Flowfile 0.3.8__py3-none-any.whl → 0.3.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of Flowfile might be problematic. Click here for more details.

Files changed (161) hide show
  1. flowfile/__init__.py +4 -3
  2. flowfile/api.py +1 -1
  3. flowfile/web/static/assets/{CloudConnectionManager-c20a740f.js → CloudConnectionManager-d7c2c028.js} +2 -2
  4. flowfile/web/static/assets/{CloudStorageReader-960b400a.js → CloudStorageReader-d467329f.js} +11 -78
  5. flowfile/web/static/assets/{CloudStorageWriter-e3decbdd.js → CloudStorageWriter-071b8b00.js} +12 -79
  6. flowfile/web/static/assets/{CloudStorageWriter-49c9a4b2.css → CloudStorageWriter-b0ee067f.css} +24 -24
  7. flowfile/web/static/assets/ContextMenu-2dea5e27.js +41 -0
  8. flowfile/web/static/assets/{SettingsSection-9c836ecc.css → ContextMenu-4c74eef1.css} +0 -21
  9. flowfile/web/static/assets/ContextMenu-63cfa99b.css +26 -0
  10. flowfile/web/static/assets/ContextMenu-785554c4.js +41 -0
  11. flowfile/web/static/assets/ContextMenu-a51e19ea.js +41 -0
  12. flowfile/web/static/assets/ContextMenu-c13f91d0.css +26 -0
  13. flowfile/web/static/assets/{CrossJoin-41efa4cb.css → CrossJoin-1119d18e.css} +18 -18
  14. flowfile/web/static/assets/{CrossJoin-d67e2405.js → CrossJoin-cf68ec7a.js} +14 -84
  15. flowfile/web/static/assets/{DatabaseConnectionSettings-a81e0f7e.js → DatabaseConnectionSettings-435c5dd8.js} +3 -3
  16. flowfile/web/static/assets/{DatabaseManager-9ea35e84.js → DatabaseManager-349e33a8.js} +2 -2
  17. flowfile/web/static/assets/{DatabaseReader-9578bfa5.js → DatabaseReader-8075bd28.js} +14 -114
  18. flowfile/web/static/assets/{DatabaseReader-f50c6558.css → DatabaseReader-ae61773c.css} +0 -27
  19. flowfile/web/static/assets/{DatabaseWriter-19531098.js → DatabaseWriter-3e2dda89.js} +13 -74
  20. flowfile/web/static/assets/{ExploreData-5bdae813.css → ExploreData-2d0cf4db.css} +8 -14
  21. flowfile/web/static/assets/ExploreData-76ec698c.js +192 -0
  22. flowfile/web/static/assets/{ExternalSource-2297ef96.js → ExternalSource-609a265c.js} +8 -79
  23. flowfile/web/static/assets/{Filter-f211c03a.js → Filter-97cff793.js} +12 -85
  24. flowfile/web/static/assets/{Filter-a9d08ba1.css → Filter-f62091b3.css} +3 -3
  25. flowfile/web/static/assets/{Formula-4207ea31.js → Formula-09de0ec9.js} +18 -85
  26. flowfile/web/static/assets/{Formula-29f19d21.css → Formula-bb96803d.css} +4 -4
  27. flowfile/web/static/assets/{FuzzyMatch-6857de82.css → FuzzyMatch-1010f966.css} +42 -42
  28. flowfile/web/static/assets/{FuzzyMatch-bf120df0.js → FuzzyMatch-bdf70248.js} +16 -87
  29. flowfile/web/static/assets/{GraphSolver-5bb7497a.js → GraphSolver-0b5a0e05.js} +13 -159
  30. flowfile/web/static/assets/GraphSolver-f0cb7bfb.css +22 -0
  31. flowfile/web/static/assets/{Unique-b5615727.css → GroupBy-b9505323.css} +8 -8
  32. flowfile/web/static/assets/{GroupBy-92c81b65.js → GroupBy-eaddadde.js} +12 -75
  33. flowfile/web/static/assets/{Join-4e49a274.js → Join-3313371b.js} +15 -85
  34. flowfile/web/static/assets/{Join-f45eff22.css → Join-fd79b451.css} +20 -20
  35. flowfile/web/static/assets/{ManualInput-a71b52c6.css → ManualInput-3246a08d.css} +20 -20
  36. flowfile/web/static/assets/{ManualInput-90998ae8.js → ManualInput-e8bfc0be.js} +11 -82
  37. flowfile/web/static/assets/{Output-81e3e917.js → Output-7303bb09.js} +13 -243
  38. flowfile/web/static/assets/Output-ddc9079f.css +37 -0
  39. flowfile/web/static/assets/{Pivot-a3419842.js → Pivot-3b1c54ef.js} +14 -138
  40. flowfile/web/static/assets/Pivot-cf333e3d.css +22 -0
  41. flowfile/web/static/assets/PivotValidation-3bb36c8f.js +61 -0
  42. flowfile/web/static/assets/PivotValidation-891ddfb0.css +13 -0
  43. flowfile/web/static/assets/PivotValidation-c46cd420.css +13 -0
  44. flowfile/web/static/assets/PivotValidation-eaa819c0.js +61 -0
  45. flowfile/web/static/assets/{PolarsCode-72710deb.js → PolarsCode-aa12e25d.js} +13 -80
  46. flowfile/web/static/assets/Read-6b17491f.css +62 -0
  47. flowfile/web/static/assets/Read-a2bfc618.js +243 -0
  48. flowfile/web/static/assets/RecordCount-aa0dc082.js +53 -0
  49. flowfile/web/static/assets/{RecordId-10baf191.js → RecordId-48ee1a3b.js} +8 -80
  50. flowfile/web/static/assets/SQLQueryComponent-36cef432.css +27 -0
  51. flowfile/web/static/assets/SQLQueryComponent-e149dbf2.js +38 -0
  52. flowfile/web/static/assets/{Sample-3ed9a0ae.js → Sample-f06cb97a.js} +8 -77
  53. flowfile/web/static/assets/{SecretManager-0d49c0e8.js → SecretManager-37f34886.js} +2 -2
  54. flowfile/web/static/assets/{Select-8a02a0b3.js → Select-b60e6c47.js} +11 -85
