EuroEval 15.4.2__py3-none-any.whl → 15.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of EuroEval might be problematic. Click here for more details.
- euroeval/__init__.py +2 -2
- euroeval/benchmark_modules/base.py +3 -2
- euroeval/benchmark_modules/fresh.py +8 -6
- euroeval/benchmark_modules/hf.py +44 -33
- euroeval/benchmark_modules/litellm.py +314 -120
- euroeval/benchmark_modules/vllm.py +99 -59
- euroeval/benchmarker.py +52 -21
- euroeval/callbacks.py +2 -2
- euroeval/constants.py +9 -2
- euroeval/data_models.py +258 -44
- euroeval/dataset_configs/__init__.py +61 -0
- euroeval/dataset_configs/danish.py +120 -0
- euroeval/dataset_configs/dutch.py +123 -0
- euroeval/dataset_configs/english.py +88 -0
- euroeval/dataset_configs/faroese.py +53 -0
- euroeval/dataset_configs/french.py +83 -0
- euroeval/dataset_configs/german.py +91 -0
- euroeval/dataset_configs/icelandic.py +148 -0
- euroeval/dataset_configs/italian.py +81 -0
- euroeval/dataset_configs/norwegian.py +178 -0
- euroeval/dataset_configs/spanish.py +78 -0
- euroeval/dataset_configs/swedish.py +100 -0
- euroeval/exceptions.py +10 -10
- euroeval/finetuning.py +6 -10
- euroeval/generation.py +1 -0
- euroeval/human_evaluation.py +2 -2
- euroeval/languages.py +20 -13
- euroeval/model_cache.py +1 -1
- euroeval/model_loading.py +1 -12
- euroeval/prompt_templates/__init__.py +8 -0
- euroeval/prompt_templates/linguistic_acceptability.py +112 -0
- euroeval/prompt_templates/multiple_choice.py +97 -0
- euroeval/prompt_templates/named_entity_recognition.py +257 -0
- euroeval/prompt_templates/reading_comprehension.py +118 -0
- euroeval/prompt_templates/sentiment_classification.py +137 -0
- euroeval/prompt_templates/summarization.py +97 -0
- euroeval/speed_benchmark.py +1 -1
- euroeval/{task_utils → task_group_utils}/multiple_choice_classification.py +19 -11
- euroeval/{task_utils → task_group_utils}/question_answering.py +31 -30
- euroeval/{task_utils → task_group_utils}/sequence_classification.py +45 -10
- euroeval/{task_utils → task_group_utils}/text_to_text.py +1 -1
- euroeval/{task_utils → task_group_utils}/token_classification.py +3 -2
- euroeval/tasks.py +54 -0
- euroeval/tokenization_utils.py +343 -0
- euroeval/types.py +3 -1
- euroeval/utils.py +5 -254
- {euroeval-15.4.2.dist-info → euroeval-15.6.0.dist-info}/METADATA +31 -9
- euroeval-15.6.0.dist-info/RECORD +59 -0
- euroeval/dataset_configs.py +0 -2408
- euroeval-15.4.2.dist-info/RECORD +0 -40
- /euroeval/{task_utils → task_group_utils}/__init__.py +0 -0
- {euroeval-15.4.2.dist-info → euroeval-15.6.0.dist-info}/WHEEL +0 -0
- {euroeval-15.4.2.dist-info → euroeval-15.6.0.dist-info}/entry_points.txt +0 -0
- {euroeval-15.4.2.dist-info → euroeval-15.6.0.dist-info}/licenses/LICENSE +0 -0
euroeval/dataset_configs.py
DELETED
|
@@ -1,2408 +0,0 @@
|
|
|
1
|
-
"""All dataset configurations used in EuroEval."""
|
|
2
|
-
|
|
3
|
-
from .data_models import DatasetConfig
|
|
4
|
-
from .languages import (
|
|
5
|
-
DA,
|
|
6
|
-
DE,
|
|
7
|
-
EN,
|
|
8
|
-
ES,
|
|
9
|
-
FO,
|
|
10
|
-
FR,
|
|
11
|
-
IS,
|
|
12
|
-
IT,
|
|
13
|
-
NB,
|
|
14
|
-
NL,
|
|
15
|
-
NN,
|
|
16
|
-
NO,
|
|
17
|
-
SV,
|
|
18
|
-
get_all_languages,
|
|
19
|
-
)
|
|
20
|
-
from .tasks import COMMON_SENSE, KNOW, LA, MCRC, NER, RC, SENT, SPEED, SUMM
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def get_all_dataset_configs() -> dict[str, DatasetConfig]:
|
|
24
|
-
"""Get a mapping of all the dataset configurations.
|
|
25
|
-
|
|
26
|
-
Returns:
|
|
27
|
-
A mapping between names of datasets and their configurations.
|
|
28
|
-
"""
|
|
29
|
-
dataset_configs = [
|
|
30
|
-
cfg for cfg in globals().values() if isinstance(cfg, DatasetConfig)
|
|
31
|
-
]
|
|
32
|
-
assert len(dataset_configs) == len({cfg.name for cfg in dataset_configs}), (
|
|
33
|
-
"There are duplicate dataset configurations. Please ensure that each dataset "
|
|
34
|
-
"has a unique name."
|
|
35
|
-
)
|
|
36
|
-
return {cfg.name: cfg for cfg in dataset_configs}
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def get_dataset_config(dataset_name: str) -> DatasetConfig:
|
|
40
|
-
"""Get the dataset configuration for a dataset.
|
|
41
|
-
|
|
42
|
-
Args:
|
|
43
|
-
dataset_name:
|
|
44
|
-
The name of the dataset.
|
|
45
|
-
|
|
46
|
-
Returns:
|
|
47
|
-
The dataset configuration.
|
|
48
|
-
|
|
49
|
-
Raises:
|
|
50
|
-
ValueError:
|
|
51
|
-
If the dataset is not found.
|
|
52
|
-
"""
|
|
53
|
-
# Get mapping of all dataset configs
|
|
54
|
-
dataset_configs = get_all_dataset_configs()
|
|
55
|
-
|
|
56
|
-
# If there are no matches for the dataset name, raise an error
|
|
57
|
-
if dataset_name not in dataset_configs:
|
|
58
|
-
raise ValueError(f"No dataset config found for dataset {dataset_name}.")
|
|
59
|
-
|
|
60
|
-
# Otherwise, return the dataset configuration
|
|
61
|
-
return dataset_configs[dataset_name]
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
### SENTIMENT DATASETS ###
|
|
65
|
-
|
|
66
|
-
SWEREC_CONFIG = DatasetConfig(
|
|
67
|
-
name="swerec",
|
|
68
|
-
pretty_name="the truncated version of the Swedish sentiment classification "
|
|
69
|
-
"dataset SweReC",
|
|
70
|
-
huggingface_id="EuroEval/swerec-mini",
|
|
71
|
-
task=SENT,
|
|
72
|
-
languages=[SV],
|
|
73
|
-
labels=["negative", "neutral", "positive"],
|
|
74
|
-
prompt_prefix="Följande är recensioner och deras sentiment, som kan vara "
|
|
75
|
-
"'positiv', 'neutral' eller 'negativ'.",
|
|
76
|
-
prompt_template="Recension: {text}\nSentiment: {label}",
|
|
77
|
-
prompt_label_mapping=dict(
|
|
78
|
-
positive="positiv", neutral="neutral", negative="negativ"
|
|
79
|
-
),
|
|
80
|
-
instruction_prompt="Recension: {text}\n\nKlassificera sentimentet i recensionen. "
|
|
81
|
-
"Svara med 'positiv', 'neutral' eller 'negativ', och inget annat.",
|
|
82
|
-
num_few_shot_examples=12,
|
|
83
|
-
max_generated_tokens=5,
|
|
84
|
-
)
|
|
85
|
-
|
|
86
|
-
ANGRY_TWEETS_CONFIG = DatasetConfig(
|
|
87
|
-
name="angry-tweets",
|
|
88
|
-
pretty_name="the truncated version of the Danish sentiment classification "
|
|
89
|
-
"dataset AngryTweets",
|
|
90
|
-
huggingface_id="EuroEval/angry-tweets-mini",
|
|
91
|
-
task=SENT,
|
|
92
|
-
languages=[DA],
|
|
93
|
-
labels=["negative", "neutral", "positive"],
|
|
94
|
-
prompt_prefix="Følgende er tweets og deres sentiment, som kan være 'positiv', "
|
|
95
|
-
"'neutral' eller 'negativ'.",
|
|
96
|
-
prompt_template="Tweet: {text}\nSentiment: {label}",
|
|
97
|
-
prompt_label_mapping=dict(
|
|
98
|
-
positive="positiv", neutral="neutral", negative="negativ"
|
|
99
|
-
),
|
|
100
|
-
instruction_prompt="Tweet: {text}\n\nKlassificer sentimentet i tweetet. Svar kun "
|
|
101
|
-
"med 'positiv', 'neutral' eller 'negativ', og intet andet.",
|
|
102
|
-
num_few_shot_examples=12,
|
|
103
|
-
max_generated_tokens=5,
|
|
104
|
-
)
|
|
105
|
-
|
|
106
|
-
NOREC_CONFIG = DatasetConfig(
|
|
107
|
-
name="norec",
|
|
108
|
-
pretty_name="the truncated version of the Norwegian sentiment classification "
|
|
109
|
-
"dataset NoReC",
|
|
110
|
-
huggingface_id="EuroEval/norec-mini",
|
|
111
|
-
task=SENT,
|
|
112
|
-
languages=[NB, NN, NO],
|
|
113
|
-
labels=["negative", "neutral", "positive"],
|
|
114
|
-
prompt_prefix="Følgende er anmeldelser og deres sentiment, som kan være 'positiv', "
|
|
115
|
-
"'nøytral' eller 'negativ'.",
|
|
116
|
-
prompt_template="Anmeldelse: {text}\nSentiment: {label}",
|
|
117
|
-
prompt_label_mapping=dict(
|
|
118
|
-
positive="positiv", neutral="nøytral", negative="negativ"
|
|
119
|
-
),
|
|
120
|
-
instruction_prompt="Anmeldelse: {text}\n\nKlassifiser sentimentet i anmeldelsen. "
|
|
121
|
-
"Svar med 'positiv', 'nøytral' eller 'negativ', og ikke noe annet.",
|
|
122
|
-
num_few_shot_examples=12,
|
|
123
|
-
max_generated_tokens=5,
|
|
124
|
-
)
|
|
125
|
-
|
|
126
|
-
HOTTER_AND_COLDER_SENTIMENT_CONFIG = DatasetConfig(
|
|
127
|
-
name="hotter-and-colder-sentiment",
|
|
128
|
-
pretty_name="the sentiment classification part of the Icelandic dataset Hotter "
|
|
129
|
-
"and Colder",
|
|
130
|
-
huggingface_id="EuroEval/hotter-and-colder-sentiment",
|
|
131
|
-
task=SENT,
|
|
132
|
-
languages=[IS],
|
|
133
|
-
labels=["negative", "neutral", "positive"],
|
|
134
|
-
prompt_prefix="Eftirfarandi eru yfirferðir ásamt lyndisgildi þeirra, sem getur "
|
|
135
|
-
"verið 'jákvætt', 'hlutlaust' eða 'neikvætt'.",
|
|
136
|
-
prompt_template="Yfirferð: {text}\nLyndi: {label}",
|
|
137
|
-
prompt_label_mapping=dict(
|
|
138
|
-
positive="jákvætt", neutral="hlutlaust", negative="neikvætt"
|
|
139
|
-
),
|
|
140
|
-
instruction_prompt="Texti: {text}\n\nFlokkaðu tilfinninguna í textanum. "
|
|
141
|
-
"Svaraðu með 'jákvætt', 'hlutlaust' eða 'neikvætt', og engu öðru.",
|
|
142
|
-
num_few_shot_examples=12,
|
|
143
|
-
max_generated_tokens=5,
|
|
144
|
-
)
|
|
145
|
-
|
|
146
|
-
SB10K_CONFIG = DatasetConfig(
|
|
147
|
-
name="sb10k",
|
|
148
|
-
pretty_name="the truncated version of the German sentiment classification "
|
|
149
|
-
"dataset SB10k",
|
|
150
|
-
huggingface_id="EuroEval/sb10k-mini",
|
|
151
|
-
task=SENT,
|
|
152
|
-
languages=[DE],
|
|
153
|
-
labels=["negative", "neutral", "positive"],
|
|
154
|
-
prompt_prefix="Im Folgenden sind Tweets und ihre Stimmung aufgeführt, die "
|
|
155
|
-
"'positiv', 'neutral' oder 'negativ' sein kann.",
|
|
156
|
-
prompt_template="Tweet: {text}\nStimmungslage: {label}",
|
|
157
|
-
prompt_label_mapping=dict(
|
|
158
|
-
positive="positiv", neutral="neutral", negative="negativ"
|
|
159
|
-
),
|
|
160
|
-
instruction_prompt="Tweet: {text}\n\nKlassifizieren Sie die Stimmung im Tweet. "
|
|
161
|
-
"Antworten Sie mit 'positiv', 'neutral' oder 'negativ', und nichts anderes.",
|
|
162
|
-
num_few_shot_examples=12,
|
|
163
|
-
max_generated_tokens=5,
|
|
164
|
-
)
|
|
165
|
-
|
|
166
|
-
DUTCH_SOCIAL_CONFIG = DatasetConfig(
|
|
167
|
-
name="dutch-social",
|
|
168
|
-
pretty_name="the truncated version of the Dutch sentiment classification "
|
|
169
|
-
"dataset Dutch Social",
|
|
170
|
-
huggingface_id="EuroEval/dutch-social-mini",
|
|
171
|
-
task=SENT,
|
|
172
|
-
languages=[NL],
|
|
173
|
-
labels=["negative", "neutral", "positive"],
|
|
174
|
-
prompt_prefix="Hieronder staan tweets en hun sentiment, dat 'positief', "
|
|
175
|
-
"'neutraal' of 'negatief' kan zijn.",
|
|
176
|
-
prompt_template="Tweet: {text}\nSentiment: {label}",
|
|
177
|
-
prompt_label_mapping=dict(
|
|
178
|
-
positive="positief", neutral="neutraal", negative="negatief"
|
|
179
|
-
),
|
|
180
|
-
instruction_prompt="Tweet: {text}\n\nClassificeer het sentiment in de tweet. "
|
|
181
|
-
"Antwoord met 'positief', 'neutraal' of 'negatief', en niets anders.",
|
|
182
|
-
num_few_shot_examples=12,
|
|
183
|
-
max_generated_tokens=5,
|
|
184
|
-
)
|
|
185
|
-
|
|
186
|
-
DBRD_CONFIG = DatasetConfig(
|
|
187
|
-
name="dbrd",
|
|
188
|
-
pretty_name="the truncated version of the Dutch sentiment classification "
|
|
189
|
-
"dataset DBRD",
|
|
190
|
-
huggingface_id="EuroEval/dbrd-mini",
|
|
191
|
-
task=SENT,
|
|
192
|
-
languages=[NL],
|
|
193
|
-
labels=["negative", "positive"],
|
|
194
|
-
prompt_prefix="Hieronder staan tweets en hun sentiment, dat 'positief' of "
|
|
195
|
-
"'negatief' kan zijn.",
|
|
196
|
-
prompt_template="Tweet: {text}\nSentiment: {label}",
|
|
197
|
-
prompt_label_mapping=dict(positive="positief", negative="negatief"),
|
|
198
|
-
instruction_prompt="Tweet: {text}\n\nClassificeer het sentiment in de tweet. "
|
|
199
|
-
"Antwoord met 'positief' of 'negatief', en niets anders.",
|
|
200
|
-
num_few_shot_examples=12,
|
|
201
|
-
max_generated_tokens=5,
|
|
202
|
-
unofficial=True,
|
|
203
|
-
)
|
|
204
|
-
|
|
205
|
-
SST5_CONFIG = DatasetConfig(
|
|
206
|
-
name="sst5",
|
|
207
|
-
pretty_name="the truncated version of the English sentiment classification "
|
|
208
|
-
"dataset SST5",
|
|
209
|
-
huggingface_id="EuroEval/sst5-mini",
|
|
210
|
-
task=SENT,
|
|
211
|
-
languages=[EN],
|
|
212
|
-
labels=["negative", "neutral", "positive"],
|
|
213
|
-
prompt_prefix="The following are texts and their sentiment, which can be "
