylogger", f"Software sospechoso: {nombre}")
134
-
135
- except Exception as e:
136
- logger.error("Error al listar programas instalados con PowerShell: %s", e)
137
-
138
- return hallazgos
139
-
140
-
141
- # =====================================================
142
- # === CLASE PRINCIPAL DE DETECCIÓN ===
143
- # =====================================================
144
- class KEYLOGGERDefense:
145
- """
146
- Escanea procesos, archivos y programas para detectar keyloggers
147
- o software espía potencialmente malicioso.
148
- """
149
-
150
- def ejecutar_escaneo(self, modo_interactivo=False):
151
- procesos = detectar_procesos_sospechosos()
152
- archivos = detectar_archivos_sospechosos()
153
- programas = detectar_programas_instalados()
154
-
155
- total_hallazgos = len(procesos) + len(archivos) + len(programas)
156
- score = calcular_score_keylogger(total_hallazgos)
157
-
158
- evento = {
159
- "tipo": "Keylogger",
160
- "procesos": procesos,
161
- "archivos": archivos,
162
- "programas": programas,
163
- "score": score,
164
- "descripcion": [],
165
- }
166
-
167
- if total_hallazgos > 0:
168
- evento["descripcion"] = [
169
- f"Procesos sospechosos: {len(procesos)}",
170
- f"Archivos sospechosos: {len(archivos)}",
171
- f"Programas sospechosos: {len(programas)}",
172
- ]
173
- if modo_interactivo:
174
- # Retornar hallazgos para mostrar al usuario antes de bloquear
175
- return evento
176
-
177
- # Si no es interactivo, registra y bloquea automáticamente
178
- registrar_evento(
179
- tipo="Keylogger",
180
- descripcion=f"Detectados {total_hallazgos} elementos sospechosos.",
181
- severidad="ALTA" if score >= 0.5 else "MEDIA",
182
- )
183
- return evento
184
-
185
- # Si no hay hallazgos
186
- evento["descripcion"] = ["Sin hallazgos"]
187
- return evento
188
-
189
-
190
- """
191
- Algoritmos relacionados:
192
- *Guardar registros con AES-256 + hash SHA-512 para integridad.
193
- Contribución a fórmula de amenaza S:
194
- S_keylogger = w_keylogger * numero_procesos_sospechosos
195
- S_keylogger = 0.4 * 2
196
- donde w_keylogger es peso asignado a keyloggers y numero_procesos_sospechosos es la cantidad de procesos detectados.
197
-
198
- """
199
- """
200
- Detector extendido de Keyloggers
201
- ================================
202
-
203
- Módulo avanzado de detección de keyloggers y software espía en el sistema.
204
- Incluye revisión de procesos activos, archivos ejecutables sospechosos y
205
- aplicaciones instaladas en el sistema operativo Windows.
206
-
207
- Componentes:
208
- - Escaneo de procesos activos.
209
- - Detección de archivos con extensiones críticas (.exe, .dll, .scr, .bat, .cmd, .msi).
210
- - Revisión de aplicaciones instaladas (si se ejecuta en Windows).
211
- - Cálculo de nivel de amenaza y registro de auditoría.
212
-
213
- Algoritmos:
214
- * Revisión de procesos (psutil)
215
- * Análisis de archivos con extensiones críticas
216
- * Detección de software instalado
217
- * Registro cifrado con AES-256 + SHA-512
218
- * Fórmula: S_keylogger = w_keylogger * (procesos + archivos + instalaciones)
219
- """
@@ -1,57 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: GuardianUnivalle-Benito-Yucra
3
- Version: 0.1.65
4
- Summary: Middleware y detectores de seguridad (SQLi, XSS, CSRF, DoS, Keylogger) para Django/Flask
5
- Author-email: Andres Benito Calle Yucra <benitoandrescalle035@gmail.com>
6
- License: MIT
7
- Project-URL: Homepage, https://pypi.org/project/guardianunivalle-benito-yucra/
8
- Project-URL: Bug_Tracker, https://github.com/Andyyupy/guardianunivalle-benito-yucra/issues
9
- Keywords: security,django,flask,sqli,xss,csrf,middleware
10
- Classifier: Development Status :: 3 - Alpha
11
- Classifier: Intended Audience :: Developers
12
- Classifier: Topic :: Security
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Framework :: Django
16
- Classifier: Framework :: Flask
17
- Requires-Python: >=3.8
18
- Description-Content-Type: text/markdown
19
- License-File: LICENSE
20
- Requires-Dist: redis>=4.0
21
- Requires-Dist: django>=3.2
22
- Dynamic: license-file
23
-
24
- <!-- Información de la librería -->
25
-
26
- 🔐 Algoritmos de cifrado simétrico
27
- AES (Rijndael) → AES-128, AES-192, AES-256
28
- RC6
29
- ChaCha20
30
-
31
- 🔀 Modos de operación de cifrado simétrico
32
- CTR (Counter Mode)
33
- CFB (Cipher Feedback Mode)
34
- OFB (Output Feedback Mode)
35
- CCM (Counter with CBC-MAC)
36
- EAX
37
- GCM (Galois/Counter Mode)
38
- XTS
39
-
40
- 🔑 Algoritmos de cifrado asimétrico
41
- RSA (Rivest–Shamir–Adleman)
42
- ECC (Elliptic Curve Cryptography)
43
- 🧮 Algoritmos relacionados con factorización y logaritmos
44
- CGCN (Criba General del Cuerpo de Números / General Number Field Sieve, GNFS)
45
- Algoritmo de Shor (para computación cuántica)
46
- Multiplicación por tentativa (método básico de exponenciación para logaritmos discretos)
47
-
48
- 🔑 Funciones de derivación de claves (KDF)
49
- PBKDF2
50
- scrypt
51
- Argon2
52
-
53
- 📝 Funciones hash
54
- Serie MD: MD2, MD4, MD5, MD6
55
- SHA (Secure Hash Algorithm): SHA-0, SHA-1, SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
56
-
57
-