  55. flowfile/web/static/assets/SettingsSection-2e4d03c4.css +21 -0
  56. flowfile/web/static/assets/SettingsSection-5c696bee.css +20 -0
  57. flowfile/web/static/assets/SettingsSection-70e5a7b1.js +53 -0
  58. flowfile/web/static/assets/SettingsSection-71e6b7e3.css +21 -0
  59. flowfile/web/static/assets/{SettingsSection-4c0f45f5.js → SettingsSection-75b6cf4f.js} +2 -40
  60. flowfile/web/static/assets/SettingsSection-e57a672e.js +45 -0
  61. flowfile/web/static/assets/{GroupBy-ab1ea74b.css → Sort-3643d625.css} +8 -8
  62. flowfile/web/static/assets/{Sort-f55c9f9d.js → Sort-51b1ee4d.js} +12 -97
  63. flowfile/web/static/assets/{TextToRows-5dbc2145.js → TextToRows-26835f8f.js} +14 -83
  64. flowfile/web/static/assets/{TextToRows-c92d1ec2.css → TextToRows-5d2c1190.css} +9 -9
  65. flowfile/web/static/assets/{UnavailableFields-a1768e52.js → UnavailableFields-88a4cd0c.js} +2 -2
  66. flowfile/web/static/assets/Union-4d0088eb.js +77 -0
  67. flowfile/web/static/assets/{Union-8d9ac7f9.css → Union-af6c3d9b.css} +6 -6
  68. flowfile/web/static/assets/{Unique-46b250da.js → Unique-7d554a62.js} +22 -91
  69. flowfile/web/static/assets/{Sort-7ccfa0fe.css → Unique-f9fb0809.css} +8 -8
  70. flowfile/web/static/assets/Unpivot-1e422df3.css +30 -0
  71. flowfile/web/static/assets/{Unpivot-25ac84cc.js → Unpivot-4668595c.js} +12 -166
  72. flowfile/web/static/assets/UnpivotValidation-0d240eeb.css +13 -0
  73. flowfile/web/static/assets/UnpivotValidation-d4f0e0e8.js +51 -0
  74. flowfile/web/static/assets/{ExploreData-40476474.js → VueGraphicWalker-5324d566.js} +4 -264
  75. flowfile/web/static/assets/VueGraphicWalker-ed5ab88b.css +6 -0
  76. flowfile/web/static/assets/{api-6ef0dcef.js → api-271ed117.js} +1 -1
  77. flowfile/web/static/assets/{api-a0abbdc7.js → api-31e4fea6.js} +1 -1
  78. flowfile/web/static/assets/{designer-186f2e71.css → designer-091bdc3f.css} +819 -184
  79. flowfile/web/static/assets/{designer-13eabd83.js → designer-bf3d9487.js} +2214 -680
  80. flowfile/web/static/assets/{documentation-b87e7f6f.js → documentation-4d0a1cea.js} +1 -1
  81. flowfile/web/static/assets/{dropDown-13564764.js → dropDown-025888df.js} +1 -1
  82. flowfile/web/static/assets/{fullEditor-fd2cd6f9.js → fullEditor-1df991ec.js} +2 -2
  83. flowfile/web/static/assets/{genericNodeSettings-71e11604.js → genericNodeSettings-d3b2b2ac.js} +3 -3
  84. flowfile/web/static/assets/{index-f6c15e76.js → index-d0518598.js} +210 -31
  85. flowfile/web/static/assets/{Output-48f81019.css → outputCsv-9cc59e0b.css} +0 -143
  86. flowfile/web/static/assets/outputCsv-d8457527.js +86 -0
  87. flowfile/web/static/assets/outputExcel-b41305c0.css +102 -0
  88. flowfile/web/static/assets/outputExcel-be89153e.js +56 -0
  89. flowfile/web/static/assets/outputParquet-cf8cf3f2.css +4 -0
  90. flowfile/web/static/assets/outputParquet-fabb445a.js +31 -0
  91. flowfile/web/static/assets/readCsv-bca3ed53.css +52 -0
  92. flowfile/web/static/assets/readCsv-e8359522.js +178 -0
  93. flowfile/web/static/assets/readExcel-dabaf51b.js +203 -0
  94. flowfile/web/static/assets/readExcel-e1b381ea.css +64 -0
  95. flowfile/web/static/assets/readParquet-cee068e2.css +19 -0
  96. flowfile/web/static/assets/readParquet-e0771ef2.js +26 -0
  97. flowfile/web/static/assets/{secretApi-dd636aa2.js → secretApi-ce823eee.js} +1 -1
  98. flowfile/web/static/assets/{selectDynamic-af36165e.js → selectDynamic-5476546e.js} +7 -7
  99. flowfile/web/static/assets/{selectDynamic-b062bc9b.css → selectDynamic-aa913ff4.css} +16 -16
  100. flowfile/web/static/assets/{vue-codemirror.esm-2847001e.js → vue-codemirror.esm-9ed00d50.js} +29 -33
  101. flowfile/web/static/assets/{vue-content-loader.es-0371da73.js → vue-content-loader.es-7bca2d9b.js} +1 -1
  102. flowfile/web/static/index.html +1 -1
  103. {flowfile-0.3.8.dist-info → flowfile-0.3.10.dist-info}/METADATA +2 -1
  104. {flowfile-0.3.8.dist-info → flowfile-0.3.10.dist-info}/RECORD +147 -117
  105. flowfile_core/configs/flow_logger.py +5 -13
  106. flowfile_core/configs/node_store/nodes.py +303 -44
  107. flowfile_core/configs/settings.py +6 -3
  108. flowfile_core/database/connection.py +5 -21
  109. flowfile_core/fileExplorer/funcs.py +239 -121
  110. flowfile_core/flowfile/code_generator/code_generator.py +36 -0
  111. flowfile_core/flowfile/flow_data_engine/flow_data_engine.py +60 -80
  112. flowfile_core/flowfile/flow_data_engine/flow_file_column/main.py +61 -0
  113. flowfile_core/flowfile/flow_data_engine/fuzzy_matching/prepare_for_fuzzy_match.py +44 -3