|
|
214
|
-
"'positive', 'neutral' or 'negative'.",
|
|
215
|
-
prompt_template="Text: {text}\nSentiment: {label}",
|
|
216
|
-
prompt_label_mapping=dict(
|
|
217
|
-
positive="positive", neutral="neutral", negative="negative"
|
|
218
|
-
),
|
|
219
|
-
instruction_prompt="Text: {text}\n\nClassify the sentiment in the text. Answer "
|
|
220
|
-
"with 'positive', 'neutral' or 'negative', and nothing else.",
|
|
221
|
-
num_few_shot_examples=12,
|
|
222
|
-
max_generated_tokens=5,
|
|
223
|
-
)
|
|
224
|
-
|
|
225
|
-
FOSENT_CONFIG = DatasetConfig(
|
|
226
|
-
name="fosent",
|
|
227
|
-
pretty_name="the Faroese sentiment classification dataset FoSent",
|
|
228
|
-
huggingface_id="EuroEval/fosent",
|
|
229
|
-
task=SENT,
|
|
230
|
-
languages=[FO],
|
|
231
|
-
labels=["negative", "neutral", "positive"],
|
|
232
|
-
prompt_prefix="Her eru nakrir tekstir flokkaðir eftir lyndi, sum kann vera "
|
|
233
|
-
"'positivt', 'neutralt' ella 'negativt'.",
|
|
234
|
-
prompt_template="Text: {text}\nLyndi: {label}",
|
|
235
|
-
prompt_label_mapping=dict(
|
|
236
|
-
positive="positivt", neutral="neutralt", negative="negativt"
|
|
237
|
-
),
|
|
238
|
-
instruction_prompt="Tekstur: {text}\n\nFlokka lyndið í tekstinum. Svara við "
|
|
239
|
-
"'positivt', 'neutralt' ella 'negativt', og einki annað.",
|
|
240
|
-
num_few_shot_examples=5,
|
|
241
|
-
max_generated_tokens=5,
|
|
242
|
-
)
|
|
243
|
-
|
|
244
|
-
ALLOCINE_CONFIG = DatasetConfig(
|
|
245
|
-
name="allocine",
|
|
246
|
-
pretty_name="the truncated version of the French sentiment classification "
|
|
247
|
-
"dataset AlloCiné",
|
|
248
|
-
huggingface_id="EuroEval/allocine-mini",
|
|
249
|
-
task=SENT,
|
|
250
|
-
languages=[FR],
|
|
251
|
-
labels=["negative", "positive"],
|
|
252
|
-
prompt_prefix="Voici des textes et leur sentiment, qui peut être 'positif' ou "
|
|
253
|
-
"'négatif'.",
|
|
254
|
-
prompt_template="Texte: {text}\nSentiment: {label}",
|
|
255
|
-
prompt_label_mapping=dict(positive="positif", negative="négatif"),
|
|
256
|
-
instruction_prompt="Texte : {text}\nClassez le sentiment dans le texte. Répondez "
|
|
257
|
-
"par ‘positif' ou ‘négatif', et rien d'autre.",
|
|
258
|
-
num_few_shot_examples=12,
|
|
259
|
-
max_generated_tokens=5,
|
|
260
|
-
)
|
|
261
|
-
|
|
262
|
-
SENTIPOLC_CONFIG = DatasetConfig(
|
|
263
|
-
name="sentipolc16",
|
|
264
|
-
pretty_name="the truncated version of the Italian sentiment classification "
|
|
265
|
-
"dataset Sentipolc-16",
|
|
266
|
-
huggingface_id="EuroEval/sentipolc16-mini",
|
|
267
|
-
task=SENT,
|
|
268
|
-
languages=[IT],
|
|
269
|
-
labels=["negative", "neutral", "positive"],
|
|
270
|
-
prompt_prefix="Di seguito sono riportati i testi e il loro sentimento, che può "
|
|
271
|
-
"essere 'positivo', 'neutro' o 'negativo'.",
|
|
272
|
-
prompt_template="Tweet: {text}\nSentimento: {label}",
|
|
273
|
-
prompt_label_mapping=dict(
|
|
274
|
-
positive="positivo", neutral="neutro", negative="negativo"
|
|
275
|
-
),
|
|
276
|
-
instruction_prompt="Tweet: {text}\n\nClassificare il sentimento nel Tweet. "
|
|
277
|
-
"Rispondete con 'positivo', 'neutro' o 'negativo', e nient'altro.",
|
|
278
|
-
num_few_shot_examples=12,
|
|
279
|
-
max_generated_tokens=5,
|
|
280
|
-
)
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
SENTIMENT_HEADLINES_CONFIG = DatasetConfig(
|
|
284
|
-
name="sentiment-headlines-es",
|
|
285
|
-
pretty_name="the truncated version of the Spanish sentiment headlines dataset",
|
|
286
|
-
huggingface_id="EuroEval/sentiment-headlines-es",
|
|
287
|
-
task=SENT,
|
|
288
|
-
languages=[ES],
|
|
289
|
-
labels=["negative", "neutral", "positive"],
|
|
290
|
-
prompt_prefix="Lo siguiente son reseñas y su sentimiento, que puede ser "
|
|
291
|
-
"'positivo', 'neutral' o 'negativo'.",
|
|
292
|
-
prompt_template="Texto: {text}\nSentimiento: {label}",
|
|
293
|
-
prompt_label_mapping=dict(
|
|
294
|
-
positive="positivo", neutral="neutral", negative="negativo"
|
|
295
|
-
),
|
|
296
|
-
instruction_prompt="Texto: {text}\n\nClasifica el sentimiento de la reseña. "
|
|
297
|
-
"Responde con 'positivo', 'neutral' o 'negativo', y nada más.",
|
|
298
|
-
num_few_shot_examples=12,
|
|
299
|
-
max_generated_tokens=5,
|
|
300
|
-
)
|
|
301
|
-
|
|
302
|
-
### NAMED ENTITY RECOGNITION DATASETS ###
|
|
303
|
-
|
|
304
|
-
SUC3_CONFIG = DatasetConfig(
|
|
305
|
-
name="suc3",
|
|
306
|
-
pretty_name="the truncated version of the Swedish named entity recognition "
|
|
307
|
-
"dataset SUC 3.0",
|
|
308
|
-
huggingface_id="EuroEval/suc3-mini",
|
|
309
|
-
task=NER,
|
|
310
|
-
languages=[SV],
|
|
311
|
-
labels=[
|
|
312
|
-
"o",
|
|
313
|
-
"b-loc",
|
|
314
|
-
"i-loc",
|
|
315
|
-
"b-org",
|
|
316
|
-
"i-org",
|
|
317
|
-
"b-per",
|
|
318
|
-
"i-per",
|
|
319
|
-
"b-misc",
|
|
320
|
-
"i-misc",
|
|
321
|
-
],
|
|
322
|
-
prompt_prefix="Följande är meningar och JSON-ordböcker med de namngivna enheter "
|
|
323
|
-
"som förekommer i den givna meningen.",
|
|
324
|
-
prompt_template="Mening: {text}\nNamngivna entiteter: {label}",
|
|
325
|
-
prompt_label_mapping={
|
|
326
|
-
"b-per": "person",
|
|
327
|
-
"i-per": "person",
|
|
328
|
-
"b-loc": "plats",
|
|
329
|
-
"i-loc": "plats",
|
|
330
|
-
"b-org": "organisation",
|
|
331
|
-
"i-org": "organisation",
|
|
332
|
-
"b-misc": "diverse",
|
|
333
|
-
"i-misc": "diverse",
|
|
334
|
-
},
|
|
335
|
-
instruction_prompt="Mening: {text}\n\nIdentifiera de namngivna enheterna i "
|
|
336
|
-
"meningen. Du ska outputta detta som en JSON-ordbok med nycklarna 'person', "
|
|
337
|
-
"'plats', 'organisation' och 'diverse'. Värdena ska vara listor över de namngivna "
|
|
338
|
-
"enheter av den typen, precis som de förekommer i meningen.",
|
|
339
|
-
num_few_shot_examples=8,
|
|
340
|
-
max_generated_tokens=128,
|
|
341
|
-
)
|
|
342
|
-
|
|
343
|
-
DANSK_CONFIG = DatasetConfig(
|
|
344
|
-
name="dansk",
|
|
345
|
-
pretty_name="the truncated version of the Danish named entity recognition "
|
|
346
|
-
"dataset DANSK",
|
|
347
|
-
huggingface_id="EuroEval/dansk-mini",
|
|
348
|
-
task=NER,
|
|
349
|
-
languages=[DA],
|
|
350
|
-
labels=[
|
|
351
|
-
"o",
|
|
352
|
-
"b-loc",
|
|
353
|
-
"i-loc",
|
|
354
|
-
"b-org",
|
|
355
|
-
"i-org",
|
|
356
|
-
"b-per",
|
|
357
|
-
"i-per",
|
|
358
|
-
"b-misc",
|
|
359
|
-
"i-misc",
|
|
360
|
-
],
|
|
361
|
-
prompt_prefix="Følgende er sætninger og JSON-ordbøger med de navngivne enheder, "
|
|
362
|
-
"som forekommer i den givne sætning.",
|
|
363
|
-
prompt_template="Sætning: {text}\nNavngivne enheder: {label}",
|
|
364
|
-
prompt_label_mapping={
|
|
365
|
-
"b-per": "person",
|
|
366
|
-
"i-per": "person",
|
|
367
|
-
"b-loc": "sted",
|
|
368
|
-
"i-loc": "sted",
|
|
369
|
-
"b-org": "organisation",
|
|
370
|
-
"i-org": "organisation",
|
|
371
|
-
"b-misc": "diverse",
|
|
372
|
-
"i-misc": "diverse",
|
|
373
|
-
},
|
|
374
|
-
instruction_prompt="Sætning: {text}\n\nIdentificér de navngivne enheder i "
|
|
375
|
-
"sætningen. Du skal outputte dette som en JSON-ordbog med nøglerne 'person', "
|
|
376
|
-
"'sted', 'organisation' og 'diverse'. Værdierne skal være lister over de navngivne "
|
|
377
|
-
"enheder af den type, præcis som de forekommer i sætningen.",
|
|
378
|
-
num_few_shot_examples=8,
|
|
379
|
-
max_generated_tokens=128,
|
|
380
|
-
)
|
|
381
|
-
|
|
382
|
-
NORNE_NB_CONFIG = DatasetConfig(
|
|
383
|
-
name="norne-nb",
|
|
384
|
-
pretty_name="the truncated version of the Bokmål part of the Norwegian named "
|
|
385
|
-
"entity recognition dataset NorNE",
|
|
386
|
-
huggingface_id="EuroEval/norne-nb-mini",
|
|
387
|
-
task=NER,
|
|
388
|
-
languages=[NB, NO],
|
|
389
|
-
labels=[
|
|
390
|
-
"o",
|
|
391
|
-
"b-loc",
|
|
392
|
-
"i-loc",
|
|
393
|
-
"b-org",
|
|
394
|
-
"i-org",
|
|
395
|
-
"b-per",
|
|
396
|
-
"i-per",
|
|
397
|
-
"b-misc",
|
|
398
|
-
"i-misc",
|
|
399
|
-
],
|
|
400
|
-
prompt_prefix="Følgende er fraser og JSON-ordbøker med de navngitte enhetene "
|
|
401
|
-
"som forekommer i den gitte frasen.",
|
|
402
|
-
prompt_template="Frase: {text}\nNavngitte enheter: {label}",
|
|
403
|
-
prompt_label_mapping={
|
|
404
|
-
"b-per": "person",
|
|
405
|
-
"i-per": "person",
|
|
406
|
-
"b-loc": "sted",
|
|
407
|
-
"i-loc": "sted",
|
|
408
|
-
"b-org": "organisasjon",
|
|
409
|
-
"i-org": "organisasjon",
|
|
410
|
-
"b-misc": "diverse",
|
|
411
|
-
"i-misc": "diverse",
|
|
412
|
-
},
|
|
413
|
-
instruction_prompt="Frase: {text}\n\nIdentifiser de navngitte enhetene i frasen. "
|
|
414
|
-
"Du bør outputte dette som en JSON-ordbok med nøklene 'person', 'sted', "
|
|
415
|
-
"'organisasjon' og 'diverse'. Verdiene skal være lister over de navngitte enhetene "
|
|
416
|
-
"av den typen, akkurat som de vises i frasen.",
|
|
417
|
-
num_few_shot_examples=8,
|
|
418
|
-
max_generated_tokens=128,
|
|
419
|
-
)
|
|
420
|
-
|
|
421
|
-
NORNE_NN_CONFIG = DatasetConfig(
|
|
422
|
-
name="norne-nn",
|
|
423
|
-
pretty_name="the truncated version of the Nynorsk part of the Norwegian named "
|
|
424
|
-
"entity recognition dataset NorNE",
|
|
425
|
-
huggingface_id="EuroEval/norne-nn-mini",
|
|
426
|
-
task=NER,
|
|
427
|
-
languages=[NN],
|
|
428
|
-
labels=[
|
|
429
|
-
"o",
|
|
430
|
-
"b-loc",
|
|
431
|
-
"i-loc",
|
|
432
|
-
"b-org",
|
|
433
|
-
"i-org",
|
|
434
|
-
"b-per",
|
|
435
|
-
"i-per",
|
|
436
|
-
"b-misc",
|
|
437
|
-
"i-misc",
|
|
438
|
-
],
|
|
439
|
-
prompt_prefix="Følgende er fraser og JSON-ordbøker med de navngitte enhetene "
|
|
440
|
-
"som forekommer i den gitte frasen.",
|
|
441
|
-
prompt_template="Frase: {text}\nNavngitte enheter: {label}",
|
|
442
|
-
prompt_label_mapping={
|
|
443
|
-
"b-per": "person",
|
|
444
|
-
"i-per": "person",
|
|
445
|
-
"b-loc": "sted",
|
|
446
|
-
"i-loc": "sted",
|
|
447
|
-
"b-org": "organisasjon",
|
|
448
|
-
"i-org": "organisasjon",
|
|
449
|
-
"b-misc": "diverse",
|
|
450
|
-
"i-misc": "diverse",
|
|
451
|
-
},
|
|
452
|
-
instruction_prompt="Frase: {text}\n\nIdentifiser de navngitte enhetene i frasen. "
|
|
453
|
-
"Du bør outputte dette som en JSON-ordbok med nøklene 'person', 'sted', "
|
|
454
|
-
"'organisasjon' og 'diverse'. Verdiene skal være lister over de navngitte enhetene "
|
|
455
|
-
"av den typen, akkurat som de vises i frasen.",
|
|
456
|
-
num_few_shot_examples=8,
|
|
457
|
-
max_generated_tokens=128,
|
|
458
|
-
)
|
|
459
|
-
|
|
460
|
-
MIM_GOLD_NER_CONFIG = DatasetConfig(
|
|
461
|
-
name="mim-gold-ner",
|
|
462
|
-
pretty_name="the truncated version of the Icelandic named entity recognition "
|
|
463
|
-
"dataset MIM-GOLD-NER",
|
|
464
|
-
huggingface_id="EuroEval/mim-gold-ner-mini",
|
|
465
|
-
task=NER,
|
|
466
|
-
languages=[IS],
|
|
467
|
-
labels=[
|
|
468
|
-
"o",
|
|
469
|
-
"b-loc",
|
|
470
|
-
"i-loc",
|
|
471
|
-
"b-org",
|
|
472
|
-
"i-org",
|
|
473
|
-
"b-per",
|
|
474
|
-
"i-per",
|
|
475
|
-
"b-misc",
|
|
476
|
-
"i-misc",
|
|
477
|
-
],
|
|
478
|
-
prompt_prefix="Eftirfarandi eru setningar ásamt JSON lyklum með nefndum einingum "
|
|
479
|
-
"sem koma fyrir í setningunum.",
|
|
480
|
-
prompt_template="Setning: {text}\nNefndar einingar: {label}",
|
|
481
|
-
prompt_label_mapping={
|
|
482
|
-
"b-per": "einstaklingur",
|
|
483
|
-
"i-per": "einstaklingur",
|
|
484
|
-
"b-loc": "staðsetning",
|
|
485
|
-
"i-loc": "staðsetning",
|
|
486
|
-
"b-org": "stofnun",
|
|
487
|
-
"i-org": "stofnun",
|
|
488
|
-
"b-misc": "ýmislegt",
|
|
489
|
-
"i-misc": "ýmislegt",
|
|
490
|
-
},
|
|
491
|
-
instruction_prompt="Setning: {text}\n\nGreinið nefndu einingarnar í setningunni. "
|
|
492
|
-
"Þú ættir að skila þessu sem JSON orðabók með lyklunum 'einstaklingur', "
|
|
493
|
-
"'staðsetning', 'stofnun' og 'ýmislegt'. Gildin ættu að vera listi yfir nefndu "
|
|
494
|
-
"einingarnar af þeirri gerð, nákvæmlega eins og þær koma fram í setningunni.",
|
|
495
|
-
num_few_shot_examples=8,
|
|
496
|
-
max_generated_tokens=128,
|
|
497
|
-
)
|
|
498
|
-
|
|
499
|
-
FONE_CONFIG = DatasetConfig(
|
|
500
|
-
name="fone",
|
|
501
|
-
pretty_name="the truncated version of the Faroese named entity recognition "
|
|
502
|
-
"dataset FoNE",
