GameSentenceMiner 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,128 @@
1
+ import time
2
+
3
+ import obswebsocket
4
+ from obswebsocket import obsws, requests
5
+ from obswebsocket.exceptions import ConnectionFailure
6
+
7
+ from . import util
8
+ from . import configuration
9
+ from .configuration import *
10
+ from .model import *
11
+
12
+ client: obsws = None
13
+
14
+ # REFERENCE: https://github.com/obsproject/obs-websocket/blob/master/docs/generated/protocol.md
15
+
16
+
17
+ def on_connect(obs):
18
+ logger.info("Connected to OBS WebSocket.")
19
+ time.sleep(2)
20
+ if get_config().obs.start_buffer:
21
+ start_replay_buffer()
22
+
23
+
24
+ def on_disconnect(obs):
25
+ logger.error("OBS Connection Lost!")
26
+
27
+
28
+ def connect_to_obs(start_replay=False):
29
+ global client
30
+ if get_config().obs.enabled:
31
+ client = obsws(host=get_config().obs.host, port=get_config().obs.port,
32
+ password=get_config().obs.password, authreconnect=1, on_connect=on_connect,
33
+ on_disconnect=on_disconnect)
34
+ try:
35
+ client.connect()
36
+ except ConnectionFailure:
37
+ logger.error("OBS Websocket Connection Has not been Set up, please set it up in Settings")
38
+ exit(1)
39
+
40
+ time.sleep(1)
41
+ if start_replay and get_config().obs.start_buffer:
42
+ start_replay_buffer()
43
+ update_current_game()
44
+
45
+
46
+ # Disconnect from OBS WebSocket
47
+ def disconnect_from_obs():
48
+ global client
49
+ if client:
50
+ client.disconnect()
51
+ client = None
52
+ logger.info("Disconnected from OBS WebSocket.")
53
+
54
+
55
+ # Start replay buffer
56
+ def start_replay_buffer():
57
+ try:
58
+ client.call(requests.GetVersion())
59
+ client.call(requests.StartReplayBuffer())
60
+ except Exception as e:
61
+ print(f"Error starting replay buffer: {e}")
62
+
63
+
64
+ # Stop replay buffer
65
+ def stop_replay_buffer():
66
+ try:
67
+ client.call(requests.StopReplayBuffer())
68
+ print("Replay buffer stopped.")
69
+ except Exception as e:
70
+ print(f"Error stopping replay buffer: {e}")
71
+
72
+
73
+ # Save the current replay buffer
74
+ def save_replay_buffer():
75
+ try:
76
+ client.call(requests.SaveReplayBuffer())
77
+ except Exception as e:
78
+ print(f"Error saving replay buffer: {e}")
79
+
80
+
81
+ def get_current_scene():
82
+ try:
83
+ response = client.call(requests.GetCurrentProgramScene())
84
+ scene_info = SceneInfo.from_dict(response.datain)
85
+ return scene_info.sceneName
86
+ except Exception as e:
87
+ print(f"Couldn't get scene: {e}")
88
+ return ''
89
+
90
+
91
+ def get_source_from_scene(scene_name):
92
+ try:
93
+ response = client.call(requests.GetSceneItemList(sceneName=scene_name))
94
+ scene_list = SceneItemsResponse.from_dict(response.datain)
95
+ print(scene_list)
96
+ return scene_list.sceneItems[0]
97
+ except Exception as e:
98
+ print(f"Error getting source from scene: {e}")
99
+ return ''
100
+
101
+
102
+ def get_screenshot():
103
+ try:
104
+ screenshot = util.make_unique_file_name(os.path.abspath(configuration.temp_directory) + '/screenshot.png')
105
+ update_current_game()
106
+ current_source = get_source_from_scene(get_current_game())
107
+ current_source_name = current_source.sourceName
108
+ if not current_source_name:
109
+ print("No active scene found.")