  114. flowfile_core/flowfile/flow_data_engine/subprocess_operations/models.py +3 -3
  115. flowfile_core/flowfile/flow_data_engine/subprocess_operations/subprocess_operations.py +33 -10
  116. flowfile_core/flowfile/flow_graph.py +223 -118
  117. flowfile_core/flowfile/flow_node/flow_node.py +56 -19
  118. flowfile_core/flowfile/flow_node/models.py +0 -2
  119. flowfile_core/flowfile/flow_node/schema_callback.py +138 -43
  120. flowfile_core/flowfile/graph_tree/graph_tree.py +250 -0
  121. flowfile_core/flowfile/graph_tree/models.py +15 -0
  122. flowfile_core/flowfile/handler.py +22 -3
  123. flowfile_core/flowfile/manage/compatibility_enhancements.py +1 -1
  124. flowfile_core/flowfile/{flow_data_engine/fuzzy_matching/settings_validator.py → schema_callbacks.py} +72 -16
  125. flowfile_core/flowfile/setting_generator/settings.py +2 -2
  126. flowfile_core/flowfile/util/execution_orderer.py +9 -0
  127. flowfile_core/flowfile/util/node_skipper.py +8 -0
  128. flowfile_core/main.py +4 -1
  129. flowfile_core/routes/routes.py +59 -10
  130. flowfile_core/schemas/input_schema.py +0 -1
  131. flowfile_core/schemas/output_model.py +5 -2
  132. flowfile_core/schemas/schemas.py +48 -3
  133. flowfile_core/schemas/transform_schema.py +28 -38
  134. flowfile_frame/__init__.py +1 -4
  135. flowfile_frame/flow_frame.py +33 -4
  136. flowfile_frame/flow_frame.pyi +2 -0
  137. flowfile_worker/__init__.py +6 -35
  138. flowfile_worker/funcs.py +7 -3
  139. flowfile_worker/main.py +5 -2
  140. flowfile_worker/models.py +3 -1
  141. flowfile_worker/routes.py +47 -5
  142. shared/__init__.py +15 -0
  143. shared/storage_config.py +243 -0
  144. flowfile/web/static/assets/GraphSolver-17fd26db.css +0 -68
  145. flowfile/web/static/assets/Pivot-f415e85f.css +0 -35
  146. flowfile/web/static/assets/Read-80dc1675.css +0 -197
  147. flowfile/web/static/assets/Read-c4059daf.js +0 -701
  148. flowfile/web/static/assets/RecordCount-c2b5e095.js +0 -122
  149. flowfile/web/static/assets/Union-f2aefdc9.js +0 -146
  150. flowfile/web/static/assets/Unpivot-246e9bbd.css +0 -77
  151. flowfile/web/static/assets/nodeTitle-988d9efe.js +0 -227
  152. flowfile/web/static/assets/nodeTitle-f4b12bcb.css +0 -134
  153. flowfile_worker/polars_fuzzy_match/matcher.py +0 -435
  154. flowfile_worker/polars_fuzzy_match/models.py +0 -36
  155. flowfile_worker/polars_fuzzy_match/pre_process.py +0 -213
  156. flowfile_worker/polars_fuzzy_match/process.py +0 -86
  157. flowfile_worker/polars_fuzzy_match/utils.py +0 -50
  158. {flowfile-0.3.8.dist-info → flowfile-0.3.10.dist-info}/LICENSE +0 -0
  159. {flowfile-0.3.8.dist-info → flowfile-0.3.10.dist-info}/WHEEL +0 -0
  160. {flowfile-0.3.8.dist-info → flowfile-0.3.10.dist-info}/entry_points.txt +0 -0
  161. {flowfile_worker/polars_fuzzy_match → flowfile_core/flowfile/graph_tree}/__init__.py +0 -0
@@ -1,435 +0,0 @@
1
- import polars as pl
2
- from typing import List, Optional, Tuple
3
- import tempfile
4
- from logging import Logger
5
-
6
- from flowfile_worker.polars_fuzzy_match.process import calculate_and_parse_fuzzy, process_fuzzy_frames
7
- from flowfile_worker.polars_fuzzy_match.pre_process import pre_process_for_fuzzy_matching
8
- from flowfile_worker.polars_fuzzy_match.models import FuzzyMapping
9
- from flowfile_worker.polars_fuzzy_match.utils import cache_polars_frame_to_temp
10
- from flowfile_worker.utils import collect_lazy_frame
11
- import polars_simed as ps
12
-
13
-
14
- HAS_POLARS_SIM = True
15
-
16
-
17
- def ensure_left_is_larger(left_df: pl.DataFrame,
18
- right_df: pl.DataFrame,
19
- left_col_name: str,
20
- right_col_name: str) -> tuple:
21
- """
22
- Ensures that the left dataframe is always the larger one.
23
- If the right dataframe is larger, swaps them.
24
-
25
- Args:
26
- left_df: The left dataframe
27
- right_df: The right dataframe
28
- left_col_name: Column name for the left dataframe
29
- right_col_name: Column name for the right dataframe
30
-
31
- Returns:
32
- tuple: (left_df, right_df, left_col_name, right_col_name)
33
- """
34
- left_frame_len = left_df.select(pl.len())[0, 0]
35
- right_frame_len = right_df.select(pl.len())[0, 0]
36
-
37
- # Swap dataframes if right is larger than left
38
- if right_frame_len > left_frame_len:
39
- return right_df, left_df, right_col_name, left_col_name
40
-
41
- return left_df, right_df, left_col_name, right_col_name
42
-
43
-
44
- def split_dataframe(df: pl.DataFrame, max_chunk_size: int = 500_000) -> List[pl.DataFrame]:
45
- """
46
- Split a Polars DataFrame into multiple DataFrames with a maximum size.