|
|
503
|
-
huggingface_id="EuroEval/fone-mini",
|
|
504
|
-
task=NER,
|
|
505
|
-
languages=[FO],
|
|
506
|
-
labels=[
|
|
507
|
-
"o",
|
|
508
|
-
"b-loc",
|
|
509
|
-
"i-loc",
|
|
510
|
-
"b-org",
|
|
511
|
-
"i-org",
|
|
512
|
-
"b-per",
|
|
513
|
-
"i-per",
|
|
514
|
-
"b-misc",
|
|
515
|
-
"i-misc",
|
|
516
|
-
],
|
|
517
|
-
prompt_prefix="Her eru nakrir setningar og nakrar JSON orðabøkur við nevndar "
|
|
518
|
-
"eindir, sum eru í setningunum.",
|
|
519
|
-
prompt_template="Setningur: {text}\nNevndar eindir: {label}",
|
|
520
|
-
prompt_label_mapping={
|
|
521
|
-
"b-per": "persónur",
|
|
522
|
-
"i-per": "persónur",
|
|
523
|
-
"b-loc": "staður",
|
|
524
|
-
"i-loc": "staður",
|
|
525
|
-
"b-org": "felagsskapur",
|
|
526
|
-
"i-org": "felagsskapur",
|
|
527
|
-
"b-misc": "ymiskt",
|
|
528
|
-
"i-misc": "ymiskt",
|
|
529
|
-
},
|
|
530
|
-
instruction_prompt="Setningur: {text}\n\nGreinið nevndu einingarnar í setningunni. "
|
|
531
|
-
"Þú ættir að skila þessu sem JSON orðabók með lyklunum 'persónur', 'staður', "
|
|
532
|
-
"'felagsskapur' og 'ymiskt'. Gildin ættu að vera listi yfir nevndu einingarnar af "
|
|
533
|
-
"þeirri gerð, nákvæmlega eins og þær koma fram í setningunni.",
|
|
534
|
-
num_few_shot_examples=8,
|
|
535
|
-
max_generated_tokens=128,
|
|
536
|
-
)
|
|
537
|
-
|
|
538
|
-
GERMEVAL_CONFIG = DatasetConfig(
|
|
539
|
-
name="germeval",
|
|
540
|
-
pretty_name="the truncated version of the German named entity recognition "
|
|
541
|
-
"dataset GermEval",
|
|
542
|
-
huggingface_id="EuroEval/germeval-mini",
|
|
543
|
-
task=NER,
|
|
544
|
-
languages=[DE],
|
|
545
|
-
labels=[
|
|
546
|
-
"o",
|
|
547
|
-
"b-loc",
|
|
548
|
-
"i-loc",
|
|
549
|
-
"b-org",
|
|
550
|
-
"i-org",
|
|
551
|
-
"b-per",
|
|
552
|
-
"i-per",
|
|
553
|
-
"b-misc",
|
|
554
|
-
"i-misc",
|
|
555
|
-
],
|
|
556
|
-
prompt_prefix="Es folgen Sätze und JSON-Wörterbücher mit den benannten "
|
|
557
|
-
"Entitäten, die in der angegebenen Phrase vorkommen.",
|
|
558
|
-
prompt_template="Satz: {text}\nBenannte Entitäten: {label}",
|
|
559
|
-
prompt_label_mapping={
|
|
560
|
-
"b-per": "person",
|
|
561
|
-
"i-per": "person",
|
|
562
|
-
"b-loc": "ort",
|
|
563
|
-
"i-loc": "ort",
|
|
564
|
-
"b-org": "organisation",
|
|
565
|
-
"i-org": "organisation",
|
|
566
|
-
"b-misc": "verschiedenes",
|
|
567
|
-
"i-misc": "verschiedenes",
|
|
568
|
-
},
|
|
569
|
-
instruction_prompt="Satz: {text}\n\nIdentifizieren Sie die benannten Entitäten im "
|
|
570
|
-
"Satz. Sie sollten dies als JSON-Wörterbuch mit den Schlüsseln 'person', 'ort', "
|
|
571
|
-
"'organisation' und 'verschiedenes' ausgeben. Die Werte sollten Listen der "
|
|
572
|
-
"benannten Entitäten dieses Typs sein, genau wie sie im Satz erscheinen.",
|
|
573
|
-
num_few_shot_examples=8,
|
|
574
|
-
max_generated_tokens=128,
|
|
575
|
-
)
|
|
576
|
-
|
|
577
|
-
CONLL_NL_CONFIG = DatasetConfig(
|
|
578
|
-
name="conll-nl",
|
|
579
|
-
pretty_name="the Dutch part of the truncated version of the named entity "
|
|
580
|
-
"recognition dataset CoNLL 2002",
|
|
581
|
-
huggingface_id="EuroEval/conll-nl-mini",
|
|
582
|
-
task=NER,
|
|
583
|
-
languages=[NL],
|
|
584
|
-
labels=[
|
|
585
|
-
"o",
|
|
586
|
-
"b-loc",
|
|
587
|
-
"i-loc",
|
|
588
|
-
"b-org",
|
|
589
|
-
"i-org",
|
|
590
|
-
"b-per",
|
|
591
|
-
"i-per",
|
|
592
|
-
"b-misc",
|
|
593
|
-
"i-misc",
|
|
594
|
-
],
|
|
595
|
-
prompt_prefix="Hieronder staan zinnen en JSON woordenboeken met de genoemde "
|
|
596
|
-
"entiteiten die voorkomen in de gegeven zin.",
|
|
597
|
-
prompt_template="Zin: {text}\nGenoemde entiteiten: {label}",
|
|
598
|
-
prompt_label_mapping={
|
|
599
|
-
"b-per": "persoon",
|
|
600
|
-
"i-per": "persoon",
|
|
601
|
-
"b-loc": "locatie",
|
|
602
|
-
"i-loc": "locatie",
|
|
603
|
-
"b-org": "organisatie",
|
|
604
|
-
"i-org": "organisatie",
|
|
605
|
-
"b-misc": "diversen",
|
|
606
|
-
"i-misc": "diversen",
|
|
607
|
-
},
|
|
608
|
-
instruction_prompt="Zin: {text}\n\nIdentificeer de genoemde entiteiten in de zin. "
|
|
609
|
-
"Je moet dit uitvoeren als een JSON-woordenboek met de sleutels 'persoon', "
|
|
610
|
-
"'locatie', 'organisatie' en 'diversen'. De waarden moeten lijsten zijn van de "
|
|
611
|
-
"genoemde entiteiten van dat type, precies zoals ze voorkomen in de zin.",
|
|
612
|
-
num_few_shot_examples=8,
|
|
613
|
-
max_generated_tokens=128,
|
|
614
|
-
)
|
|
615
|
-
|
|
616
|
-
CONLL_EN_CONFIG = DatasetConfig(
|
|
617
|
-
name="conll-en",
|
|
618
|
-
pretty_name="the truncated version of the English named entity recognition "
|
|
619
|
-
"dataset CoNLL 2003",
|
|
620
|
-
huggingface_id="EuroEval/conll-en-mini",
|
|
621
|
-
task=NER,
|
|
622
|
-
languages=[EN],
|
|
623
|
-
labels=[
|
|
624
|
-
"o",
|
|
625
|
-
"b-loc",
|
|
626
|
-
"i-loc",
|
|
627
|
-
"b-org",
|
|
628
|
-
"i-org",
|
|
629
|
-
"b-per",
|
|
630
|
-
"i-per",
|
|
631
|
-
"b-misc",
|
|
632
|
-
"i-misc",
|
|
633
|
-
],
|
|
634
|
-
prompt_prefix="Below are sentences and JSON dictionaries with the named entities "
|
|
635
|
-
"that occur in the given sentence.",
|
|
636
|
-
prompt_template="Sentence: {text}\nNamed entities: {label}",
|
|
637
|
-
prompt_label_mapping={
|
|
638
|
-
"b-per": "person",
|
|
639
|
-
"i-per": "person",
|
|
640
|
-
"b-loc": "location",
|
|
641
|
-
"i-loc": "location",
|
|
642
|
-
"b-org": "organization",
|
|
643
|
-
"i-org": "organization",
|
|
644
|
-
"b-misc": "miscellaneous",
|
|
645
|
-
"i-misc": "miscellaneous",
|
|
646
|
-
},
|
|
647
|
-
instruction_prompt="Sentence: {text}\n\nIdentify the named entities in the "
|
|
648
|
-
"sentence. You should output this as a JSON dictionary with the keys being "
|
|
649
|
-
"'person', 'location', 'organization' and 'miscellaneous'. The values should be "
|
|
650
|
-
"lists of the named entities of that type, exactly as they appear in the sentence.",
|
|
651
|
-
num_few_shot_examples=8,
|
|
652
|
-
max_generated_tokens=128,
|
|
653
|
-
)
|
|
654
|
-
|
|
655
|
-
ELTEC_CONFIG = DatasetConfig(
|
|
656
|
-
name="eltec",
|
|
657
|
-
pretty_name="the truncated version of the French named entity recognition "
|
|
658
|
-
"dataset ELTeC",
|
|
659
|
-
huggingface_id="EuroEval/eltec-mini",
|
|
660
|
-
task=NER,
|
|
661
|
-
languages=[FR],
|
|
662
|
-
labels=[
|
|
663
|
-
"o",
|
|
664
|
-
"b-per",
|
|
665
|
-
"i-per",
|
|
666
|
-
"b-loc",
|
|
667
|
-
"i-loc",
|
|
668
|
-
"b-org",
|
|
669
|
-
"i-org",
|
|
670
|
-
"b-misc",
|
|
671
|
-
"i-misc",
|
|
672
|
-
],
|
|
673
|
-
prompt_prefix="Vous trouverez ci-dessous des phrases et des dictionnaires JSON "
|
|
674
|
-
"avec les entités nommées qui apparaissent dans la phrase donnée.",
|
|
675
|
-
prompt_template="Sentence: {text}\nEntités nommées: {label}",
|
|
676
|
-
prompt_label_mapping={
|
|
677
|
-
"b-per": "personne",
|
|
678
|
-
"i-per": "personne",
|
|
679
|
-
"b-loc": "lieu",
|
|
680
|
-
"i-loc": "lieu",
|
|
681
|
-
"b-org": "organisation",
|
|
682
|
-
"i-org": "organisation",
|
|
683
|
-
"b-misc": "divers",
|
|
684
|
-
"i-misc": "divers",
|
|
685
|
-
},
|
|
686
|
-
instruction_prompt="Sentence: {text}\n\nIdentifiez les entités nommées dans la "
|
|
687
|
-
"phrase. Vous devez produire ceci sous forme de dictionnaire JSON avec les clés "
|
|
688
|
-
"'personne', 'lieu', 'organisation', et 'divers'. Les valeurs doivent être des "
|
|
689
|
-
"listes des entités nommées de ce type, exactement comme elles apparaissent dans "
|
|
690
|
-
"la phrase.",
|
|
691
|
-
num_few_shot_examples=8,
|
|
692
|
-
max_generated_tokens=128,
|
|
693
|
-
)
|
|
694
|
-
|
|
695
|
-
DANE_CONFIG = DatasetConfig(
|
|
696
|
-
name="dane",
|
|
697
|
-
pretty_name="the truncated version of the Danish named entity recognition "
|
|
698
|
-
"dataset DaNE",
|
|
699
|
-
huggingface_id="EuroEval/dane-mini",
|
|
700
|
-
task=NER,
|
|
701
|
-
languages=[DA],
|
|
702
|
-
labels=[
|
|
703
|
-
"o",
|
|
704
|
-
"b-loc",
|
|
705
|
-
"i-loc",
|
|
706
|
-
"b-org",
|
|
707
|
-
"i-org",
|
|
708
|
-
"b-per",
|
|
709
|
-
"i-per",
|
|
710
|
-
"b-misc",
|
|
711
|
-
"i-misc",
|
|
712
|
-
],
|
|
713
|
-
prompt_prefix="Følgende er sætninger og JSON-ordbøger med de navngivne enheder, "
|
|
714
|
-
"som forekommer i den givne sætning.",
|
|
715
|
-
prompt_template="Sætning: {text}\nNavngivne enheder: {label}",
|
|
716
|
-
prompt_label_mapping={
|
|
717
|
-
"b-per": "person",
|
|
718
|
-
"i-per": "person",
|
|
719
|
-
"b-loc": "sted",
|
|
720
|
-
"i-loc": "sted",
|
|
721
|
-
"b-org": "organisation",
|
|
722
|
-
"i-org": "organisation",
|
|
723
|
-
"b-misc": "diverse",
|
|
724
|
-
"i-misc": "diverse",
|
|
725
|
-
},
|
|
726
|
-
instruction_prompt="Sætning: {text}\n\nIdentificér de navngivne enheder i "
|
|
727
|
-
"sætningen. Du skal outputte dette som en JSON-ordbog med nøglerne 'person', "
|
|
728
|
-
"'sted', 'organisation' og 'diverse'. Værdierne skal være lister over de navngivne "
|
|
729
|
-
"enheder af den type, præcis som de forekommer i sætningen.",
|
|
730
|
-
num_few_shot_examples=8,
|
|
731
|
-
max_generated_tokens=128,
|
|
732
|
-
unofficial=True,
|
|
733
|
-
)
|
|
734
|
-
|
|
735
|
-
WIKIANN_FO_CONFIG = DatasetConfig(
|
|
736
|
-
name="wikiann-fo",
|
|
737
|
-
pretty_name="the truncated version of the Faroese part of the named entity "
|
|
738
|
-
"recognition dataset WikiANN",
|
|
739
|
-
huggingface_id="EuroEval/wikiann-fo-mini",
|
|
740
|
-
task=NER,
|
|
741
|
-
languages=[FO],
|
|
742
|
-
labels=[
|
|
743
|
-
"o",
|
|
744
|
-
"b-loc",
|
|
745
|
-
"i-loc",
|
|
746
|
-
"b-org",
|
|
747
|
-
"i-org",
|
|
748
|
-
"b-per",
|
|
749
|
-
"i-per",
|
|
750
|
-
"b-misc",
|
|
751
|
-
"i-misc",
|
|
752
|
-
],
|
|
753
|
-
prompt_prefix="Her eru nakrir setningar og nakrar JSON orðabøkur við nevndar "
|
|
754
|
-
"eindir, sum eru í setningunum.",
|
|
755
|
-
prompt_template="Setningur: {text}\nNevndar eindir: {label}",
|
|
756
|
-
prompt_label_mapping={
|
|
757
|
-
"b-per": "persónur",
|
|
758
|
-
"i-per": "persónur",
|
|
759
|
-
"b-loc": "staður",
|
|
760
|
-
"i-loc": "staður",
|
|
761
|
-
"b-org": "felagsskapur",
|
|
762
|
-
"i-org": "felagsskapur",
|
|
763
|
-
"b-misc": "ymiskt",
|
|
764
|
-
"i-misc": "ymiskt",
|
|
765
|
-
},
|
|
766
|
-
instruction_prompt="Setningur: {text}\n\nGreinið nevndu einingarnar í setningunni. "
|
|
767
|
-
"Þú ættir að skila þessu sem JSON orðabók með lyklunum 'persónur', 'staður', "
|
|
768
|
-
"'felagsskapur' og 'ymiskt'. Gildin ættu að vera listi yfir nevndu einingarnar af "
|
|
769
|
-
"þeirri gerð, nákvæmlega eins og þær koma fram í setningunni.",
|
|
770
|
-
num_few_shot_examples=8,
|
|
771
|
-
max_generated_tokens=128,
|
|
772
|
-
unofficial=True,
|
|
773
|
-
)
|
|
774
|
-
|
|
775
|
-
WIKINEURAL_IT_CONFIG = DatasetConfig(
|
|
776
|
-
name="wikineural-it",
|
|
777
|
-
pretty_name="the truncated version of the Italian named "
|
|
778
|
-
"entity recognition dataset WikiNEuRal IT",
|
|
779
|
-
huggingface_id="EuroEval/wikineural-mini-it",
|
|
780
|
-
task=NER,
|
|
781
|
-
languages=[IT],
|
|
782
|
-
labels=[
|
|
783
|
-
"o",
|
|
784
|
-
"b-loc",
|
|
785
|
-
"i-loc",
|
|
786
|
-
"b-org",
|
|
787
|
-
"i-org",
|
|
788
|
-
"b-per",
|
|
789
|
-
"i-per",
|
|
790
|
-
"b-misc",
|
|
791
|
-
"i-misc",
|
|
792
|
-
],
|
|
793
|
-
prompt_prefix="Di seguito sono riportate le frasi e i dizionari JSON con le entità "
|
|
794
|
-
"denominate presenti nella frase data.",
|
|
795
|
-
prompt_template="Frase: {text}\nEntità denominate: {label}",
|
|
796
|
-
prompt_label_mapping={
|
|
797
|
-
"b-per": "persona",
|
|
798
|
-
"i-per": "persona",
|
|
799
|
-
"b-loc": "posizione",
|
|
800
|
-
"i-loc": "posizione",
|
|
801
|
-
"b-org": "organizzazione",
|
|
802
|
-
"i-org": "organizzazione",
|
|
803
|
-
"b-misc": "varie",
|
|
804
|
-
"i-misc": "varie",
|
|
805
|
-
},
|
|
806
|
-
instruction_prompt="Frase: {text}\n\nIdentificare le entità nominate nella frase. "
|
|
807
|
-
"Il risultato dovrebbe essere un dizionario JSON con le chiavi 'persona', "
|
|
808
|
-
"'posizione', 'organizzazione' e 'varie'. I valori devono essere elenchi di entità "
|
|
809
|
-
"nominate di quel tipo, esattamente come appaiono nella frase.",
|
|
810
|
-
num_few_shot_examples=8,