110
+ return
111
+ client.call(
112
+ requests.SaveSourceScreenshot(sourceName=current_source_name, imageFormat='png', imageFilePath=screenshot))
113
+ return screenshot
114
+ except Exception as e:
115
+ print(f"Error getting screenshot: {e}")
116
+
117
+
118
+ def update_current_game():
119
+ configuration.current_game = get_current_scene()
120
+
121
+
122
+ def get_current_game(sanitize=False):
123
+ if not configuration.current_game:
124
+ update_current_game()
125
+
126
+ if sanitize:
127
+ return util.sanitize_filename(configuration.current_game)
128
+ return configuration.current_game
@@ -0,0 +1,136 @@
1
+ import os
2
+ import random
3
+ import re
4
+ import string
5
+ import subprocess
6
+ import threading
7
+ from datetime import datetime
8
+ from sys import platform
9
+
10
+ from rapidfuzz import process
11
+
12
+ SCRIPTS_DIR = r"E:\Japanese Stuff\agent-v0.1.4-win32-x64\data\scripts"
13
+
14
+ # Global variables to control script execution
15
+ use_previous_audio = False
16
+ keep_running = True
17
+ lock = threading.Lock()
18
+
19
+
20
+ def run_new_thread(func):
21
+ thread = threading.Thread(target=func, daemon=True)
22
+ thread.start()
23
+ return thread
24
+
25
+
26
+ def make_unique_file_name(path):
27
+ split = path.rsplit('.', 1)
28
+ filename = split[0]
29
+ extension = split[1]
30
+
31
+ current_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')[:-3]
32
+
33
+ return f"{filename}_{current_time}.{extension}"
34
+
35
+ def sanitize_filename(filename):
36
+ return re.sub(r'[ <>:"/\\|?*\x00-\x1F]', '', filename)
37
+
38
+
39
+ def get_random_digit_string():
40
+ return ''.join(random.choice(string.digits) for i in range(9))
41
+
42
+
43
+ def timedelta_to_ffmpeg_friendly_format(td_obj):
44
+ total_seconds = td_obj.total_seconds()
45
+ hours, remainder = divmod(total_seconds, 3600)
46
+ minutes, seconds = divmod(remainder, 60)
47
+ return "{:02}:{:02}:{:06.3f}".format(int(hours), int(minutes), seconds)
48
+
49
+
50
+ def get_file_modification_time(file_path):
51
+ mod_time_epoch = os.path.getmtime(file_path)
52
+ mod_time = datetime.fromtimestamp(mod_time_epoch)
53
+ return mod_time
54
+
55
+
56
+ def get_process_id_by_title(game_title):
57
+ powershell_command = f"Get-Process | Where-Object {{$_.MainWindowTitle -like '*{game_title}*'}} | Select-Object -First 1 -ExpandProperty Id"
58
+ process_id = subprocess.check_output(["powershell", "-Command", powershell_command], text=True).strip()
59
+ print(f"Process ID for {game_title}: {process_id}")
60
+ return process_id
61
+
62
+
63
+ def get_script_files(directory):
64
+ script_files = []
65
+ for root, dirs, files in os.walk(directory):
66
+ for file in files:
67
+ if file.endswith(".js"): # Assuming the scripts are .js files
68
+ script_files.append(os.path.join(root, file))
69
+ return script_files
70
+
71
+
72
+ def filter_steam_scripts(scripts):
73
+ return [script for script in scripts if "PC_Steam" in os.path.basename(script)]
74
+
75
+
76
+ def extract_game_name(script_path):
77
+ # Remove directory and file extension to get the name part
78
+ script_name = os.path.basename(script_path)
79
+ game_name = script_name.replace("PC_Steam_", "").replace(".js", "")
80
+ return game_name.replace("_", " ").replace(".", " ")
81
+
82
+
83
+ def find_most_similar_script(game_title, steam_scripts):
84
+ # Create a list of game names from the script paths
85
+ game_names = [extract_game_name(script) for script in steam_scripts]
86
+
87
+ # Use rapidfuzz to find the closest match
88
+ best_match = process.extractOne(game_title, game_names)
89
+
90
+ if best_match:
91
+ matched_game_name, confidence_score, index = best_match
92
+ return steam_scripts[index], matched_game_name, confidence_score
93
+ return None, None, None
94
+
95
+
96
+ def find_script_for_game(game_title):
97
+ script_files = get_script_files(SCRIPTS_DIR)
98
+
99
+ steam_scripts = filter_steam_scripts(script_files)
100
+
101
+ best_script, matched_game_name, confidence = find_most_similar_script(game_title, steam_scripts)
102
+
103
+ if best_script:
104
+ print(f"Found Script: {best_script}")
105
+ return best_script
106
+ else:
107
+ print("No similar script found.")
108
+
109
+
110
+ def run_agent_and_hook(pname, agent_script):
111
+ command = f'agent --script=\"{agent_script}\" --pname={pname}'
112
+ print("Running and Hooking Agent!")
113
+ try:
114
+ dos_process = subprocess.Popen(command, shell=True)
115
+ dos_process.wait() # Wait for the process to complete
116
+ print("Agent script finished or closed.")