47
-
48
- Args:
49
- df: The Polars DataFrame to split
50
- max_chunk_size: Maximum number of rows per chunk (default: 500,000)
51
-
52
- Returns:
53
- List of Polars DataFrames, each containing at most max_chunk_size rows
54
- """
55
- total_rows = df.select(pl.len())[0, 0]
56
-
57
- # If DataFrame is smaller than max_chunk_size, return it as is
58
- if total_rows <= max_chunk_size:
59
- return [df]
60
-
61
- # Calculate number of chunks needed
62
- num_chunks = (total_rows + max_chunk_size - 1) // max_chunk_size # Ceiling division
63
-
64
- chunks = []
65
- for i in range(num_chunks):
66
- start_idx = i * max_chunk_size
67
- end_idx = min((i + 1) * max_chunk_size, total_rows)
68
-
69
- # Extract chunk using slice
70
- chunk = df.slice(start_idx, end_idx - start_idx)
71
- chunks.append(chunk)
72
-
73
- return chunks
74
-
75
-
76
- def cross_join_large_files(left_fuzzy_frame: pl.LazyFrame,
77
- right_fuzzy_frame: pl.LazyFrame,
78
- left_col_name: str,
79
- right_col_name: str,
80
- flowfile_logger: Logger,
81
- ) -> pl.LazyFrame:
82
- if not HAS_POLARS_SIM:
83
- raise Exception('The polars-sim library is required to perform this operation.')
84
-
85
- left_df = collect_lazy_frame(left_fuzzy_frame)
86
- right_df = collect_lazy_frame(right_fuzzy_frame)
87
-
88
- left_df, right_df, left_col_name, right_col_name = ensure_left_is_larger(
89
- left_df, right_df, left_col_name, right_col_name
90
- )
91
- left_chunks = split_dataframe(left_df, max_chunk_size=500_000) # Reduced chunk size
92
- flowfile_logger.info(f"Splitting left dataframe into {len(left_chunks)} chunks.")
93
- df_matches = []
94
-
95
- # Process each chunk combination with error handling
96
- for i, left_chunk in enumerate(left_chunks):
97
- chunk_matches = ps.join_sim(
98
- left=left_chunk,
99
- right=right_df,
100
- left_on=left_col_name,
101
- right_on=right_col_name,
102
- top_n=100,
103
- add_similarity=False,
104
- )
105
- flowfile_logger.info(f"Processed chunk {int(i)} with {len(chunk_matches)} matches.")
106
- df_matches.append(chunk_matches)
107
-
108
-
109
- # Combine all matches
110
- if df_matches:
111
- return pl.concat(df_matches).lazy()
112
- else:
113
- columns = list(set(left_df.columns).union(set(right_df.columns)))
114
- return pl.DataFrame(schema={col: pl.Null for col in columns}).lazy()
115
-
116
-
117
- def cross_join_small_files(left_df: pl.LazyFrame, right_df: pl.LazyFrame) -> pl.LazyFrame:
118
- return left_df.join(right_df, how='cross')
119
-
120
-
121
- def cross_join_filter_existing_fuzzy_results(left_df: pl.LazyFrame, right_df: pl.LazyFrame,
122
- existing_matches: pl.LazyFrame,
123
- left_col_name: str, right_col_name: str):
124
- """
125
- Process and filter fuzzy matching results by joining dataframes using existing match indices.
126
-
127
- This function takes previously identified fuzzy matches (existing_matches) and performs
128
- a series of operations to create a refined dataset of matches between the left and right
129
- dataframes, preserving index relationships.
130
-
131
- Parameters:
132
- -----------
133
- left_df : pl.LazyFrame
134
- The left dataframe containing records to be matched.
135
- right_df : pl.LazyFrame
136
- The right dataframe containing records to be matched against.
137
- existing_matches : pl.LazyFrame
138
- A dataframe containing the indices of already identified matches between
139
- left_df and right_df, with columns '__left_index' and '__right_index'.
140
- left_col_name : str
141
- The column name from left_df to include in the result.
142
- right_col_name : str
143
- The column name from right_df to include in the result.
144
-
145
- Returns:
146
- --------
147
- pl.LazyFrame
148
- A dataframe containing the unique matches between left_df and right_df,
149
- with index information for both dataframes preserved. The resulting dataframe
150
- includes the specified columns from both dataframes along with their respective
151
- index aggregations.
152
-
153
- Notes:
154
- ------
155
- The function performs these operations:
156
- 1. Join existing matches with both dataframes using their respective indices
157
- 2. Select only the relevant columns and remove duplicates
158
- 3. Create aggregations that preserve the relationship between values and their indices
159
- 4. Join these aggregations back to create the final result set
160
- """
161
- joined_df = (existing_matches
162
- .select(['__left_index', '__right_index'])
163
- .join(left_df, on='__left_index')
164
- .join(right_df, on='__right_index')
165
- .select(left_col_name, right_col_name, '__left_index', '__right_index')
166
- )
167
- return joined_df.group_by([left_col_name, right_col_name]).agg('__left_index', '__right_index')
168
-
169
-
170
- def cross_join_no_existing_fuzzy_results(left_df: pl.LazyFrame, right_df: pl.LazyFrame, left_col_name: str,
171
- right_col_name: str, temp_dir_ref: str,
172
- flowfile_logger: Logger) -> pl.LazyFrame:
173
- """
174
- Generate fuzzy matching results by performing a cross join between dataframes.
175
-
176
- This function processes the input dataframes, determines the appropriate cross join method
177
- based on the size of the resulting cartesian product, and returns the cross-joined results
178
- for fuzzy matching when no existing matches are provided.
179
-
180
- Parameters:
181
- -----------
182
- left_df : pl.LazyFrame
183
- The left dataframe containing records to be matched.
184
- right_df : pl.LazyFrame
185
- The right dataframe containing records to be matched against.
186
- left_col_name : str
187
- The column name from left_df to use for fuzzy matching.