|
|
811
|
-
max_generated_tokens=128,
|
|
812
|
-
unofficial=True,
|
|
813
|
-
)
|
|
814
|
-
|
|
815
|
-
MULTINERD_IT_CONFIG = DatasetConfig(
|
|
816
|
-
name="multinerd-it",
|
|
817
|
-
pretty_name="the truncated version of the Italian part of the named "
|
|
818
|
-
"entity recognition dataset MultiNERD",
|
|
819
|
-
huggingface_id="EuroEval/multinerd-mini-it",
|
|
820
|
-
task=NER,
|
|
821
|
-
languages=[IT],
|
|
822
|
-
labels=[
|
|
823
|
-
"o",
|
|
824
|
-
"b-loc",
|
|
825
|
-
"i-loc",
|
|
826
|
-
"b-org",
|
|
827
|
-
"i-org",
|
|
828
|
-
"b-per",
|
|
829
|
-
"i-per",
|
|
830
|
-
"b-misc",
|
|
831
|
-
"i-misc",
|
|
832
|
-
],
|
|
833
|
-
prompt_prefix="Di seguito sono riportate le frasi e i dizionari JSON con le entità "
|
|
834
|
-
"denominate presenti nella frase data.",
|
|
835
|
-
prompt_template="Frase: {text}\nEntità denominate: {label}",
|
|
836
|
-
prompt_label_mapping={
|
|
837
|
-
"b-per": "persona",
|
|
838
|
-
"i-per": "persona",
|
|
839
|
-
"b-loc": "posizione",
|
|
840
|
-
"i-loc": "posizione",
|
|
841
|
-
"b-org": "organizzazione",
|
|
842
|
-
"i-org": "organizzazione",
|
|
843
|
-
"b-misc": "varie",
|
|
844
|
-
"i-misc": "varie",
|
|
845
|
-
},
|
|
846
|
-
instruction_prompt="Frase: {text}\n\nIdentificare le entità nominate nella frase. "
|
|
847
|
-
"Il risultato dovrebbe essere un dizionario JSON con le chiavi 'persona', "
|
|
848
|
-
"'posizione', 'organizzazione' e 'varie'. I valori devono essere elenchi di entità "
|
|
849
|
-
"nominate di quel tipo, esattamente come appaiono nella frase.",
|
|
850
|
-
num_few_shot_examples=8,
|
|
851
|
-
max_generated_tokens=128,
|
|
852
|
-
)
|
|
853
|
-
|
|
854
|
-
CONLL_ES_CONFIG = DatasetConfig(
|
|
855
|
-
name="conll-es",
|
|
856
|
-
pretty_name="the Spanish part of the truncated version of the named entity "
|
|
857
|
-
"recognition dataset CoNLL 2002",
|
|
858
|
-
huggingface_id="EuroEval/conll-es-mini",
|
|
859
|
-
task=NER,
|
|
860
|
-
languages=[ES],
|
|
861
|
-
labels=[
|
|
862
|
-
"o",
|
|
863
|
-
"b-loc",
|
|
864
|
-
"i-loc",
|
|
865
|
-
"b-org",
|
|
866
|
-
"i-org",
|
|
867
|
-
"b-per",
|
|
868
|
-
"i-per",
|
|
869
|
-
"b-misc",
|
|
870
|
-
"i-misc",
|
|
871
|
-
],
|
|
872
|
-
prompt_prefix="Lo siguiente son oraciones y diccionarios JSON con las entidades "
|
|
873
|
-
"nombradas que aparecen en la oración dada.",
|
|
874
|
-
prompt_template="Oración: {text}\nEntidades nombradas: {label}",
|
|
875
|
-
prompt_label_mapping={
|
|
876
|
-
"b-per": "persona",
|
|
877
|
-
"i-per": "persona",
|
|
878
|
-
"b-loc": "lugar",
|
|
879
|
-
"i-loc": "lugar",
|
|
880
|
-
"b-org": "organización",
|
|
881
|
-
"i-org": "organización",
|
|
882
|
-
"b-misc": "misceláneo",
|
|
883
|
-
"i-misc": "misceláneo",
|
|
884
|
-
},
|
|
885
|
-
instruction_prompt="Oración: {text}\n\nIdentifica las entidades nombradas en la "
|
|
886
|
-
"oración. Debes producir esto como un diccionario JSON con las claves 'persona', "
|
|
887
|
-
"'lugar', 'organización' y 'misceláneo'. Los valores deben ser listas de las "
|
|
888
|
-
"entidades nombradas de ese tipo, exactamente como aparecen en la oración.",
|
|
889
|
-
num_few_shot_examples=8,
|
|
890
|
-
max_generated_tokens=128,
|
|
891
|
-
unofficial=True,
|
|
892
|
-
)
|
|
893
|
-
|
|
894
|
-
### LINGUISTIC ACCEPTABILITY DATASETS ###
|
|
895
|
-
|
|
896
|
-
SCALA_SV_CONFIG = DatasetConfig(
|
|
897
|
-
name="scala-sv",
|
|
898
|
-
pretty_name="The Swedish part of the linguistic acceptability dataset ScaLA",
|
|
899
|
-
huggingface_id="EuroEval/scala-sv",
|
|
900
|
-
task=LA,
|
|
901
|
-
languages=[SV],
|
|
902
|
-
labels=["incorrect", "correct"],
|
|
903
|
-
prompt_prefix="Följande är meningar och huruvida de är grammatiskt korrekta.",
|
|
904
|
-
prompt_template="Mening: {text}\nGrammatisk korrekt: {label}",
|
|
905
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nej"),
|
|
906
|
-
instruction_prompt="Mening: {text}\n\nBestäm om meningen är grammatiskt korrekt "
|
|
907
|
-
"eller inte. Svara med 'ja' om meningen är korrekt och 'nej' om den inte är, "
|
|
908
|
-
"och inget annat.",
|
|
909
|
-
num_few_shot_examples=12,
|
|
910
|
-
max_generated_tokens=5,
|
|
911
|
-
)
|
|
912
|
-
|
|
913
|
-
SCALA_DA_CONFIG = DatasetConfig(
|
|
914
|
-
name="scala-da",
|
|
915
|
-
pretty_name="the Danish part of the linguistic acceptability dataset ScaLA",
|
|
916
|
-
huggingface_id="EuroEval/scala-da",
|
|
917
|
-
task=LA,
|
|
918
|
-
languages=[DA],
|
|
919
|
-
labels=["incorrect", "correct"],
|
|
920
|
-
prompt_prefix="Følgende er sætninger og om de er grammatisk korrekte.",
|
|
921
|
-
prompt_template="Sætning: {text}\nGrammatisk korrekt: {label}",
|
|
922
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nej"),
|
|
923
|
-
instruction_prompt="Sætning: {text}\n\nBestem om sætningen er grammatisk korrekt "
|
|
924
|
-
"eller ej. Svar med 'ja', hvis sætningen er korrekt, og 'nej', hvis den ikke er, "
|
|
925
|
-
"og intet andet.",
|
|
926
|
-
num_few_shot_examples=12,
|
|
927
|
-
max_generated_tokens=5,
|
|
928
|
-
)
|
|
929
|
-
|
|
930
|
-
SCALA_NB_CONFIG = DatasetConfig(
|
|
931
|
-
name="scala-nb",
|
|
932
|
-
pretty_name="the Bokmål part of the linguistic acceptability dataset ScaLA",
|
|
933
|
-
huggingface_id="EuroEval/scala-nb",
|
|
934
|
-
task=LA,
|
|
935
|
-
languages=[NB, NO],
|
|
936
|
-
labels=["incorrect", "correct"],
|
|
937
|
-
prompt_prefix="Følgende er setninger og hvorvidt de er grammatisk korrekte.",
|
|
938
|
-
prompt_template="Setning: {text}\nGrammatisk korrekt: {label}",
|
|
939
|
-
instruction_prompt="Setning: {text}\n\nBestem om setningen er grammatisk korrekt "
|
|
940
|
-
"eller ikke. Svar med 'ja' hvis setningen er korrekt og 'nei' hvis den ikke er, "
|
|
941
|
-
"og ikke noe annet.",
|
|
942
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nei"),
|
|
943
|
-
num_few_shot_examples=12,
|
|
944
|
-
max_generated_tokens=5,
|
|
945
|
-
)
|
|
946
|
-
|
|
947
|
-
SCALA_NN_CONFIG = DatasetConfig(
|
|
948
|
-
name="scala-nn",
|
|
949
|
-
pretty_name="the Nynorsk part of the linguistic acceptability dataset ScaLA",
|
|
950
|
-
huggingface_id="EuroEval/scala-nn",
|
|
951
|
-
task=LA,
|
|
952
|
-
languages=[NN],
|
|
953
|
-
labels=["incorrect", "correct"],
|
|
954
|
-
prompt_prefix="Følgende er setninger og hvorvidt de er grammatisk korrekte.",
|
|
955
|
-
prompt_template="Setning: {text}\nGrammatisk korrekt: {label}",
|
|
956
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nei"),
|
|
957
|
-
instruction_prompt="Setning: {text}\n\nBestem om setningen er grammatisk korrekt "
|
|
958
|
-
"eller ikke. Svar med 'ja' hvis setningen er korrekt og 'nei' hvis den ikke er, "
|
|
959
|
-
"og ikke noe annet.",
|
|
960
|
-
num_few_shot_examples=12,
|
|
961
|
-
max_generated_tokens=5,
|
|
962
|
-
)
|
|
963
|
-
|
|
964
|
-
NO_COLA_CONFIG = DatasetConfig(
|
|
965
|
-
name="no-cola",
|
|
966
|
-
pretty_name="the truncated version of the Norwegian linguistic acceptability "
|
|
967
|
-
"dataset NoCoLA",
|
|
968
|
-
huggingface_id="EuroEval/no-cola-mini",
|
|
969
|
-
task=LA,
|
|
970
|
-
languages=[NB, NO],
|
|
971
|
-
labels=["incorrect", "correct"],
|
|
972
|
-
prompt_prefix="Følgende er setninger og hvorvidt de er grammatisk korrekte.",
|
|
973
|
-
prompt_template="Setning: {text}\nGrammatisk korrekt: {label}",
|
|
974
|
-
instruction_prompt="Setning: {text}\n\nBestem om setningen er grammatisk korrekt "
|
|
975
|
-
"eller ikke. Svar med 'ja' hvis setningen er korrekt og 'nei' hvis den ikke er, "
|
|
976
|
-
"og ikke noe annet.",
|
|
977
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nei"),
|
|
978
|
-
num_few_shot_examples=12,
|
|
979
|
-
max_generated_tokens=5,
|
|
980
|
-
unofficial=True,
|
|
981
|
-
)
|
|
982
|
-
|
|
983
|
-
SCALA_IS_CONFIG = DatasetConfig(
|
|
984
|
-
name="scala-is",
|
|
985
|
-
pretty_name="the Icelandic part of the linguistic acceptability dataset ScaLA",
|
|
986
|
-
huggingface_id="EuroEval/scala-is",
|
|
987
|
-
task=LA,
|
|
988
|
-
languages=[IS],
|
|
989
|
-
labels=["incorrect", "correct"],
|
|
990
|
-
prompt_prefix="Eftirfarandi eru setningar og hvort þær eru málfræðilega réttar.",
|
|
991
|
-
prompt_template="Setning: {text}\nMálfræðilega rétt: {label}",
|
|
992
|
-
prompt_label_mapping=dict(correct="já", incorrect="nei"),
|
|
993
|
-
instruction_prompt="Setning: {text}\n\nGreinið hvort setningin er málfræðilega "
|
|
994
|
-
"rétt eða ekki. Svarið skal vera 'já' ef setningin er rétt og 'nei' ef hún er "
|
|
995
|
-
"ekki, og engu öðru.",
|
|
996
|
-
num_few_shot_examples=12,
|
|
997
|
-
max_generated_tokens=5,
|
|
998
|
-
)
|
|
999
|
-
|
|
1000
|
-
SCALA_FO_CONFIG = DatasetConfig(
|
|
1001
|
-
name="scala-fo",
|
|
1002
|
-
pretty_name="the Faroese part of the linguistic acceptability dataset ScaLA",
|
|
1003
|
-
huggingface_id="EuroEval/scala-fo",
|
|
1004
|
-
task=LA,
|
|
1005
|
-
languages=[FO],
|
|
1006
|
-
labels=["incorrect", "correct"],
|
|
1007
|
-
prompt_prefix="Hetta eru nakrir setningar og um teir eru mállæruliga rættir.",
|
|
1008
|
-
prompt_template="Setningur: {text}\nMállæruliga rættur: {label}",
|
|
1009
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nei"),
|
|
1010
|
-
instruction_prompt="Setningur: {text}\n\nGreinið hvort setningurin er mállæruliga "
|
|
1011
|
-
"rættur ella ikki. Svarið skal vera 'ja' um setningurin er rættur og 'nei' um "
|
|
1012
|
-
"hann ikki er, og einki annað.",
|
|
1013
|
-
num_few_shot_examples=12,
|
|
1014
|
-
max_generated_tokens=5,
|
|
1015
|
-
)
|
|
1016
|
-
|
|
1017
|
-
SCALA_DE_CONFIG = DatasetConfig(
|
|
1018
|
-
name="scala-de",
|
|
1019
|
-
pretty_name="the German part of the linguistic acceptability dataset ScaLA",
|
|
1020
|
-
huggingface_id="EuroEval/scala-de",
|
|
1021
|
-
task=LA,
|
|
1022
|
-
languages=[DE],
|
|
1023
|
-
labels=["incorrect", "correct"],
|
|
1024
|
-
prompt_prefix="Die folgenden Sätze und ob sie grammatikalisch korrekt sind.",
|
|
1025
|
-
prompt_template="Satz: {text}\nGrammatikalisch richtig: {label}",
|
|
1026
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nein"),
|
|
1027
|
-
instruction_prompt="Satz: {text}\n\nBestimmen Sie, ob der Satz grammatikalisch "
|
|
1028
|
-
"korrekt ist oder nicht. Antworten Sie mit 'ja', wenn der Satz korrekt ist und "
|
|
1029
|
-
"'nein', wenn er es nicht ist, und nichts anderes.",
|
|
1030
|
-
num_few_shot_examples=12,
|
|
1031
|
-
max_generated_tokens=5,
|
|
1032
|
-
)
|
|
1033
|
-
|
|
1034
|
-
SCALA_NL_CONFIG = DatasetConfig(
|
|
1035
|
-
name="scala-nl",
|
|
1036
|
-
pretty_name="the Dutch part of the linguistic acceptability dataset ScaLA",
|
|
1037
|
-
huggingface_id="EuroEval/scala-nl",
|
|
1038
|
-
task=LA,
|
|
1039
|
-
languages=[NL],
|
|
1040
|
-
labels=["incorrect", "correct"],
|
|
1041
|
-
prompt_prefix="Hieronder staan zinnen en of ze grammaticaal correct zijn.",
|
|
1042
|
-
prompt_template="Zin: {text}\nGrammaticaal correct: {label}",
|
|
1043
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nee"),
|
|
1044
|
-
instruction_prompt="Zin: {text}\n\nBepaal of de zin grammaticaal correct is of "
|
|
1045
|
-
"niet. Antwoord met 'ja' als de zin correct is en 'nee' als dat niet het geval is, "
|
|
1046
|
-
"en niets anders.",
|
|
1047
|
-
num_few_shot_examples=12,
|
|
1048
|
-
max_generated_tokens=5,
|
|
1049
|
-
)
|
|
1050
|
-
|
|
1051
|
-
SCALA_EN_CONFIG = DatasetConfig(
|
|
1052
|
-
name="scala-en",
|
|
1053
|
-
pretty_name="the English part of the linguistic acceptability dataset ScaLA",
|
|
1054
|
-
huggingface_id="EuroEval/scala-en",
|
|
1055
|
-
task=LA,
|
|
1056
|
-
languages=[EN],
|
|
1057
|
-
labels=["incorrect", "correct"],
|
|
1058
|
-
prompt_prefix="The following are sentences and whether they are grammatically "
|
|
1059
|
-
"correct.",
|
|
1060
|
-
prompt_template="Sentence: {text}\nGrammatically correct: {label}",
|
|
1061
|
-
prompt_label_mapping=dict(correct="yes", incorrect="no"),
|
|
1062
|
-
instruction_prompt="Sentence: {text}\n\nDetermine whether the sentence is "
|
|
1063
|
-
"grammatically correct or not. Reply with 'yes' if the sentence is correct and "
|
|
1064
|
-
"'no' if it is not, and nothing else.",