117
+ except Exception as e:
118
+ print(f"Error occurred while running agent script: {e}")
119
+
120
+ keep_running = False
121
+
122
+
123
+ def is_linux():
124
+ return platform == 'linux'
125
+
126
+ # def run_command(command, shell=False, input=None, capture_output=False, timeout=None, check=False, **kwargs):
127
+ # # Use shell=True if the OS is Linux, otherwise shell=False
128
+ # if is_linux():
129
+ # return subprocess.run(command, shell=True, input=input, capture_output=capture_output, timeout=timeout,
130
+ # check=check, **kwargs)
131
+ # else:
132
+ # return subprocess.run(command, shell=shell, input=input, capture_output=capture_output, timeout=timeout,
133
+ # check=check, **kwargs)
134
+ def remove_html_tags(text):
135
+ clean_text = re.sub(r'<.*?>', '', text)
136
+ return clean_text
File without changes
@@ -0,0 +1,43 @@
1
+ import tempfile
2
+
3
+ from silero_vad import load_silero_vad, read_audio, get_speech_timestamps
4
+
5
+ from .. import configuration, ffmpeg
6
+ from ..configuration import *
7
+
8
+ # Silero VAD setup
9
+ vad_model = load_silero_vad()
10
+
11
+
12
+ # Use Silero to detect voice activity with timestamps in the audio
13
+ def detect_voice_with_silero(input_audio):
14
+ # Convert the audio to 16kHz mono WAV
15
+ temp_wav = tempfile.NamedTemporaryFile(dir=configuration.temp_directory, suffix='.wav').name
16
+ ffmpeg.convert_audio_to_wav(input_audio, temp_wav)
17
+
18
+ # Load the audio and detect speech timestamps
19
+ wav = read_audio(temp_wav, sampling_rate=16000)
20
+ speech_timestamps = get_speech_timestamps(wav, vad_model, return_seconds=True)
21
+
22
+ logger.debug(speech_timestamps)
23
+
24
+ # Return the speech timestamps (start and end in seconds)
25
+ return speech_timestamps
26
+
27
+
28
+ # Example usage of Silero with trimming
29
+ def process_audio_with_silero(input_audio, output_audio):
30
+ voice_activity = detect_voice_with_silero(input_audio)
31
+
32
+ if not voice_activity:
33
+ logger.info("No voice activity detected in the audio.")
34
+ return False
35
+
36
+ # Trim based on the first and last speech detected
37
+ start_time = voice_activity[0]['start'] if voice_activity else 0
38
+ end_time = voice_activity[-1]['end'] if voice_activity else 0
39
+
40
+ # Trim the audio using FFmpeg
41
+ ffmpeg.trim_audio(input_audio, start_time, end_time + get_config().audio.end_offset, output_audio)
42
+ logger.info(f"Trimmed audio saved to: {output_audio}")
43
+ return True
@@ -0,0 +1,152 @@
1
+ import tarfile
2
+ import tempfile
3
+ import zipfile
4
+
5
+ import numpy as np
6
+ import requests
7
+ import soundfile as sf
8
+ import vosk
9
+
10
+ from .. import ffmpeg, configuration
11
+ from ..configuration import *
12
+
13
+ ffmpeg_base_command_list = ["ffmpeg", "-hide_banner", "-loglevel", "error"]
14
+ vosk.SetLogLevel(-1)
15
+ vosk_model_path = ''
16
+ vosk_model = None
17
+
18
+
19
+ # Function to download and cache the Vosk model
20
+ def download_and_cache_vosk_model(model_dir="vosk_model_cache"):
21
+ # Ensure the cache directory exists
22
+ if not os.path.exists(model_dir):
23
+ os.makedirs(model_dir)
24
+
25
+ # Extract the model name from the URL
26
+ model_filename = get_config().vad.vosk_url.split("/")[-1]
27
+ model_path = os.path.join(model_dir, model_filename)
28
+
29
+ # If the model is already downloaded, skip the download
30
+ if not os.path.exists(model_path):
31
+ logger.info(
32
+ f"Downloading the Vosk model from {get_config().vad.vosk_url}... This will take a while if using large model, ~1G")
33
+ response = requests.get(get_config().vad.vosk_url, stream=True)
34
+ with open(model_path, "wb") as file:
35
+ for chunk in response.iter_content(chunk_size=8192):
36
+ if chunk:
37
+ file.write(chunk)
38
+ logger.info("Download complete.")