188
- right_col_name : str
189
- The column name from right_df to use for fuzzy matching.
190
- temp_dir_ref : str
191
- Reference to a temporary directory where intermediate results can be stored
192
- during processing of large dataframes.
193
-
194
- Returns:
195
- --------
196
- pl.LazyFrame
197
- A dataframe containing the cross join results of left_df and right_df,
198
- prepared for fuzzy matching operations.
199
-
200
- Notes:
201
- ------
202
- The function performs these operations:
203
- 1. Processes input frames using the process_fuzzy_frames helper function
204
- 2. Calculates the size of the cartesian product to determine processing approach
205
- 3. Uses either cross_join_large_files or cross_join_small_files based on the size:
206
- - For cartesian products > 100M but < 1T (or 10M without polars-sim), uses large file method
207
- - For smaller products, uses the small file method
208
- 4. Raises an exception if the cartesian product exceeds the maximum allowed size
209
-
210
- Raises:
211
- -------
212
- Exception
213
- If the cartesian product of the two dataframes exceeds the maximum allowed size
214
- (1 trillion with polars-sim, 100 million without).
215
- """
216
- (left_fuzzy_frame,
217
- right_fuzzy_frame,
218
- left_col_name,
219
- right_col_name,
220
- len_left_df,
221
- len_right_df) = process_fuzzy_frames(left_df=left_df, right_df=right_df, left_col_name=left_col_name,
222
- right_col_name=right_col_name, temp_dir_ref=temp_dir_ref)
223
- cartesian_size = len_left_df * len_right_df
224
- max_size = 100_000_000_000_000 if HAS_POLARS_SIM else 10_000_000
225
- if cartesian_size > max_size:
226
- flowfile_logger.error(f'The cartesian product of the two dataframes is too large to process: {cartesian_size}')
227
- raise Exception('The cartesian product of the two dataframes is too large to process.')
228
- if cartesian_size > 100_000_000:
229
- flowfile_logger.info('Performing approximate fuzzy match for large dataframes to reduce memory usage.')
230
- cross_join_frame = cross_join_large_files(left_fuzzy_frame, right_fuzzy_frame, left_col_name=left_col_name,
231
- right_col_name=right_col_name, flowfile_logger=flowfile_logger)
232
- else:
233
- cross_join_frame = cross_join_small_files(left_fuzzy_frame, right_fuzzy_frame)
234
- return cross_join_frame
235
-
236
-
237
- def unique_df_large(_df: pl.DataFrame | pl.LazyFrame, cols: Optional[List[str]] = None) -> pl.DataFrame:
238
- """
239
- Efficiently compute unique rows in large dataframes by partitioning.
240
-
241
- This function processes large dataframes by first partitioning them by a selected column,
242
- then finding unique combinations within each partition before recombining the results.
243
- This approach is more memory-efficient for large datasets than calling .unique() directly.
244
-
245
- Parameters:
246
- -----------
247
- _df : pl.DataFrame | pl.LazyFrame
248
- The input dataframe to process. Can be either a Polars DataFrame or LazyFrame.
249
- cols : Optional[List[str]]
250
- The list of columns to consider when finding unique rows. If None, all columns
251
- are used. The first column in this list is used as the partition column.
252
-
253
- Returns:
254
- --------
255
- pl.DataFrame
256
- A dataframe containing only the unique rows from the input dataframe,
257
- based on the specified columns.
258
-
259
- Notes:
260
- ------
261
- The function performs these operations:
262
- 1. Converts LazyFrame to DataFrame if necessary
263
- 2. Partitions the dataframe by the first column in cols (or the first column of the dataframe if cols is None)
264
- 3. Applies the unique operation to each partition based on the remaining columns
265
- 4. Concatenates the results back into a single dataframe
266
- 5. Frees memory by deleting intermediate objects
267
-
268
- This implementation uses tqdm to provide a progress bar during processing,
269
- which is particularly helpful for large datasets where the operation may take time.
270
- """
271
- if isinstance(_df, pl.LazyFrame):
272
- _df = collect_lazy_frame(_df)
273
- from tqdm import tqdm
274
- partition_col = cols[0] if cols is not None else _df.columns[0]
275
- other_cols = cols[1:] if cols is not None else _df.columns[1:]
276
- partitioned_df = _df.partition_by(partition_col)
277
- df = pl.concat([partition.unique(other_cols) for partition in tqdm(partitioned_df)])
278
- del partitioned_df, _df
279
- return df
280
-
281
-
282
- def combine_matches(matching_dfs: List[pl.LazyFrame]):
283
- all_matching_indexes = matching_dfs[-1].select('__left_index', '__right_index')
284
- for matching_df in matching_dfs:
285
- all_matching_indexes = all_matching_indexes.join(matching_df, on=['__left_index', '__right_index'])
286
- return all_matching_indexes
287
-
288
-
289
- def add_index_column(df: pl.LazyFrame, column_name: str, tempdir: str):
290
- return cache_polars_frame_to_temp(df.with_row_index(name=column_name), tempdir)
291
-
292
-
293
- def process_fuzzy_mapping(
294
- fuzzy_map: FuzzyMapping,
295
- left_df: pl.LazyFrame,
296
- right_df: pl.LazyFrame,
297
- existing_matches: Optional[pl.LazyFrame],
298
- local_temp_dir_ref: str,
299
- i: int,
300
- flowfile_logger: Logger,
301
- existing_number_of_matches: Optional[int] = None
302
- ) -> Tuple[pl.LazyFrame, int]:
303
- """
304
- Process a single fuzzy mapping to generate matching dataframes.