|
|
1065
|
-
num_few_shot_examples=12,
|
|
1066
|
-
max_generated_tokens=5,
|
|
1067
|
-
)
|
|
1068
|
-
|
|
1069
|
-
SCALA_FR_CONFIG = DatasetConfig(
|
|
1070
|
-
name="scala-fr",
|
|
1071
|
-
pretty_name="the French part of the linguistic acceptability dataset ScaLA",
|
|
1072
|
-
huggingface_id="EuroEval/scala-fr",
|
|
1073
|
-
task=LA,
|
|
1074
|
-
languages=[FR],
|
|
1075
|
-
labels=["incorrect", "correct"],
|
|
1076
|
-
prompt_prefix="Les phrases suivantes indiquent si elles sont grammaticalement "
|
|
1077
|
-
"correctes.",
|
|
1078
|
-
prompt_template="Phrase : {text}\nCorrect du point de vue grammatical: {label}",
|
|
1079
|
-
prompt_label_mapping=dict(correct="oui", incorrect="non"),
|
|
1080
|
-
instruction_prompt="Phrase: {text}\n\nDéterminez si la phrase est grammaticalement "
|
|
1081
|
-
"correcte ou non. Répondez par 'oui' si la phrase est correcte et par 'non' si "
|
|
1082
|
-
"elle ne l'est pas, et rien d'autre.",
|
|
1083
|
-
num_few_shot_examples=12,
|
|
1084
|
-
max_generated_tokens=5,
|
|
1085
|
-
)
|
|
1086
|
-
|
|
1087
|
-
SCALA_IT_CONFIG = DatasetConfig(
|
|
1088
|
-
name="scala-it",
|
|
1089
|
-
pretty_name="the Italian part of the linguistic acceptability dataset ScaLA",
|
|
1090
|
-
huggingface_id="EuroEval/scala-it",
|
|
1091
|
-
task=LA,
|
|
1092
|
-
languages=[IT],
|
|
1093
|
-
labels=["incorrect", "correct"],
|
|
1094
|
-
prompt_prefix="Di seguito sono riportate le frasi e la loro correttezza "
|
|
1095
|
-
"grammaticale.",
|
|
1096
|
-
prompt_template="Frase : {text}\nGrammaticalmente corretto : {label}",
|
|
1097
|
-
prompt_label_mapping=dict(correct="si", incorrect="no"),
|
|
1098
|
-
instruction_prompt="Frase: {text}\n\nStabilite se la frase è grammaticalmente "
|
|
1099
|
-
"corretta o meno. Rispondete con 'si' se la frase è corretta e con 'no' se "
|
|
1100
|
-
"non lo è, e nient'altro.",
|
|
1101
|
-
num_few_shot_examples=12,
|
|
1102
|
-
max_generated_tokens=5,
|
|
1103
|
-
)
|
|
1104
|
-
|
|
1105
|
-
SCALA_ES_CONFIG = DatasetConfig(
|
|
1106
|
-
name="scala-es",
|
|
1107
|
-
pretty_name="the Spanish part of the linguistic acceptability dataset ScaLA",
|
|
1108
|
-
huggingface_id="EuroEval/scala-es",
|
|
1109
|
-
task=LA,
|
|
1110
|
-
languages=[ES],
|
|
1111
|
-
labels=["incorrect", "correct"],
|
|
1112
|
-
prompt_prefix="Lo siguiente son textos y si son gramaticalmente correctos.",
|
|
1113
|
-
prompt_template="Texto: {text}\nGramaticalmente correcto: {label}",
|
|
1114
|
-
prompt_label_mapping=dict(correct="sí", incorrect="no"),
|
|
1115
|
-
instruction_prompt="Texto: {text}\n\nDetermina si el texto es gramaticalmente "
|
|
1116
|
-
"correcto o no. Responde con 'sí' si el texto es correcto, y 'no' si no lo es.",
|
|
1117
|
-
num_few_shot_examples=12,
|
|
1118
|
-
max_generated_tokens=5,
|
|
1119
|
-
)
|
|
1120
|
-
|
|
1121
|
-
DUTCH_COLA_CONFIG = DatasetConfig(
|
|
1122
|
-
name="dutch-cola",
|
|
1123
|
-
pretty_name="the truncated version of the Dutch linguistic acceptability dataset "
|
|
1124
|
-
"Dutch CoLA",
|
|
1125
|
-
huggingface_id="EuroEval/dutch-cola",
|
|
1126
|
-
task=LA,
|
|
1127
|
-
languages=[NL],
|
|
1128
|
-
labels=["incorrect", "correct"],
|
|
1129
|
-
prompt_prefix="Hieronder staan zinnen en of ze grammaticaal correct ('ja') of "
|
|
1130
|
-
"incorrect ('nee') zijn.",
|
|
1131
|
-
prompt_template="Zin: {text}\nGrammaticaal correct: {label}",
|
|
1132
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nee"),
|
|
1133
|
-
instruction_prompt="Zin: {text}\n\nBepaal of de zin grammaticaal correct is of "
|
|
1134
|
-
"niet. Antwoord met 'ja' als de zin correct is en 'nee' als dat niet het geval is, "
|
|
1135
|
-
"en niets anders.",
|
|
1136
|
-
num_few_shot_examples=12,
|
|
1137
|
-
max_generated_tokens=3,
|
|
1138
|
-
unofficial=True,
|
|
1139
|
-
)
|
|
1140
|
-
|
|
1141
|
-
DUTCH_COLA_FULL_CONFIG = DatasetConfig(
|
|
1142
|
-
name="dutch-cola-full",
|
|
1143
|
-
pretty_name="the Dutch linguistic acceptability dataset Dutch CoLA",
|
|
1144
|
-
huggingface_id="EuroEval/dutch-cola-full",
|
|
1145
|
-
task=LA,
|
|
1146
|
-
languages=[NL],
|
|
1147
|
-
labels=["incorrect", "correct"],
|
|
1148
|
-
prompt_prefix="Hieronder staan zinnen en of ze grammaticaal correct ('ja') of "
|
|
1149
|
-
"incorrect ('nee') zijn.",
|
|
1150
|
-
prompt_template="Zin: {text}\nGrammaticaal correct: {label}",
|
|
1151
|
-
prompt_label_mapping=dict(correct="ja", incorrect="nee"),
|
|
1152
|
-
instruction_prompt="Zin: {text}\n\nBepaal of de zin grammaticaal correct is of "
|
|
1153
|
-
"niet. Antwoord met 'ja' als de zin correct is en 'nee' als dat niet het geval is, "
|
|
1154
|
-
"en niets anders.",
|
|
1155
|
-
num_few_shot_examples=12,
|
|
1156
|
-
max_generated_tokens=3,
|
|
1157
|
-
unofficial=True,
|
|
1158
|
-
)
|
|
1159
|
-
|
|
1160
|
-
ICE_EC_CONFIG = DatasetConfig(
|
|
1161
|
-
name="ice-ec",
|
|
1162
|
-
pretty_name="the truncated version of the Icelandic Error Corpus",
|
|
1163
|
-
huggingface_id="EuroEval/ice-ec",
|
|
1164
|
-
task=LA,
|
|
1165
|
-
languages=[IS],
|
|
1166
|
-
labels=["incorrect", "correct"],
|
|
1167
|
-
prompt_prefix="Eftirfarandi eru setningar og hvort þær eru málfræðilega réttar.",
|
|
1168
|
-
prompt_template="Setning: {text}\nMálfræðilega rétt: {label}",
|
|
1169
|
-
prompt_label_mapping=dict(correct="já", incorrect="nei"),
|
|
1170
|
-
instruction_prompt="Setning: {text}\n\nGreinið hvort setningin er málfræðilega "
|
|
1171
|
-
"rétt eða ekki. Svarið skal vera 'já' ef setningin er rétt og 'nei' ef hún er "
|
|
1172
|
-
"ekki, og engu öðru.",
|
|
1173
|
-
num_few_shot_examples=12,
|
|
1174
|
-
max_generated_tokens=5,
|
|
1175
|
-
unofficial=True,
|
|
1176
|
-
)
|
|
1177
|
-
|
|
1178
|
-
ICE_EC_FULL_CONFIG = DatasetConfig(
|
|
1179
|
-
name="ice-ec-full",
|
|
1180
|
-
pretty_name="the Icelandic Error Corpus",
|
|
1181
|
-
huggingface_id="EuroEval/ice-ec-full",
|
|
1182
|
-
task=LA,
|
|
1183
|
-
languages=[IS],
|
|
1184
|
-
labels=["incorrect", "correct"],
|
|
1185
|
-
prompt_prefix="Eftirfarandi eru setningar og hvort þær eru málfræðilega réttar.",
|
|
1186
|
-
prompt_template="Setning: {text}\nMálfræðilega rétt: {label}",
|
|
1187
|
-
prompt_label_mapping=dict(correct="já", incorrect="nei"),
|
|
1188
|
-
instruction_prompt="Setning: {text}\n\nGreinið hvort setningin er málfræðilega "
|
|
1189
|
-
"rétt eða ekki. Svarið skal vera 'já' ef setningin er rétt og 'nei' ef hún er "
|
|
1190
|
-
"ekki, og engu öðru.",
|
|
1191
|
-
num_few_shot_examples=12,
|
|
1192
|
-
max_generated_tokens=5,
|
|
1193
|
-
unofficial=True,
|
|
1194
|
-
)
|
|
1195
|
-
|
|
1196
|
-
ICE_LINGUISTIC_CONFIG = DatasetConfig(
|
|
1197
|
-
name="ice-linguistic",
|
|
1198
|
-
pretty_name="the Icelandic linguistic acceptability dataset IceLinguistic",
|
|
1199
|
-
huggingface_id="EuroEval/ice-linguistic",
|
|
1200
|
-
task=LA,
|
|
1201
|
-
languages=[IS],
|
|
1202
|
-
labels=["incorrect", "correct"],
|
|
1203
|
-
prompt_prefix="Eftirfarandi eru setningar og hvort þær eru málfræðilega réttar.",
|
|
1204
|
-
prompt_template="Setning: {text}\nMálfræðilega rétt: {label}",
|
|
1205
|
-
prompt_label_mapping=dict(correct="já", incorrect="nei"),
|
|
1206
|
-
instruction_prompt="Setning: {text}\n\nGreinið hvort setningin er málfræðilega "
|
|
1207
|
-
"rétt eða ekki. Svarið skal vera 'já' ef setningin er rétt og 'nei' ef hún er "
|
|
1208
|
-
"ekki, og engu öðru.",
|
|
1209
|
-
num_few_shot_examples=12,
|
|
1210
|
-
max_generated_tokens=5,
|
|
1211
|
-
unofficial=True,
|
|
1212
|
-
)
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
### READING COMPREHENSION DATASETS ###
|
|
1216
|
-
|
|
1217
|
-
SCANDIQA_DA_CONFIG = DatasetConfig(
|
|
1218
|
-
name="scandiqa-da",
|
|
1219
|
-
pretty_name="the Danish part of the truncated version of the question answering "
|
|
1220
|
-
"dataset ScandiQA",
|
|
1221
|
-
huggingface_id="EuroEval/scandiqa-da-mini",
|
|
1222
|
-
task=RC,
|
|
1223
|
-
languages=[DA],
|
|
1224
|
-
labels=["start_positions", "end_positions"],
|
|
1225
|
-
prompt_prefix="Følgende er tekster med tilhørende spørgsmål og svar.",
|
|
1226
|
-
prompt_template="Tekst: {text}\nSpørgsmål: {question}\nSvar med maks. 3 ord: "
|
|
1227
|
-
"{label}",
|
|
1228
|
-
instruction_prompt="Tekst: {text}\n\nBesvar følgende spørgsmål om teksten ovenfor "
|
|
1229
|
-
"med maks. 3 ord.\n\nSpørgsmål: {question}",
|
|
1230
|
-
num_few_shot_examples=4,
|
|
1231
|
-
max_generated_tokens=32,
|
|
1232
|
-
)
|
|
1233
|
-
|
|
1234
|
-
NORQUAD_CONFIG = DatasetConfig(
|
|
1235
|
-
name="norquad",
|
|
1236
|
-
pretty_name="the truncated version of the Norwegian question answering "
|
|
1237
|
-
"dataset NorQuAD",
|
|
1238
|
-
huggingface_id="EuroEval/norquad-mini",
|
|
1239
|
-
task=RC,
|
|
1240
|
-
languages=[NB, NN, NO],
|
|
1241
|
-
labels=["start_positions", "end_positions"],
|
|
1242
|
-
prompt_prefix="Her følger tekster med tilhørende spørsmål og svar.",
|
|
1243
|
-
prompt_template="Tekst: {text}\nSpørsmål: {question}\nSvar på maks 3 ord: {label}",
|
|
1244
|
-
instruction_prompt="Tekst: {text}\n\nBesvar følgende spørsmål om teksten ovenfor "
|
|
1245
|
-
"med maks 3 ord.\n\nSpørsmål: {question}",
|
|
1246
|
-
num_few_shot_examples=2,
|
|
1247
|
-
max_generated_tokens=32,
|
|
1248
|
-
)
|
|
1249
|
-
|
|
1250
|
-
NORGLM_MULTI_QA = DatasetConfig(
|
|
1251
|
-
name="norglm-multi-qa",
|
|
1252
|
-
pretty_name="the question answering part of the Norwegian NorGLM multi-task human "
|
|
1253
|
-
"annotated dataset NO-Multi-QA-Sum",
|
|
1254
|
-
huggingface_id="EuroEval/norglm-multi-qa",
|
|
1255
|
-
task=RC,
|
|
1256
|
-
languages=[NB, NN, NO],
|
|
1257
|
-
labels=["start_positions", "end_positions"],
|
|
1258
|
-
prompt_prefix="Her følger tekster med tilhørende spørsmål og svar.",
|
|
1259
|
-
prompt_template="Tekst: {text}\nSpørsmål: {question}\nSvar på maks 3 ord: {label}",
|
|
1260
|
-
instruction_prompt="Tekst: {text}\n\nBesvar følgende spørsmål om teksten ovenfor "
|
|
1261
|
-
"med maks 3 ord.\n\nSpørsmål: {question}",
|
|
1262
|
-
num_few_shot_examples=2,
|
|
1263
|
-
max_generated_tokens=32,
|
|
1264
|
-
unofficial=True,
|
|
1265
|
-
)
|
|
1266
|
-
|
|
1267
|
-
SCANDIQA_SV_CONFIG = DatasetConfig(
|
|
1268
|
-
name="scandiqa-sv",
|
|
1269
|
-
pretty_name="the Swedish part of the truncated version of the question answering "
|
|
1270
|
-
"dataset ScandiQA",
|
|
1271
|
-
huggingface_id="EuroEval/scandiqa-sv-mini",
|
|
1272
|
-
task=RC,
|
|
1273
|
-
languages=[SV],
|
|
1274
|
-
labels=["start_positions", "end_positions"],
|
|
1275
|
-
prompt_prefix="Nedan följer texter med tillhörande frågor och svar.",
|
|
1276
|
-
prompt_template="Text: {text}\nFråga: {question}\nSvar på max 3 ord: {label}",
|
|
1277
|
-
instruction_prompt="Text: {text}\n\nBesvara följande fråga om texten ovan med "
|
|
1278
|
-
"högst 3 ord.\n\nFråga: {question}",
|
|
1279
|
-
num_few_shot_examples=4,
|
|
1280
|
-
max_generated_tokens=32,
|
|
1281
|
-
)
|
|
1282
|
-
|
|
1283
|
-
NQII_CONFIG = DatasetConfig(
|
|
1284
|
-
name="nqii",
|
|
1285
|
-
pretty_name="the truncated version of the Icelandic reading comprehension dataset "
|
|
1286
|
-
"Natural Questions in Icelandic",
|
|
1287
|
-
huggingface_id="EuroEval/nqii-mini",
|
|
1288
|
-
task=RC,
|
|
1289
|
-
languages=[IS],
|
|
1290
|
-
labels=["start_positions", "end_positions"],
|
|
1291
|
-
prompt_prefix="Eftirfarandi eru textar með tilheyrandi spurningum og svörum.",
|
|
1292
|
-
prompt_template="Texti: {text}\nSpurning: {question}\nSvaraðu með að hámarki 3 "
|
|
1293
|
-
"orðum: {label}",
|
|
1294
|
-
instruction_prompt="Texti: {text}\n\nSvaraðu eftirfarandi spurningu um textann að "
|
|
1295
|
-
"hámarki í 3 orðum.\n\nSpurning: {question}",
|
|
1296
|
-
num_few_shot_examples=4,
|
|
1297
|
-
max_generated_tokens=32,
|
|
1298
|
-
)
|
|
1299
|
-
|
|
1300
|
-
FOQA_CONFIG = DatasetConfig(
|
|
1301
|
-
name="foqa",
|
|
1302
|
-
pretty_name="the Faroese reading comprehension dataset FoQA",
|
|
1303
|
-
huggingface_id="EuroEval/foqa",
|
|
1304
|
-
task=RC,
|
|
1305
|
-
languages=[FO],
|
|
1306
|
-
labels=["start_positions", "end_positions"],
|
|
1307
|
-