39
+
40
+ # Extract the model if it's a zip or tar file
41
+ model_extract_path = os.path.join(model_dir, "vosk_model")
42
+ if not os.path.exists(model_extract_path):
43
+ logger.info("Extracting the Vosk model...")
44
+ if model_filename.endswith(".zip"):
45
+ with zipfile.ZipFile(model_path, "r") as zip_ref:
46
+ zip_ref.extractall(model_extract_path)
47
+ elif model_filename.endswith(".tar.gz"):
48
+ with tarfile.open(model_path, "r:gz") as tar_ref:
49
+ tar_ref.extractall(model_extract_path)
50
+ else:
51
+ logger.info("Unknown archive format. Model extraction skipped.")
52
+ logger.info(f"Model extracted to {model_extract_path}.")
53
+ else:
54
+ logger.info(f"Model already extracted at {model_extract_path}.")
55
+
56
+ # Return the path to the actual model folder inside the extraction directory
57
+ extracted_folders = os.listdir(model_extract_path)
58
+ if extracted_folders:
59
+ actual_model_folder = os.path.join(model_extract_path,
60
+ extracted_folders[0]) # Assuming the first folder is the model
61
+ return actual_model_folder
62
+ else:
63
+ return model_extract_path # In case there's no subfolder, return the extraction path directly
64
+
65
+
66
+ # Use Vosk to detect voice activity with timestamps in the audio
67
+ def detect_voice_with_vosk(input_audio):
68
+ global vosk_model_path, vosk_model
69
+ # Convert the audio to 16kHz mono WAV
70
+ temp_wav = tempfile.NamedTemporaryFile(dir=configuration.temp_directory, suffix='.wav').name
71
+ ffmpeg.convert_audio_to_wav(input_audio, temp_wav)
72
+
73
+ if not vosk_model_path or not vosk_model:
74
+ vosk_model_path = download_and_cache_vosk_model()
75
+ vosk_model = vosk.Model(vosk_model_path)
76
+
77
+ # Open the audio file
78
+ with sf.SoundFile(temp_wav) as audio_file:
79
+ recognizer = vosk.KaldiRecognizer(vosk_model, audio_file.samplerate)
80
+ voice_activity = []
81
+ total_duration = len(audio_file) / audio_file.samplerate # Get total duration in seconds
82
+
83
+ recognizer.SetWords(True)
84
+ # recognizer.SetPartialWords(True)
85
+
86
+ # Process audio in chunks
87
+ while True:
88
+ data = audio_file.buffer_read(4000, dtype='int16')
89
+ if len(data) == 0:
90
+ break
91
+
92
+ # Convert buffer to bytes using NumPy
93
+ data_bytes = np.frombuffer(data, dtype='int16').tobytes()
94
+
95
+ if recognizer.AcceptWaveform(data_bytes):
96
+ pass
97
+
98
+ final_result = json.loads(recognizer.FinalResult())
99
+ if 'result' in final_result:
100
+ should_use = False
101
+ unique_words = set()
102
+ for word in final_result['result']:
103
+ if word['conf'] >= .90:
104
+ logger.debug(word)
105
+ should_use = True
106
+ unique_words.add(word['word'])
107
+ if len(unique_words) == 1 or all(item in ['えー', 'ん'] for item in unique_words):
108
+ should_use = False
109
+
110
+ if not should_use:
111
+ return None, 0
112
+
113
+ for word in final_result['result']:
114
+ voice_activity.append({
115
+ 'text': word['word'],
116
+ 'start': word['start'],
117
+ 'end': word['end']
118
+ })
119
+
120
+ # Return the detected voice activity and the total duration
121
+ return voice_activity, total_duration
122
+
123
+
124
+ # Example usage of Vosk with trimming
125
+ def process_audio_with_vosk(input_audio, output_audio):
126
+ voice_activity, total_duration = detect_voice_with_vosk(input_audio)
127
+
128
+ if not voice_activity:
129
+ logger.info("No voice activity detected in the audio.")