305
-
306
- Args:
307
- fuzzy_map: The fuzzy mapping configuration containing match columns and thresholds
308
- left_df: Left dataframe with index column
309
- right_df: Right dataframe with index column
310
- existing_matches: Previously computed matches (or None)
311
- local_temp_dir_ref: Temporary directory reference for caching interim results
312
- i: Index of the current fuzzy mapping
313
- flowfile_logger: Logger instance for progress tracking
314
- existing_number_of_matches: Number of existing matches (if available)
315
-
316
- Returns:
317
- Tuple[pl.LazyFrame, int]: The final matching dataframe and the number of matches
318
- """
319
- # Determine join strategy based on existing matches
320
- if existing_matches is not None:
321
- existing_matches = existing_matches.select('__left_index', '__right_index')
322
- flowfile_logger.info(f'Filtering existing fuzzy matches for {fuzzy_map.left_col} and {fuzzy_map.right_col}')
323
- cross_join_frame = cross_join_filter_existing_fuzzy_results(
324
- left_df=left_df,
325
- right_df=right_df,
326
- existing_matches=existing_matches,
327
- left_col_name=fuzzy_map.left_col,
328
- right_col_name=fuzzy_map.right_col
329
- )
330
- else:
331
- flowfile_logger.info(f'Performing fuzzy match for {fuzzy_map.left_col} and {fuzzy_map.right_col}')
332
- cross_join_frame = cross_join_no_existing_fuzzy_results(
333
- left_df=left_df,
334
- right_df=right_df,
335
- left_col_name=fuzzy_map.left_col,
336
- right_col_name=fuzzy_map.right_col,
337
- temp_dir_ref=local_temp_dir_ref,
338
- flowfile_logger=flowfile_logger
339
- )
340
-
341
- # Calculate fuzzy match scores
342
- flowfile_logger.info(f'Calculating fuzzy match for {fuzzy_map.left_col} and {fuzzy_map.right_col}')
343
- matching_df = calculate_and_parse_fuzzy(
344
- mapping_table=cross_join_frame,
345
- left_col_name=fuzzy_map.left_col,
346
- right_col_name=fuzzy_map.right_col,
347
- fuzzy_method=fuzzy_map.fuzzy_type,
348
- th_score=fuzzy_map.reversed_threshold_score
349
- )
350
- if existing_matches is not None:
351
- matching_df = matching_df.join(existing_matches, on=['__left_index', '__right_index'])
352
- matching_df = cache_polars_frame_to_temp(matching_df, local_temp_dir_ref)
353
- if existing_number_of_matches is None or existing_number_of_matches > 100_000_000:
354
- existing_number_of_matches = matching_df.select(pl.len()).collect()[0, 0]
355
- if existing_number_of_matches > 100_000_000:
356
- return unique_df_large(matching_df.rename({'s': f'fuzzy_score_{i}'})).lazy(), existing_number_of_matches
357
- else:
358
- return matching_df.rename({'s': f'fuzzy_score_{i}'}).unique(), existing_number_of_matches
359
-
360
-
361
- def perform_all_fuzzy_matches(left_df: pl.LazyFrame,
362
- right_df: pl.LazyFrame,
363
- fuzzy_maps: List[FuzzyMapping],
364
- flowfile_logger: Logger,
365
- local_temp_dir_ref: str,
366
- ) -> List[pl.LazyFrame]:
367
- matching_dfs = []
368
- existing_matches = None
369
- existing_number_of_matches = None
370
- for i, fuzzy_map in enumerate(fuzzy_maps):
371
- existing_matches, existing_number_of_matches = process_fuzzy_mapping(
372
- fuzzy_map=fuzzy_map,
373
- left_df=left_df,
374
- right_df=right_df,
375
- existing_matches=existing_matches,
376
- local_temp_dir_ref=local_temp_dir_ref,
377
- i=i,
378
- flowfile_logger=flowfile_logger,
379
- existing_number_of_matches=existing_number_of_matches
380
- )
381
- matching_dfs.append(existing_matches)
382
- return matching_dfs
383
-
384
-
385
- def fuzzy_match_dfs(
386
- left_df: pl.LazyFrame,
387
- right_df: pl.LazyFrame,
388
- fuzzy_maps: List[FuzzyMapping],
389
- flowfile_logger: Logger
390
- ) -> pl.DataFrame:
391
- """
392
- Perform fuzzy matching between two dataframes using multiple fuzzy mapping configurations.
393
-
394
- Args:
395
- left_df: Left dataframe to be matched
396
- right_df: Right dataframe to be matched
397
- fuzzy_maps: List of fuzzy mapping configurations
398
- flowfile_logger: Logger instance for tracking progress
399
-
400
- Returns:
401
- pl.DataFrame: The final matched dataframe with all fuzzy scores
402
- """
403
- left_df, right_df, fuzzy_maps = pre_process_for_fuzzy_matching(left_df, right_df, fuzzy_maps, flowfile_logger)
404
-
405
- # Create a temporary directory for caching intermediate results
406
- local_temp_dir = tempfile.TemporaryDirectory()
407
- local_temp_dir_ref = local_temp_dir.name
408
-
409
- # Add index columns to both dataframes
410
- left_df = add_index_column(left_df, '__left_index', local_temp_dir_ref)
411
- right_df = add_index_column(right_df, '__right_index', local_temp_dir_ref)
412
-
413
- matching_dfs = perform_all_fuzzy_matches(left_df, right_df, fuzzy_maps, flowfile_logger, local_temp_dir_ref)
414
-
415
- # Combine all matches
416
- if len(matching_dfs) > 1:
417
- flowfile_logger.info('Combining fuzzy matches')
418
- all_matches_df = combine_matches(matching_dfs)
419
- else:
420
- flowfile_logger.info('Caching fuzzy matches')
421
- all_matches_df = cache_polars_frame_to_temp(matching_dfs[0], local_temp_dir_ref)
422
-
423
- # Join matches with original dataframes
424
- flowfile_logger.info('Joining fuzzy matches with original dataframes')
425
- output_df = collect_lazy_frame(
426
- (left_df.join(all_matches_df, on='__left_index')
427
- .join(right_df, on='__right_index')