prompt_prefix="Hetta eru tekstir saman við spurningum og svar.",
|
|
1308
|
-
prompt_template="Tekstur: {text}\nSpurningur: {question}\nSvara við í mesta lagi "
|
|
1309
|
-
"trimum orðum: {label}",
|
|
1310
|
-
instruction_prompt="Tekstur: {text}\n\nSvara hesum spurninginum um tekstin "
|
|
1311
|
-
"uppiyvir við í mesta lagi trimum orðum.\n\nSpurningur: {question}",
|
|
1312
|
-
num_few_shot_examples=4,
|
|
1313
|
-
max_generated_tokens=32,
|
|
1314
|
-
)
|
|
1315
|
-
|
|
1316
|
-
GERMANQUAD_CONFIG = DatasetConfig(
|
|
1317
|
-
name="germanquad",
|
|
1318
|
-
pretty_name="the truncated version of the German reading comprehension dataset "
|
|
1319
|
-
"GermanQuAD",
|
|
1320
|
-
huggingface_id="EuroEval/germanquad-mini",
|
|
1321
|
-
task=RC,
|
|
1322
|
-
languages=[DE],
|
|
1323
|
-
labels=["start_positions", "end_positions"],
|
|
1324
|
-
prompt_prefix="Im Folgenden finden Sie Texte mit den dazugehörigen Fragen und "
|
|
1325
|
-
"Antworten.",
|
|
1326
|
-
prompt_template="Text: {text}\nFragen: {question}\nFragen Antwort in maximal 3 "
|
|
1327
|
-
"Wörtern: {label}",
|
|
1328
|
-
instruction_prompt="Text: {text}\n\nBeantworten Sie die folgende Frage zum obigen "
|
|
1329
|
-
"Text in höchstens 3 Wörtern.\n\nFrage: {question}",
|
|
1330
|
-
num_few_shot_examples=4,
|
|
1331
|
-
max_generated_tokens=32,
|
|
1332
|
-
)
|
|
1333
|
-
|
|
1334
|
-
SQUAD_CONFIG = DatasetConfig(
|
|
1335
|
-
name="squad",
|
|
1336
|
-
pretty_name="the truncated version of the English question answering dataset SQuAD",
|
|
1337
|
-
huggingface_id="EuroEval/squad-mini",
|
|
1338
|
-
task=RC,
|
|
1339
|
-
languages=[EN],
|
|
1340
|
-
labels=["start_positions", "end_positions"],
|
|
1341
|
-
prompt_prefix="The following are texts with accompanying questions and answers.",
|
|
1342
|
-
prompt_template="Text: {text}\nQuestion: {question}\nAnswer in max 3 words: "
|
|
1343
|
-
"{label}",
|
|
1344
|
-
instruction_prompt="Text: {text}\n\nAnswer the following question about the "
|
|
1345
|
-
"above text in at most 3 words.\n\nQuestion: {question}",
|
|
1346
|
-
num_few_shot_examples=4,
|
|
1347
|
-
max_generated_tokens=32,
|
|
1348
|
-
)
|
|
1349
|
-
|
|
1350
|
-
SQUAD_NL_CONFIG = DatasetConfig(
|
|
1351
|
-
name="squad-nl",
|
|
1352
|
-
pretty_name="the truncated version of the Dutch reading comprehension dataset "
|
|
1353
|
-
"SQuAD-nl, translated from the English SQuAD dataset",
|
|
1354
|
-
huggingface_id="EuroEval/squad-nl-v2-mini",
|
|
1355
|
-
task=RC,
|
|
1356
|
-
languages=[NL],
|
|
1357
|
-
labels=["start_positions", "end_positions"],
|
|
1358
|
-
prompt_prefix="Hieronder volgen teksten met bijbehorende vragen en antwoorden.",
|
|
1359
|
-
prompt_template="Tekst: {text}\nVraag: {question}\nAntwoord in max 3 woorden: "
|
|
1360
|
-
"{label}",
|
|
1361
|
-
instruction_prompt="Tekst: {text}\n\nBeantwoord de volgende vraag over de "
|
|
1362
|
-
"bovenstaande tekst in maximaal 3 woorden.\n\nVraag: {question}",
|
|
1363
|
-
num_few_shot_examples=4,
|
|
1364
|
-
max_generated_tokens=32,
|
|
1365
|
-
)
|
|
1366
|
-
|
|
1367
|
-
SQUAD_IT_CONFIG = DatasetConfig(
|
|
1368
|
-
name="squad-it",
|
|
1369
|
-
pretty_name="the truncated version of the Italian reading comprehension dataset "
|
|
1370
|
-
"SQuAD-it, translated from the English SQuAD dataset",
|
|
1371
|
-
huggingface_id="EuroEval/squad-it-mini",
|
|
1372
|
-
task=RC,
|
|
1373
|
-
languages=[IT],
|
|
1374
|
-
labels=["start_positions", "end_positions"],
|
|
1375
|
-
prompt_prefix="I testi che seguono sono accompagnati da domande e risposte.",
|
|
1376
|
-
prompt_template="Testo: {text}\nDomanda: {question}\nRispondere in massimo "
|
|
1377
|
-
"3 parole: {label}",
|
|
1378
|
-
instruction_prompt="Testo: {text}\n\nRispondi alla seguente domanda sul "
|
|
1379
|
-
"in un massimo di 3 parole.\n\nDomanda: {question}",
|
|
1380
|
-
num_few_shot_examples=4,
|
|
1381
|
-
max_generated_tokens=32,
|
|
1382
|
-
)
|
|
1383
|
-
|
|
1384
|
-
ICELANDIC_QA_CONFIG = DatasetConfig(
|
|
1385
|
-
name="icelandic-qa",
|
|
1386
|
-
pretty_name="the Icelandic reading comprehension dataset IcelandicQA",
|
|
1387
|
-
huggingface_id="EuroEval/icelandic-qa",
|
|
1388
|
-
task=RC,
|
|
1389
|
-
languages=[IS],
|
|
1390
|
-
labels=["start_positions", "end_positions"],
|
|
1391
|
-
prompt_prefix="Eftirfarandi eru textar með tilheyrandi spurningum og svörum.",
|
|
1392
|
-
prompt_template="Texti: {text}\nSpurning: {question}\nSvaraðu með að hámarki 3 "
|
|
1393
|
-
"orðum: {label}",
|
|
1394
|
-
instruction_prompt="Texti: {text}\n\nSvaraðu eftirfarandi spurningu um textann að "
|
|
1395
|
-
"hámarki í 3 orðum.\n\nSpurning: {question}",
|
|
1396
|
-
num_few_shot_examples=4,
|
|
1397
|
-
max_generated_tokens=32,
|
|
1398
|
-
unofficial=True,
|
|
1399
|
-
)
|
|
1400
|
-
|
|
1401
|
-
FQUAD_CONFIG = DatasetConfig(
|
|
1402
|
-
name="fquad",
|
|
1403
|
-
pretty_name="the truncated version of the French reading comprehension dataset "
|
|
1404
|
-
"FQuAD",
|
|
1405
|
-
huggingface_id="EuroEval/fquad-mini",
|
|
1406
|
-
task=RC,
|
|
1407
|
-
languages=[FR],
|
|
1408
|
-
labels=["start_positions", "end_positions"],
|
|
1409
|
-
prompt_prefix="Les textes suivants sont accompagnés de questions et de réponses.",
|
|
1410
|
-
prompt_template="Texte: {text}\nQuestion: {question}\nRéponse en 3 mots maximum: "
|
|
1411
|
-
"{label}",
|
|
1412
|
-
instruction_prompt="Texte: {text}\n\nRépondez à la question suivante sur le "
|
|
1413
|
-
"texte ci-dessus en 3 mots maximum.\n\nQuestion: {question}",
|
|
1414
|
-
num_few_shot_examples=4,
|
|
1415
|
-
max_generated_tokens=32,
|
|
1416
|
-
)
|
|
1417
|
-
|
|
1418
|
-
XQUAD_ES_CONFIG = DatasetConfig(
|
|
1419
|
-
name="xquad-es",
|
|
1420
|
-
pretty_name="the Spanish version of the XQuAD reading comprehension dataset",
|
|
1421
|
-
huggingface_id="EuroEval/xquad-es",
|
|
1422
|
-
task=RC,
|
|
1423
|
-
languages=[ES],
|
|
1424
|
-
labels=["start_positions", "end_positions"],
|
|
1425
|
-
prompt_prefix="A continuación se presentan textos con sus preguntas y respuestas "
|
|
1426
|
-
"correspondientes.",
|
|
1427
|
-
prompt_template="Texto: {text}\nPregunta: {question}\nRespuesta en máximo 3 "
|
|
1428
|
-
"palabras: {label}",
|
|
1429
|
-
instruction_prompt="Texto: {text}\n\nResponda la siguiente pregunta sobre el "
|
|
1430
|
-
"texto anterior en máximo 3 palabras.\n\nPregunta: {question}",
|
|
1431
|
-
num_few_shot_examples=4,
|
|
1432
|
-
max_generated_tokens=32,
|
|
1433
|
-
unofficial=True,
|
|
1434
|
-
)
|
|
1435
|
-
|
|
1436
|
-
MLQA_ES_CONFIG = DatasetConfig(
|
|
1437
|
-
name="mlqa-es",
|
|
1438
|
-
pretty_name="the Spanish version of the MLQA reading comprehension dataset",
|
|
1439
|
-
huggingface_id="EuroEval/mlqa-es",
|
|
1440
|
-
task=RC,
|
|
1441
|
-
languages=[ES],
|
|
1442
|
-
labels=["start_positions", "end_positions"],
|
|
1443
|
-
prompt_prefix="A continuación se presentan textos con sus preguntas y respuestas "
|
|
1444
|
-
"correspondientes.",
|
|
1445
|
-
prompt_template="Texto: {text}\nPregunta: {question}\nRespuesta en máximo 3 "
|
|
1446
|
-
"palabras: {label}",
|
|
1447
|
-
instruction_prompt="Texto: {text}\n\nResponda la siguiente pregunta sobre el "
|
|
1448
|
-
"texto anterior en máximo 3 palabras.\n\nPregunta: {question}",
|
|
1449
|
-
num_few_shot_examples=4,
|
|
1450
|
-
max_generated_tokens=32,
|
|
1451
|
-
)
|
|
1452
|
-
|
|
1453
|
-
### SUMMARIZATION DATASETS ###
|
|
1454
|
-
|
|
1455
|
-
NORDJYLLAND_NEWS_CONFIG = DatasetConfig(
|
|
1456
|
-
name="nordjylland-news",
|
|
1457
|
-
pretty_name="the truncated version of the Danish summarisation dataset "
|
|
1458
|
-
"Nordjylland News",
|
|
1459
|
-
huggingface_id="EuroEval/nordjylland-news-mini",
|
|
1460
|
-
task=SUMM,
|
|
1461
|
-
languages=[DA],
|
|
1462
|
-
prompt_prefix="Følgende er nyhedsartikler med tilhørende resuméer.",
|
|
1463
|
-
prompt_template="Nyhedsartikel: {text}\nResumé: {target_text}",
|
|
1464
|
-
instruction_prompt="Nyhedsartikel: {text}\n\nSkriv et resumé af ovenstående "
|
|
1465
|
-
"artikel.",
|
|
1466
|
-
num_few_shot_examples=1,
|
|
1467
|
-
max_generated_tokens=256,
|
|
1468
|
-
)
|
|
1469
|
-
|
|
1470
|
-
MLSUM_DE_CONFIG = DatasetConfig(
|
|
1471
|
-
name="mlsum-de",
|
|
1472
|
-
pretty_name="the truncated version of the German summarisation dataset MLSum-de",
|
|
1473
|
-
huggingface_id="EuroEval/mlsum-mini",
|
|
1474
|
-
task=SUMM,
|
|
1475
|
-
languages=[DE],
|
|
1476
|
-
prompt_prefix="Im Folgenden finden Sie Nachrichtenartikel mit den dazugehörigen "
|
|
1477
|
-
"Zusammenfassungen.",
|
|
1478
|
-
prompt_template="Nachrichtenartikel: {text}\nZusammenfassung: {target_text}",
|
|
1479
|
-
instruction_prompt="Nachrichtenartikel: {text}\n\nSchreiben Sie eine "
|
|
1480
|
-
"Zusammenfassung des obigen Artikels.",
|
|
1481
|
-
num_few_shot_examples=1,
|
|
1482
|
-
max_generated_tokens=256,
|
|
1483
|
-
)
|
|
1484
|
-
|
|
1485
|
-
MLSUM_ES_CONFIG = DatasetConfig(
|
|
1486
|
-
name="mlsum-es",
|
|
1487
|
-
pretty_name="the truncated version of the Spanish summarisation dataset MLSum-es",
|
|
1488
|
-
huggingface_id="EuroEval/mlsum-es-mini",
|
|
1489
|
-
task=SUMM,
|
|
1490
|
-
languages=[ES],
|
|
1491
|
-
prompt_prefix="Los siguientes son artículos de noticias con sus resúmenes.",
|
|
1492
|
-
prompt_template="Artículo: {text}\nResumen: {target_text}",
|
|
1493
|
-
instruction_prompt="Artículo: {text}\n\nEscribe un resumen del artículo anterior.",
|
|
1494
|
-
num_few_shot_examples=1,
|
|
1495
|
-
max_generated_tokens=256,
|
|
1496
|
-
)
|
|
1497
|
-
|
|
1498
|
-
RRN_CONFIG = DatasetConfig(
|
|
1499
|
-
name="rrn",
|
|
1500
|
-
pretty_name="the truncated version of the Icelandic summarisation dataset "
|
|
1501
|
-
"RÚV Radio News",
|
|
1502
|
-
huggingface_id="EuroEval/rrn-mini",
|
|
1503
|
-
task=SUMM,
|
|
1504
|
-
languages=[IS],
|
|
1505
|
-
prompt_prefix="Eftirfarandi eru fréttagreinar með tilheyrandi samantektum.",
|
|
1506
|
-
prompt_template="Fréttagrein: {text}\nSamantekt: {target_text}",
|
|
1507
|
-
instruction_prompt="Fréttagrein: {text}\n\nSkrifaðu samantekt um ofangreindu "
|
|
1508
|
-
"grein.",
|
|
1509
|
-
num_few_shot_examples=1,
|
|
1510
|
-
max_generated_tokens=256,
|
|
1511
|
-
)
|
|
1512
|
-
|
|
1513
|
-
NO_SAMMENDRAG_CONFIG = DatasetConfig(
|
|
1514
|
-
name="no-sammendrag",
|
|
1515
|
-
pretty_name="the truncated version of the Norwegian summarisation dataset "
|
|
1516
|
-
"Norske Sammendrag",
|
|
1517
|
-
huggingface_id="EuroEval/no-sammendrag-mini",
|
|
1518
|
-
task=SUMM,
|
|
1519
|
-
languages=[NB, NN, NO],
|
|
1520
|
-
prompt_prefix="Her følger nyhetsartikler med tilhørende sammendrag.",
|
|
1521
|
-
prompt_template="Nyhetsartikkel: {text}\nSammendrag: {target_text}",
|
|
1522
|
-
instruction_prompt="Nyhetsartikkel: {text}\n\nSkriv et sammendrag av den "
|
|
1523
|
-
"ovennevnte artikkelen.",
|
|
1524
|
-
num_few_shot_examples=1,
|
|
1525
|
-
max_generated_tokens=256,
|
|
1526
|
-
)
|
|
1527
|
-
|
|
1528
|
-
NORGLM_MULTI_SUM = DatasetConfig(
|
|
1529
|
-
name="norglm-multi-sum",
|
|
1530
|
-
pretty_name="the summarisation part of the Norwegian NorGLM multi-task human "
|
|
1531
|
-
"annotated dataset NO-Multi-QA-Sum",
|
|
1532
|
-
huggingface_id="EuroEval/norglm-multi-sum",
|
|
1533
|
-
task=SUMM,
|
|
1534
|
-
languages=[NB, NN, NO],
|
|
1535
|
-
prompt_prefix="Her følger nyhetsartikler med tilhørende sammendrag.",
|
|
1536
|
-
prompt_template="Nyhetsartikkel: {text}\nSammendrag: {target_text}",
|
|
1537
|
-
instruction_prompt="Nyhetsartikkel: {text}\n\nSkriv et sammendrag av den "
|
|
1538
|
-
"ovennevnte artikkelen.",
|
|
1539
|
-
num_few_shot_examples=1,
|
|
1540
|
-
max_generated_tokens=256,
|
|
1541
|
-
unofficial=True,
|
|
1542
|
-
)
|
|
1543
|
-
|
|
1544
|
-
WIKI_LINGUA_NL_CONFIG = DatasetConfig(
|
|
1545
|
-
name="wiki-lingua-nl",
|
|
1546
|
-
pretty_name="the Dutch part of the truncated version of the summarisation dataset "
|
|
1547
|
-
"WikiLingua",
|
|
1548
|
-
huggingface_id="EuroEval/wiki-lingua-nl-mini",
|
|
1549
|
-
task=SUMM,
|
|
1550
|
-
languages=[NL],
|
|
1551
|
-
prompt_prefix="Hieronder volgen artikelen met bijbehorende samenvattingen.",