130
+ return False
131
+
132
+ # Trim based on the first and last speech detected
133
+ start_time = voice_activity[0]['start'] if voice_activity else 0
134
+ end_time = voice_activity[-1]['end'] if voice_activity else total_duration
135
+
136
+ if get_config().vad.trim_beginning:
137
+ logger.info(f"Trimmed Beginning of Audio to {start_time}")
138
+
139
+ # Print detected speech details with timestamps
140
+ logger.info(f"Trimmed End of Audio to {end_time} seconds:")
141
+
142
+ # Trim the audio using FFmpeg
143
+ ffmpeg.trim_audio(input_audio, start_time, end_time + get_config().audio.end_offset, output_audio)
144
+ logger.info(f"Trimmed audio saved to: {output_audio}")
145
+ return True
146
+
147
+
148
+ def get_vosk_model():
149
+ global vosk_model_path, vosk_model
150
+ vosk_model_path = download_and_cache_vosk_model()
151
+ vosk_model = vosk.Model(vosk_model_path)
152
+ logger.info(f"Using Vosk model from {vosk_model_path}")
@@ -0,0 +1,98 @@
1
+ import tempfile
2
+ import warnings
3
+
4
+ import stable_whisper as whisper
5
+ from stable_whisper import WhisperResult
6
+
7
+ from .. import ffmpeg, configuration
8
+ from ..configuration import *
9
+
10
+ ffmpeg_base_command_list = ["ffmpeg", "-hide_banner", "-loglevel", "error"]
11
+ whisper_model = None
12
+
13
+
14
+ # Function to download and load the Whisper model
15
+ def load_whisper_model():
16
+ global whisper_model
17
+ if whisper_model is None:
18
+ logger.info(f"Loading Whisper model '{get_config().vad.whisper_model}'... This may take a while.")
19
+ with warnings.catch_warnings(action="ignore"):
20
+ whisper_model = whisper.load_model(get_config().vad.whisper_model)
21
+ logger.info("Whisper model loaded.")
22
+
23
+
24
+ # Use Whisper to detect voice activity with timestamps in the audio
25
+ def detect_voice_with_whisper(input_audio):
26
+ # Convert the audio to 16kHz mono WAV
27
+ temp_wav = tempfile.NamedTemporaryFile(dir=configuration.temp_directory, suffix='.wav').name
28
+ ffmpeg.convert_audio_to_wav(input_audio, temp_wav)
29
+
30
+ # Make sure Whisper is loaded
31
+ load_whisper_model()
32
+
33
+ logger.info('transcribing audio...')
34
+
35
+ # Transcribe the audio using Whisper
36
+ with warnings.catch_warnings(action="ignore"):
37
+ result: WhisperResult = whisper_model.transcribe(temp_wav, vad=True, language='ja')
38
+
39
+ voice_activity = []
40
+
41
+ logger.debug(result.to_dict())
42
+
43
+ # Process the segments to extract tokens, timestamps, and confidence
44
+ for segment in result.segments:
45
+ logger.debug(segment.to_dict())
46
+ for word in segment.words:
47
+ logger.debug(word.to_dict())
48
+ confidence = word.probability
49
+ if confidence > .1:
50
+ logger.debug(word)
51
+ voice_activity.append({
52
+ 'text': word.word,
53
+ 'start': word.start,
54
+ 'end': word.end,
55
+ 'confidence': word.probability
56
+ })
57
+
58
+ # Analyze the detected words to decide whether to use the audio
59
+ should_use = False
60
+ unique_words = set(word['text'] for word in voice_activity)
61
+ if len(unique_words) > 1 or not all(item in ['えー', 'ん'] for item in unique_words):
62
+ should_use = True
63
+
64
+ if not should_use:
65
+ return None
66
+
67
+ # Return the detected voice activity and the total duration
68
+ return voice_activity
69
+
70
+
71
+ # Example usage of Whisper with trimming
72
+ def process_audio_with_whisper(input_audio, output_audio):
73
+ voice_activity = detect_voice_with_whisper(input_audio)
74
+
75
+ if not voice_activity:
76
+ logger.info("No voice activity detected in the audio.")
77
+ return False
78
+
79
+ # Trim based on the first and last speech detected
80
+ start_time = voice_activity[0]['start']
81
+ end_time = voice_activity[-1]['end']
82
+
83
+ if get_config().vad.trim_beginning:
84
+ logger.info(f"Trimmed Beginning of Audio to {start_time}")
85
+
86
+ # Print detected speech details with timestamps
87
+ logger.info(f"Trimmed End of Audio to {end_time} seconds:")
88
+
89
+ # Trim the audio using FFmpeg
90
+ ffmpeg.trim_audio(input_audio, start_time, end_time + get_config().audio.end_offset, output_audio)
91
+ logger.info(f"Trimmed audio saved to: {output_audio}")
92
+ return True
93
+
94
+
95
+ # Load Whisper model initially
96
+ def initialize_whisper_model():
97
+ load_whisper_model()
98
+ logger.info(f"Using Whisper model '{get_config().vad.whisper_model}' for Japanese voice detection")