428
- .drop('__right_index', '__left_index'))
429
- )
430
-
431
- # Clean up temporary files
432
- flowfile_logger.info('Cleaning up temporary files')
433
- local_temp_dir.cleanup()
434
-
435
- return output_df
@@ -1,36 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import Optional, Literal
3
-
4
- FuzzyTypeLiteral = Literal['levenshtein','jaro', 'jaro_winkler', 'hamming', 'damerau_levenshtein', 'indel']
5
-
6
-
7
- @dataclass
8
- class JoinMap:
9
- left_col: str
10
- right_col: str
11
-
12
-
13
- @dataclass
14
- class FuzzyMapping(JoinMap):
15
- threshold_score: float = 80.0
16
- fuzzy_type: FuzzyTypeLiteral = 'levenshtein'
17
- perc_unique: float = 0.0
18
- output_column_name: Optional[str] = None
19
- valid: bool = True
20
-
21
- def __init__(self, left_col: str, right_col: str = None, threshold_score: float = 80.0,
22
- fuzzy_type: FuzzyTypeLiteral = 'levenshtein', perc_unique: float = 0, output_column_name: str = None,
23
- valid: bool = True):
24
- if right_col is None:
25
- right_col = left_col
26
- self.valid = valid
27
- self.left_col = left_col
28
- self.right_col = right_col
29
- self.threshold_score = threshold_score
30
- self.fuzzy_type = fuzzy_type
31
- self.perc_unique = perc_unique
32
- self.output_col_name = output_column_name if output_column_name is not None else f'fuzzy_score_{left_col}_{right_col}'
33
-
34
- @property
35
- def reversed_threshold_score(self) -> float:
36
- return ((int(self.threshold_score) - 100) * -1) / 100
@@ -1,213 +0,0 @@
1
- from logging import Logger
2
- from typing import List, Dict, Tuple
3
-
4
- import polars as pl
5
-
6
- from flowfile_worker.polars_fuzzy_match.models import FuzzyMapping
7
- from flowfile_worker.utils import collect_lazy_frame
8
-
9
-
10
- def get_approx_uniqueness(lf: pl.LazyFrame) -> Dict[str, int]:
11
- """
12
- Calculate the approximate number of unique values for each column in a LazyFrame.
13
-
14
- Args:
15
- lf (pl.LazyFrame): Input LazyFrame to analyze.
16
-
17
- Returns:
18
- Dict[str, int]: Dictionary mapping column names to their approximate unique value counts.
19
-
20
- Raises:
21
- Exception: If the uniqueness calculation fails (empty result).
22
- """
23
- uniqueness = lf.select(pl.all().approx_n_unique()).collect().to_dicts()
24
- if len(uniqueness) == 0:
25
- raise Exception('Approximate uniqueness calculation failed')
26
- return uniqueness[0]
27
-
28
-
29
- def calculate_uniqueness(a: float, b: float) -> float:
30
- """
31
- Calculate a combined uniqueness score from two individual uniqueness ratios.
32
-
33
- The formula prioritizes columns with high combined uniqueness while accounting for
34
- differences between the two input values.
35
-
36
- Args:
37
- a (float): First uniqueness ratio, typically from the left dataframe.
38
- b (float): Second uniqueness ratio, typically from the right dataframe.
39
-
40
- Returns:
41
- float: Combined uniqueness score.
42
- """
43
- return ((pow(a + 0.5, 2) + pow(b + 0.5, 2)) / 2 - pow(0.5, 2)) + 0.5 * abs(a - b)
44
-
45
-
46
- def calculate_df_len(df: pl.LazyFrame) -> int:
47
- """
48
- Calculate the number of rows in a LazyFrame.
49
-
50
- Args:
51
- df (pl.LazyFrame): Input LazyFrame.
52
-
53
- Returns:
54
- int: Number of rows in the LazyFrame.
55
- """
56
- return collect_lazy_frame(df.select(pl.len()))[0, 0]
57
-
58
-
59
- def fill_perc_unique_in_fuzzy_maps(left_df: pl.LazyFrame, right_df: pl.LazyFrame, fuzzy_maps: List[FuzzyMapping],
60
- flowfile_logger: Logger, left_len: int, right_len: int) -> List[FuzzyMapping]:
61
- """
62
- Calculate and set uniqueness percentages for all fuzzy mapping columns.
63
-
64
- Computes the approximate unique value counts in both dataframes for the columns
65
- specified in fuzzy_maps, then calculates a combined uniqueness score for each mapping.
66
-
67
- Args:
68
- left_df (pl.LazyFrame): Left dataframe.
69
- right_df (pl.LazyFrame): Right dataframe.
70
- fuzzy_maps (List[FuzzyMapping]): List of fuzzy mappings between left and right columns.
71
- flowfile_logger (Logger): Logger for information output.
72
- left_len (int): Number of rows in the left dataframe.
73
- right_len (int): Number of rows in the right dataframe.
74
-
75
- Returns:
76
- List[FuzzyMapping]: Updated fuzzy mappings with calculated uniqueness percentages.
77
- """
78
- left_unique_values = get_approx_uniqueness(left_df.select(fuzzy_map.left_col for fuzzy_map in fuzzy_maps))
79
- right_unique_values = get_approx_uniqueness(right_df.select(fuzzy_map.right_col for fuzzy_map in fuzzy_maps))
80
- flowfile_logger.info(f'Left unique values: {left_unique_values}')
81
- flowfile_logger.info(f'Right unique values: {right_unique_values}')
82
- for fuzzy_map in fuzzy_maps:
83
- fuzzy_map.perc_unique = calculate_uniqueness(left_unique_values[fuzzy_map.left_col] / left_len,
84
- right_unique_values[fuzzy_map.right_col] / right_len)
85
- return fuzzy_maps
86
-
87
-
88
- def determine_order_of_fuzzy_maps(fuzzy_maps: List[FuzzyMapping]) -> List[FuzzyMapping]:
89
- """
90
- Sort fuzzy mappings by their uniqueness percentages in descending order.
91
-
92
- This ensures that columns with higher uniqueness are prioritized in the
93
- fuzzy matching process.
94
-
95
- Args:
96
- fuzzy_maps (List[FuzzyMapping]): List of fuzzy mappings between columns.