|
|
1552
|
-
prompt_template="Artikel: {text}\nSamenvatting: {target_text}",
|
|
1553
|
-
instruction_prompt="Artikel: {text}\n\nSchrijf een samenvatting van het "
|
|
1554
|
-
"bovenstaande artikel.",
|
|
1555
|
-
num_few_shot_examples=1,
|
|
1556
|
-
max_generated_tokens=256,
|
|
1557
|
-
)
|
|
1558
|
-
|
|
1559
|
-
SWEDN_CONFIG = DatasetConfig(
|
|
1560
|
-
name="swedn",
|
|
1561
|
-
pretty_name="the truncated version of the Swedish summarisation dataset SweDN",
|
|
1562
|
-
huggingface_id="EuroEval/swedn-mini",
|
|
1563
|
-
task=SUMM,
|
|
1564
|
-
languages=[SV],
|
|
1565
|
-
prompt_prefix="Nedan följer artiklar med tillhörande sammanfattningar.",
|
|
1566
|
-
prompt_template="Artikel: {text}\nSammanfattning: {target_text}",
|
|
1567
|
-
instruction_prompt="Artikel: {text}\n\nSkriv en sammanfattning av artikeln ovan.",
|
|
1568
|
-
num_few_shot_examples=1,
|
|
1569
|
-
max_generated_tokens=256,
|
|
1570
|
-
)
|
|
1571
|
-
|
|
1572
|
-
CNN_DAILYMAIL_CONFIG = DatasetConfig(
|
|
1573
|
-
name="cnn-dailymail",
|
|
1574
|
-
pretty_name="the truncated version of the English summarisation dataset "
|
|
1575
|
-
"CNN-DailyMail",
|
|
1576
|
-
huggingface_id="EuroEval/cnn-dailymail-mini",
|
|
1577
|
-
task=SUMM,
|
|
1578
|
-
languages=[EN],
|
|
1579
|
-
prompt_prefix="The following are articles with accompanying summaries.",
|
|
1580
|
-
prompt_template="News article: {text}\nSummary: {target_text}",
|
|
1581
|
-
instruction_prompt="News article: {text}\n\nWrite a summary of the above article.",
|
|
1582
|
-
num_few_shot_examples=1,
|
|
1583
|
-
max_generated_tokens=256,
|
|
1584
|
-
)
|
|
1585
|
-
|
|
1586
|
-
SCHIBSTED_SV_CONFIG = DatasetConfig(
|
|
1587
|
-
name="schibsted-sv",
|
|
1588
|
-
pretty_name="the Swedish summarisation dataset Schibsted-sv",
|
|
1589
|
-
huggingface_id="EuroEval/schibsted-article-summaries-sv",
|
|
1590
|
-
task=SUMM,
|
|
1591
|
-
languages=[SV],
|
|
1592
|
-
prompt_prefix="Nedan följer artiklar med tillhörande sammanfattningar.",
|
|
1593
|
-
prompt_template="Artikel: {text}\nSammanfattning: {target_text}",
|
|
1594
|
-
instruction_prompt="Artikel: {text}\n\nSkriv en sammanfattning av artikeln ovan.",
|
|
1595
|
-
num_few_shot_examples=1,
|
|
1596
|
-
max_generated_tokens=256,
|
|
1597
|
-
unofficial=True,
|
|
1598
|
-
)
|
|
1599
|
-
|
|
1600
|
-
SCHIBSTED_NO_CONFIG = DatasetConfig(
|
|
1601
|
-
name="schibsted-no",
|
|
1602
|
-
pretty_name="the Norwegian summarisation dataset Schibsted-no",
|
|
1603
|
-
huggingface_id="EuroEval/schibsted-article-summaries-no",
|
|
1604
|
-
task=SUMM,
|
|
1605
|
-
languages=[NB, NN, NO],
|
|
1606
|
-
prompt_prefix="Her følger nyhetsartikler med tilhørende sammendrag.",
|
|
1607
|
-
prompt_template="Nyhetsartikkel: {text}\nSammendrag: {target_text}",
|
|
1608
|
-
instruction_prompt="Nyhetsartikkel: {text}\n\nSkriv et sammendrag av den "
|
|
1609
|
-
"ovennevnte artikkelen.",
|
|
1610
|
-
num_few_shot_examples=1,
|
|
1611
|
-
max_generated_tokens=256,
|
|
1612
|
-
unofficial=True,
|
|
1613
|
-
)
|
|
1614
|
-
|
|
1615
|
-
PERSONAL_SUM_CONFIG = DatasetConfig(
|
|
1616
|
-
name="personal-sum",
|
|
1617
|
-
pretty_name="the Norwegian summarisation dataset personal-sum",
|
|
1618
|
-
huggingface_id="EuroEval/personal-sum",
|
|
1619
|
-
task=SUMM,
|
|
1620
|
-
languages=[NB, NN, NO],
|
|
1621
|
-
prompt_prefix="Her følger nyhetsartikler med tilhørende sammendrag.",
|
|
1622
|
-
prompt_template="Nyhetsartikkel: {text}\nSammendrag: {target_text}",
|
|
1623
|
-
instruction_prompt="Nyhetsartikkel: {text}\n\nSkriv et sammendrag av den "
|
|
1624
|
-
"ovennevnte artikkelen.",
|
|
1625
|
-
num_few_shot_examples=1,
|
|
1626
|
-
max_generated_tokens=256,
|
|
1627
|
-
unofficial=True,
|
|
1628
|
-
)
|
|
1629
|
-
|
|
1630
|
-
ORANGE_SUM_CONFIG = DatasetConfig(
|
|
1631
|
-
name="orange-sum",
|
|
1632
|
-
pretty_name="the truncated version of the French summarisation dataset OrangeSum",
|
|
1633
|
-
huggingface_id="EuroEval/orange-sum-mini",
|
|
1634
|
-
task=SUMM,
|
|
1635
|
-
languages=[FR],
|
|
1636
|
-
prompt_prefix="Les articles suivants sont accompagnés d'un résumé.",
|
|
1637
|
-
prompt_template="Article de presse: {text}\nRésumé: {target_text}",
|
|
1638
|
-
instruction_prompt="Article de presse: {text}\n\nRédigez un résumé de l'article "
|
|
1639
|
-
"ci-dessus.",
|
|
1640
|
-
num_few_shot_examples=1,
|
|
1641
|
-
max_generated_tokens=256,
|
|
1642
|
-
)
|
|
1643
|
-
|
|
1644
|
-
ILPOST_SUM_CONFIG = DatasetConfig(
|
|
1645
|
-
name="ilpost-sum",
|
|
1646
|
-
pretty_name="the truncated version of the Italian summarisation dataset IlPost",
|
|
1647
|
-
huggingface_id="EuroEval/ilpost-sum",
|
|
1648
|
-
task=SUMM,
|
|
1649
|
-
languages=[IT],
|
|
1650
|
-
prompt_prefix="Di seguito sono riportati gli articoli con i relativi riassunti.",
|
|
1651
|
-
prompt_template="Articolo di cronaca: {text}\nSintesi: {target_text}",
|
|
1652
|
-
instruction_prompt="Articolo di cronaca: {text}\n\nScrivete un riassunto "
|
|
1653
|
-
"dell'articolo sopra citato.",
|
|
1654
|
-
num_few_shot_examples=1,
|
|
1655
|
-
max_generated_tokens=256,
|
|
1656
|
-
)
|
|
1657
|
-
|
|
1658
|
-
# TODO: Faroese summarization
|
|
1659
|
-
|
|
1660
|
-
|
|
1661
|
-
### KNOWLEDGE DATASETS ###
|
|
1662
|
-
|
|
1663
|
-
DANSKE_TALEMAADER_CONFIG = DatasetConfig(
|
|
1664
|
-
name="danske-talemaader",
|
|
1665
|
-
pretty_name="the truncated version of the Danish knowledge dataset Danske "
|
|
1666
|
-
"Talemåder",
|
|
1667
|
-
huggingface_id="EuroEval/danske-talemaader",
|
|
1668
|
-
task=KNOW,
|
|
1669
|
-
languages=[DA],
|
|
1670
|
-
labels=["a", "b", "c", "d"],
|
|
1671
|
-
prompt_prefix="Følgende er multiple choice spørgsmål (med svar).",
|
|
1672
|
-
prompt_template="{text}\nSvar: {label}",
|
|
1673
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1674
|
-
instruction_prompt="Spørgsmål: {text}\n\nBesvar ovenstående spørgsmål ved at "
|
|
1675
|
-
"svare med 'a', 'b', 'c' eller 'd', og intet andet.",
|
|
1676
|
-
num_few_shot_examples=5,
|
|
1677
|
-
max_generated_tokens=5,
|
|
1678
|
-
)
|
|
1679
|
-
|
|
1680
|
-
DANISH_CITIZEN_TESTS_CONFIG = DatasetConfig(
|
|
1681
|
-
name="danish-citizen-tests",
|
|
1682
|
-
pretty_name="the Danish knowledge dataset Danish Citizen Tests",
|
|
1683
|
-
huggingface_id="EuroEval/danish-citizen-tests-updated",
|
|
1684
|
-
task=KNOW,
|
|
1685
|
-
languages=[DA],
|
|
1686
|
-
labels=["a", "b", "c", "d"],
|
|
1687
|
-
prompt_prefix="Følgende er multiple choice spørgsmål (med svar).",
|
|
1688
|
-
prompt_template="Spørgsmål: {text}\nSvar: {label}",
|
|
1689
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1690
|
-
instruction_prompt="Spørgsmål: {text}\n\nBesvar ovenstående spørgsmål ved at "
|
|
1691
|
-
"svare med 'a', 'b', 'c' eller 'd', og intet andet.",
|
|
1692
|
-
num_few_shot_examples=5,
|
|
1693
|
-
max_generated_tokens=5,
|
|
1694
|
-
)
|
|
1695
|
-
|
|
1696
|
-
NRK_QUIZ_QA_CONFIG = DatasetConfig(
|
|
1697
|
-
name="nrk-quiz-qa",
|
|
1698
|
-
pretty_name="the truncated version of the Norwegian knowledge dataset NRK Quiz QA",
|
|
1699
|
-
huggingface_id="EuroEval/nrk-quiz-qa-mini",
|
|
1700
|
-
task=KNOW,
|
|
1701
|
-
languages=[NB, NN, NO],
|
|
1702
|
-
labels=["a", "b", "c", "d"],
|
|
1703
|
-
prompt_prefix="Følgende er flervalgsspørsmål (med svar).",
|
|
1704
|
-
prompt_template="Spørsmål: {text}\nSvar: {label}",
|
|
1705
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1706
|
-
instruction_prompt="Spørsmål: {text}\n\nBesvar følgende spørsmål med 'a', 'b', "
|
|
1707
|
-
"'c' eller 'd', og ikke noe annet.",
|
|
1708
|
-
num_few_shot_examples=5,
|
|
1709
|
-
max_generated_tokens=5,
|
|
1710
|
-
)
|
|
1711
|
-
|
|
1712
|
-
MMLU_NO_CONFIG = DatasetConfig(
|
|
1713
|
-
name="mmlu-no",
|
|
1714
|
-
pretty_name="the truncated version of the Norwegian knowledge dataset MMLU-no, "
|
|
1715
|
-
"translated from the English MMLU dataset",
|
|
1716
|
-
huggingface_id="EuroEval/mmlu-no-mini",
|
|
1717
|
-
task=KNOW,
|
|
1718
|
-
languages=[NB, NN, NO],
|
|
1719
|
-
labels=["a", "b", "c", "d"],
|
|
1720
|
-
prompt_prefix="Følgende er flervalgsspørsmål (med svar).",
|
|
1721
|
-
prompt_template="Spørsmål: {text}\nSvar: {label}",
|
|
1722
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1723
|
-
instruction_prompt="Spørsmål: {text}\n\nBesvar følgende spørsmål med 'a', 'b', "
|
|
1724
|
-
"'c' eller 'd', og ikke noe annet.",
|
|
1725
|
-
num_few_shot_examples=5,
|
|
1726
|
-
max_generated_tokens=5,
|
|
1727
|
-
unofficial=True,
|
|
1728
|
-
)
|
|
1729
|
-
|
|
1730
|
-
MMLU_SV_CONFIG = DatasetConfig(
|
|
1731
|
-
name="mmlu-sv",
|
|
1732
|
-
pretty_name="the truncated version of the Swedish knowledge dataset MMLU-sv, "
|
|
1733
|
-
"translated from the English MMLU dataset",
|
|
1734
|
-
huggingface_id="EuroEval/mmlu-sv-mini",
|
|
1735
|
-
task=KNOW,
|
|
1736
|
-
languages=[SV],
|
|
1737
|
-
labels=["a", "b", "c", "d"],
|
|
1738
|
-
prompt_prefix="Följande är flervalsfrågor (med svar).",
|
|
1739
|
-
prompt_template="Fråga: {text}\nSvar: {label}",
|
|
1740
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1741
|
-
instruction_prompt="Fråga: {text}\n\nBesvara följande fråga med 'a', 'b', 'c' "
|
|
1742
|
-
"eller 'd', och inget annat.",
|
|
1743
|
-
num_few_shot_examples=5,
|
|
1744
|
-
max_generated_tokens=5,
|
|
1745
|
-
)
|
|
1746
|
-
|
|
1747
|
-
MMLU_IS_CONFIG = DatasetConfig(
|
|
1748
|
-
name="mmlu-is",
|
|
1749
|
-
pretty_name="the truncated version of the Icelandic knowledge dataset MMLU-is, "
|
|
1750
|
-
"translated from the English MMLU dataset",
|
|
1751
|
-
huggingface_id="EuroEval/mmlu-is-mini",
|
|
1752
|
-
task=KNOW,
|
|
1753
|
-
languages=[IS],
|
|
1754
|
-
labels=["a", "b", "c", "d"],
|
|
1755
|
-
prompt_prefix="Eftirfarandi eru fjölvalsspurningar (með svörum).",
|
|
1756
|
-
prompt_template="Spurningar: {text}\nSvara: {label}",
|
|
1757
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1758
|
-
instruction_prompt="Spurningar: {text}\n\nSvaraðu eftirfarandi spurningum með 'a', "
|
|
1759
|
-
"'b', 'c' eða 'd', og engu öðru.",
|
|
1760
|
-
num_few_shot_examples=5,
|
|
1761
|
-
max_generated_tokens=5,
|
|
1762
|
-
unofficial=True,
|
|
1763
|
-
)
|
|
1764
|
-
|
|
1765
|
-
ICELANDIC_KNOWLEDGE_CONFIG = DatasetConfig(
|
|
1766
|
-
name="icelandic-knowledge",
|
|
1767
|
-
pretty_name="the Icelandic knowledge dataset IcelandicKnowledge, derived from the "
|
|
1768
|
-
"IcelandicQA dataset",
|
|
1769
|
-
huggingface_id="EuroEval/icelandic-knowledge",
|
|
1770
|
-
task=KNOW,
|
|
1771
|
-
languages=[IS],
|
|
1772
|
-
labels=["a", "b", "c", "d"],
|
|
1773
|
-
prompt_prefix="Eftirfarandi eru fjölvalsspurningar (með svörum).",
|
|
1774
|
-
prompt_template="Spurningar: {text}\nSvara: {label}",
|
|
1775
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1776
|
-
instruction_prompt="Spurningar: {text}\n\nSvaraðu eftirfarandi spurningum með 'a', "
|
|
1777
|
-
"'b', 'c' eða 'd'.",
|
|
1778
|
-
num_few_shot_examples=5,
|
|
1779
|
-
max_generated_tokens=5,
|
|
1780
|
-
)
|
|
1781
|
-
|
|
1782
|
-
MMLU_DE_CONFIG = DatasetConfig(
|
|
1783
|
-
name="mmlu-de",
|
|
1784
|
-
pretty_name="the truncated version of the German knowledge dataset MMLU-de, "
|
|
1785
|
-
"translated from the English MMLU dataset",
|
|
1786
|
-
huggingface_id="EuroEval/mmlu-de-mini",
|
|
1787
|
-
task=KNOW,
|
|
1788
|
-
languages=[DE],
|
|
1789
|
-
labels=["a", "b", "c", "d"],
|
|
1790
|
-
prompt_prefix="Die folgenden Fragen sind Multiple-Choice-Fragen (mit Antworten).",
|
|
1791
|
-
prompt_template="Frage: {text}\nAntwort: {label}",
|
|
1792
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1793
|
-
instruction_prompt="Frage: {text}\n\nBeantworten Sie die obige Frage mit 'a', 'b', "
|
|
1794
|
-
"'c' oder 'd', und nichts anderes.",
|
|
1795
|
-
num_few_shot_examples=5,
|
|
1796
|
-
max_generated_tokens=5,
|
|
1797
|
-
)
|
|
1798
|
-
|
|
1799
|
-
MMLU_NL_CONFIG = DatasetConfig(
|
|
1800
|
-
name="mmlu-nl",
|
|
1801
|
-
pretty_name="the truncated version of the Dutch knowledge dataset MMLU-nl, "
|
|
1802
|
-
"translated from the English MMLU dataset",
|
|
1803
|
-