97
-
98
- Returns:
99
- List[FuzzyMapping]: Sorted list of fuzzy mappings by uniqueness (highest first).
100
- """
101
- return sorted(fuzzy_maps, key=lambda x: x.perc_unique, reverse=True)
102
-
103
-
104
- def calculate_uniqueness_rate(fuzzy_maps: List[FuzzyMapping]) -> float:
105
- """
106
- Calculate the total uniqueness rate across all fuzzy mappings.
107
-
108
- Args:
109
- fuzzy_maps (List[FuzzyMapping]): List of fuzzy mappings with calculated uniqueness.
110
-
111
- Returns:
112
- float: Sum of uniqueness percentages across all mappings.
113
- """
114
- return sum(jm.perc_unique for jm in fuzzy_maps)
115
-
116
-
117
- def determine_need_for_aggregation(uniqueness_rate: float, cartesian_join_number: int) -> bool:
118
- """
119
- Determine if aggregation is needed based on uniqueness and potential join size.
120
-
121
- Aggregation helps prevent explosive cartesian joins when matching columns
122
- have low uniqueness, which could lead to performance issues.
123
-
124
- Args:
125
- uniqueness_rate (float): Total uniqueness rate across fuzzy mappings.
126
- cartesian_join_number (int): Potential size of the cartesian join (left_len * right_len).
127
-
128
- Returns:
129
- bool: True if aggregation is needed, False otherwise.
130
- """
131
- return uniqueness_rate < 1.2 and cartesian_join_number > 1_000_000
132
-
133
-
134
- def aggregate_output(left_df: pl.LazyFrame, right_df: pl.LazyFrame,
135
- fuzzy_maps: List[FuzzyMapping]) -> Tuple[pl.LazyFrame, pl.LazyFrame]:
136
- """
137
- Deduplicate the dataframes based on the fuzzy mapping columns.
138
-
139
- This reduces the size of the join by removing duplicate rows when the
140
- uniqueness rate is low and the potential join size is large.
141
-
142
- Args:
143
- left_df (pl.LazyFrame): Left dataframe.
144
- right_df (pl.LazyFrame): Right dataframe.
145
- fuzzy_maps (List[FuzzyMapping]): List of fuzzy mappings between columns.
146
-
147
- Returns:
148
- Tuple[pl.LazyFrame, pl.LazyFrame]: Deduplicated left and right dataframes.
149
- """
150
- left_df = left_df.unique([fuzzy_map.left_col for fuzzy_map in fuzzy_maps])
151
- right_df = right_df.unique([fuzzy_map.right_col for fuzzy_map in fuzzy_maps])
152
- return left_df, right_df
153
-
154
-
155
- def report_on_order_of_fuzzy_maps(fuzzy_maps: List[FuzzyMapping], flowfile_logger: Logger) -> None:
156
- """
157
- Log the order of fuzzy mappings based on uniqueness.
158
- Parameters
159
- ----------
160
- fuzzy_maps: List[FuzzyMapping]
161
- flowfile_logger: Logger
162
-
163
- -------
164
- """
165
- flowfile_logger.info('Fuzzy mappings sorted by uniqueness')
166
- for i, fuzzy_map in enumerate(fuzzy_maps):
167
- flowfile_logger.info(f'{i}. Fuzzy mapping: {fuzzy_map.left_col} -> {fuzzy_map.right_col} '
168
- f'Uniqueness: {fuzzy_map.perc_unique}')
169
-
170
-
171
- def pre_process_for_fuzzy_matching(left_df: pl.LazyFrame, right_df: pl.LazyFrame,
172
- fuzzy_maps: List[FuzzyMapping],
173
- flowfile_logger: Logger) -> Tuple[pl.LazyFrame, pl.LazyFrame, List[FuzzyMapping]]:
174
- """
175
- Preprocess dataframes and fuzzy mappings for optimal fuzzy matching.
176
-
177
- This function:
178
- 1. Calculates dataframe sizes
179
- 2. Calculates uniqueness percentages for each fuzzy mapping
180
- 3. Sorts the fuzzy mappings by uniqueness
181
- 4. Determines if aggregation is needed to prevent large cartesian joins
182
- 5. Performs aggregation if necessary
183
-
184
- Args:
185
- left_df (pl.LazyFrame): Left dataframe.
186
- right_df (pl.LazyFrame): Right dataframe.
187
- fuzzy_maps (List[FuzzyMapping]): List of fuzzy mappings between columns.
188
- flowfile_logger (Logger): Logger for information output.
189
-
190
- Returns:
191
- Tuple[pl.LazyFrame, pl.LazyFrame, List[FuzzyMapping]]:
192
- - Potentially modified left dataframe
193
- - Potentially modified right dataframe
194
- - Sorted and updated fuzzy mappings
195
- """
196
- flowfile_logger.info('Optimizing data and settings for fuzzy matching')
197
- left_df_len = calculate_df_len(left_df)
198
- right_df_len = calculate_df_len(right_df)
199
- if left_df_len == 0 or right_df_len == 0:
200
- return left_df, right_df, fuzzy_maps
201
- fuzzy_maps = fill_perc_unique_in_fuzzy_maps(left_df, right_df, fuzzy_maps, flowfile_logger, left_df_len,
202
- right_df_len)
203
- fuzzy_maps = determine_order_of_fuzzy_maps(fuzzy_maps)
204
- report_on_order_of_fuzzy_maps(fuzzy_maps, flowfile_logger)
205
-
206
- uniqueness_rate = calculate_uniqueness_rate(fuzzy_maps)
207
- flowfile_logger.info(f'Uniqueness rate: {uniqueness_rate}')
208
- if determine_need_for_aggregation(uniqueness_rate, left_df_len * right_df_len):
209
- flowfile_logger.warning('The join fields are not unique enough, resulting in many duplicates, '
210
- 'therefore removing duplicates on the join field')
211
- left_df, right_df = aggregate_output(left_df, right_df, fuzzy_maps)
212
- flowfile_logger.info('Data and settings optimized for fuzzy matching')
213
- return left_df, right_df, fuzzy_maps