huggingface_id="EuroEval/mmlu-nl-mini",
|
|
1804
|
-
task=KNOW,
|
|
1805
|
-
languages=[NL],
|
|
1806
|
-
labels=["a", "b", "c", "d"],
|
|
1807
|
-
prompt_prefix="Hieronder staan meerkeuzevragen (met antwoorden).",
|
|
1808
|
-
prompt_template="Vraag: {text}\nAntwoord: {label}",
|
|
1809
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1810
|
-
instruction_prompt="Vraag: {text}\n\nBeantwoord de bovenstaande vraag met 'a', "
|
|
1811
|
-
"'b', 'c' of 'd', en niets anders.",
|
|
1812
|
-
num_few_shot_examples=5,
|
|
1813
|
-
max_generated_tokens=5,
|
|
1814
|
-
)
|
|
1815
|
-
|
|
1816
|
-
MMLU_CONFIG = DatasetConfig(
|
|
1817
|
-
name="mmlu",
|
|
1818
|
-
pretty_name="the truncated version of the English knowledge dataset MMLU",
|
|
1819
|
-
huggingface_id="EuroEval/mmlu-mini",
|
|
1820
|
-
task=KNOW,
|
|
1821
|
-
languages=[EN],
|
|
1822
|
-
labels=["a", "b", "c", "d"],
|
|
1823
|
-
prompt_prefix="The following are multiple choice questions (with answers).",
|
|
1824
|
-
prompt_template="Question: {text}\nAnswer: {label}",
|
|
1825
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1826
|
-
instruction_prompt="Question: {text}\n\nAnswer the above question by replying "
|
|
1827
|
-
"with 'a', 'b', 'c' or 'd', and nothing else.",
|
|
1828
|
-
num_few_shot_examples=5,
|
|
1829
|
-
max_generated_tokens=5,
|
|
1830
|
-
)
|
|
1831
|
-
|
|
1832
|
-
MMLU_DA_CONFIG = DatasetConfig(
|
|
1833
|
-
name="mmlu-da",
|
|
1834
|
-
pretty_name="the truncated version of the Danish knowledge dataset MMLU-da, "
|
|
1835
|
-
"translated from the English MMLU dataset",
|
|
1836
|
-
huggingface_id="EuroEval/mmlu-da-mini",
|
|
1837
|
-
task=KNOW,
|
|
1838
|
-
languages=[DA],
|
|
1839
|
-
labels=["a", "b", "c", "d"],
|
|
1840
|
-
prompt_prefix="Følgende er multiple choice spørgsmål (med svar).",
|
|
1841
|
-
prompt_template="Spørgsmål: {text}\nSvar: {label}",
|
|
1842
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1843
|
-
instruction_prompt="Spørgsmål: {text}\n\nBesvar ovenstående spørgsmål ved at "
|
|
1844
|
-
"svare med 'a', 'b', 'c' eller 'd', og intet andet.",
|
|
1845
|
-
num_few_shot_examples=5,
|
|
1846
|
-
max_generated_tokens=5,
|
|
1847
|
-
unofficial=True,
|
|
1848
|
-
)
|
|
1849
|
-
|
|
1850
|
-
MMLU_FR_CONFIG = DatasetConfig(
|
|
1851
|
-
name="mmlu-fr",
|
|
1852
|
-
pretty_name="the truncated version of the French knowledge dataset MMLU-fr, "
|
|
1853
|
-
"translated from the English MMLU dataset",
|
|
1854
|
-
huggingface_id="EuroEval/mmlu-fr-mini",
|
|
1855
|
-
task=KNOW,
|
|
1856
|
-
languages=[FR],
|
|
1857
|
-
labels=["a", "b", "c", "d"],
|
|
1858
|
-
prompt_prefix="Les questions suivantes sont des questions à choix multiples "
|
|
1859
|
-
"(avec réponses).",
|
|
1860
|
-
prompt_template="Question: {text}\nRéponse: {label}",
|
|
1861
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1862
|
-
instruction_prompt="Question: {text}\n\nRépondez à la question ci-dessus par 'a', "
|
|
1863
|
-
"'b', 'c' ou 'd', et rien d'autre.",
|
|
1864
|
-
num_few_shot_examples=5,
|
|
1865
|
-
max_generated_tokens=5,
|
|
1866
|
-
)
|
|
1867
|
-
|
|
1868
|
-
MMLU_IT_CONFIG = DatasetConfig(
|
|
1869
|
-
name="mmlu-it",
|
|
1870
|
-
pretty_name="the truncated version of the Italian knowledge dataset MMLU-it, "
|
|
1871
|
-
"translated from the English MMLU dataset",
|
|
1872
|
-
huggingface_id="EuroEval/mmlu-it-mini",
|
|
1873
|
-
task=KNOW,
|
|
1874
|
-
languages=[IT],
|
|
1875
|
-
labels=["a", "b", "c", "d"],
|
|
1876
|
-
prompt_prefix="Le seguenti sono domande a scelta multipla (con relative risposte).",
|
|
1877
|
-
prompt_template="Domanda: {text}\nRéponse: {label}",
|
|
1878
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1879
|
-
instruction_prompt="Domanda: {text}\n\nRispondete alla domanda precedente con "
|
|
1880
|
-
"'a', 'b', 'c' o 'd' e nient'altro.",
|
|
1881
|
-
num_few_shot_examples=5,
|
|
1882
|
-
max_generated_tokens=5,
|
|
1883
|
-
)
|
|
1884
|
-
|
|
1885
|
-
MMLU_ES_CONFIG = DatasetConfig(
|
|
1886
|
-
name="mmlu-es",
|
|
1887
|
-
pretty_name="the truncated version of the Spanish knowledge dataset MMLU-es, "
|
|
1888
|
-
"translated from the English MMLU dataset",
|
|
1889
|
-
huggingface_id="EuroEval/mmlu-es-mini",
|
|
1890
|
-
task=KNOW,
|
|
1891
|
-
languages=[ES],
|
|
1892
|
-
labels=["a", "b", "c", "d"],
|
|
1893
|
-
prompt_prefix="Las siguientes son preguntas de opción múltiple (con respuestas).",
|
|
1894
|
-
prompt_template="Pregunta: {text}\nRespuesta: {label}",
|
|
1895
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1896
|
-
instruction_prompt="Pregunta: {text}\n\nResponda la pregunta anterior usando "
|
|
1897
|
-
"solo 'a', 'b', 'c' o 'd', y nada más.",
|
|
1898
|
-
num_few_shot_examples=5,
|
|
1899
|
-
max_generated_tokens=5,
|
|
1900
|
-
)
|
|
1901
|
-
|
|
1902
|
-
ARC_DA_CONFIG = DatasetConfig(
|
|
1903
|
-
name="arc-da",
|
|
1904
|
-
pretty_name="the truncated version of the Danish knowledge dataset ARC-da, "
|
|
1905
|
-
"translated from the English ARC dataset",
|
|
1906
|
-
huggingface_id="EuroEval/arc-da-mini",
|
|
1907
|
-
task=KNOW,
|
|
1908
|
-
languages=[DA],
|
|
1909
|
-
labels=["a", "b", "c", "d"],
|
|
1910
|
-
prompt_prefix="Følgende er multiple choice spørgsmål (med svar).",
|
|
1911
|
-
prompt_template="Spørgsmål: {text}\nSvar: {label}",
|
|
1912
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1913
|
-
instruction_prompt="Spørgsmål: {text}\n\nBesvar ovenstående spørgsmål ved at "
|
|
1914
|
-
"svare med 'a', 'b', 'c' eller 'd', og intet andet.",
|
|
1915
|
-
num_few_shot_examples=5,
|
|
1916
|
-
max_generated_tokens=5,
|
|
1917
|
-
unofficial=True,
|
|
1918
|
-
)
|
|
1919
|
-
|
|
1920
|
-
ARC_NO_CONFIG = DatasetConfig(
|
|
1921
|
-
name="arc-no",
|
|
1922
|
-
pretty_name="the truncated version of the Norwegian knowledge dataset ARC-no, "
|
|
1923
|
-
"translated from the English ARC dataset",
|
|
1924
|
-
huggingface_id="EuroEval/arc-no-mini",
|
|
1925
|
-
task=KNOW,
|
|
1926
|
-
languages=[NB, NN, NO],
|
|
1927
|
-
labels=["a", "b", "c", "d"],
|
|
1928
|
-
prompt_prefix="Følgende er flervalgsspørsmål (med svar).",
|
|
1929
|
-
prompt_template="Spørsmål: {text}\nSvar: {label}",
|
|
1930
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1931
|
-
instruction_prompt="Spørsmål: {text}\n\nBesvar følgende spørsmål med 'a', 'b', "
|
|
1932
|
-
"'c' eller 'd', og ikke noe annet.",
|
|
1933
|
-
num_few_shot_examples=5,
|
|
1934
|
-
max_generated_tokens=5,
|
|
1935
|
-
unofficial=True,
|
|
1936
|
-
)
|
|
1937
|
-
|
|
1938
|
-
ARC_SV_CONFIG = DatasetConfig(
|
|
1939
|
-
name="arc-sv",
|
|
1940
|
-
pretty_name="the truncated version of the Swedish knowledge dataset ARC-sv, "
|
|
1941
|
-
"translated from the English ARC dataset",
|
|
1942
|
-
huggingface_id="EuroEval/arc-sv-mini",
|
|
1943
|
-
task=KNOW,
|
|
1944
|
-
languages=[SV],
|
|
1945
|
-
labels=["a", "b", "c", "d"],
|
|
1946
|
-
prompt_prefix="Följande är flervalsfrågor (med svar).",
|
|
1947
|
-
prompt_template="Fråga: {text}\nSvar: {label}",
|
|
1948
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1949
|
-
instruction_prompt="Fråga: {text}\n\nBesvara följande fråga med 'a', 'b', 'c' "
|
|
1950
|
-
"eller 'd', och inget annat.",
|
|
1951
|
-
num_few_shot_examples=5,
|
|
1952
|
-
max_generated_tokens=5,
|
|
1953
|
-
unofficial=True,
|
|
1954
|
-
)
|
|
1955
|
-
|
|
1956
|
-
ARC_IS_CONFIG = DatasetConfig(
|
|
1957
|
-
name="arc-is",
|
|
1958
|
-
pretty_name="the truncated version of the Icelandic knowledge dataset ARC-is, "
|
|
1959
|
-
"translated from the English ARC dataset",
|
|
1960
|
-
huggingface_id="EuroEval/arc-is-mini",
|
|
1961
|
-
task=KNOW,
|
|
1962
|
-
languages=[IS],
|
|
1963
|
-
labels=["a", "b", "c", "d"],
|
|
1964
|
-
prompt_prefix="Eftirfarandi eru fjölvalsspurningar (með svörum).",
|
|
1965
|
-
prompt_template="Spurningar: {text}\nSvara: {label}",
|
|
1966
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1967
|
-
instruction_prompt="Spurningar: {text}\n\nSvaraðu eftirfarandi spurningum með 'a', "
|
|
1968
|
-
"'b', 'c' eða 'd', og engu öðru.",
|
|
1969
|
-
num_few_shot_examples=5,
|
|
1970
|
-
max_generated_tokens=5,
|
|
1971
|
-
unofficial=True,
|
|
1972
|
-
)
|
|
1973
|
-
|
|
1974
|
-
ARC_DE_CONFIG = DatasetConfig(
|
|
1975
|
-
name="arc-de",
|
|
1976
|
-
pretty_name="the truncated version of the German knowledge dataset ARC-de, "
|
|
1977
|
-
"translated from the English ARC dataset",
|
|
1978
|
-
huggingface_id="EuroEval/arc-de-mini",
|
|
1979
|
-
task=KNOW,
|
|
1980
|
-
languages=[DE],
|
|
1981
|
-
labels=["a", "b", "c", "d"],
|
|
1982
|
-
prompt_prefix="Die folgenden Fragen sind Multiple-Choice-Fragen (mit Antworten).",
|
|
1983
|
-
prompt_template="Frage: {text}\nAntwort: {label}",
|
|
1984
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
1985
|
-
instruction_prompt="Frage: {text}\n\nBeantworten Sie die obige Frage mit 'a', 'b', "
|
|
1986
|
-
"'c' oder 'd', und nichts anderes.",
|
|
1987
|
-
num_few_shot_examples=5,
|
|
1988
|
-
max_generated_tokens=5,
|
|
1989
|
-
unofficial=True,
|
|
1990
|
-
)
|
|
1991
|
-
|
|
1992
|
-
ARC_NL_CONFIG = DatasetConfig(
|
|
1993
|
-
name="arc-nl",
|
|
1994
|
-
pretty_name="the truncated version of the Dutch knowledge dataset ARC-nl, "
|
|
1995
|
-
"translated from the English ARC dataset",
|
|
1996
|
-
huggingface_id="EuroEval/arc-nl-mini",
|
|
1997
|
-
task=KNOW,
|
|
1998
|
-
languages=[NL],
|
|
1999
|
-
labels=["a", "b", "c", "d"],
|
|
2000
|
-
prompt_prefix="Hieronder staan meerkeuzevragen (met antwoorden).",
|
|
2001
|
-
prompt_template="Vraag: {text}\nAntwoord: {label}",
|
|
2002
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2003
|
-
instruction_prompt="Vraag: {text}\n\nBeantwoord de bovenstaande vraag met 'a', "
|
|
2004
|
-
"'b', 'c' of 'd', en niets anders.",
|
|
2005
|
-
num_few_shot_examples=5,
|
|
2006
|
-
max_generated_tokens=5,
|
|
2007
|
-
unofficial=True,
|
|
2008
|
-
)
|
|
2009
|
-
|
|
2010
|
-
ARC_CONFIG = DatasetConfig(
|
|
2011
|
-
name="arc",
|
|
2012
|
-
pretty_name="the truncated version of the English knowledge dataset ARC",
|
|
2013
|
-
huggingface_id="EuroEval/arc-mini",
|
|
2014
|
-
task=KNOW,
|
|
2015
|
-
languages=[EN],
|
|
2016
|
-
labels=["a", "b", "c", "d"],
|
|
2017
|
-
prompt_prefix="The following are multiple choice questions (with answers).",
|
|
2018
|
-
prompt_template="Question: {text}\nAnswer: {label}",
|
|
2019
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2020
|
-
instruction_prompt="Question: {text}\n\nAnswer the above question by replying "
|
|
2021
|
-
"with 'a', 'b', 'c' or 'd', and nothing else.",
|
|
2022
|
-
num_few_shot_examples=5,
|
|
2023
|
-
max_generated_tokens=5,
|
|
2024
|
-
unofficial=True,
|
|
2025
|
-
)
|
|
2026
|
-
|
|
2027
|
-
HELLASWAG_ES_CONFIG = DatasetConfig(
|
|
2028
|
-
name="hellaswag-es",
|
|
2029
|
-
pretty_name="the truncated version of the Spanish common-sense reasoning dataset "
|
|
2030
|
-
"HellaSwag-es, translated from the English HellaSwag dataset",
|
|
2031
|
-
huggingface_id="EuroEval/hellaswag-es-mini",
|
|
2032
|
-
task=COMMON_SENSE,
|
|
2033
|
-
languages=[ES],
|
|
2034
|
-
labels=["a", "b", "c", "d"],
|
|
2035
|
-
prompt_prefix="Las siguientes son preguntas de opción múltiple (con respuestas).",
|
|
2036
|
-
prompt_template="Pregunta: {text}\nRespuesta: {label}",
|
|
2037
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2038
|
-
instruction_prompt="Pregunta: {text}\n\nResponda la pregunta anterior usando solo "
|
|
2039
|
-
"'a', 'b', 'c' o 'd', y nada más.",
|
|
2040
|
-
num_few_shot_examples=5,
|
|
2041
|
-
max_generated_tokens=5,
|
|
2042
|
-
)
|
|
2043
|
-
|
|
2044
|
-
# TODO: Faroese knowledge
|
|
2045
|
-
|
|
2046
|
-
|
|
2047
|
-
### COMMON SENSE REASONING DATASETS ###
|
|
2048
|
-
|
|
2049
|
-
HELLASWAG_DA_CONFIG = DatasetConfig(
|
|
2050
|
-
name="hellaswag-da",
|
|
2051
|
-
pretty_name="the truncated version of the Danish common-sense reasoning dataset "
|
|
2052
|
-
"HellaSwag-da, translated from the English HellaSwag dataset",
|
|
2053
|
-
huggingface_id="EuroEval/hellaswag-da-mini",
|
|
2054
|
-
task=COMMON_SENSE,
|
|
2055
|
-
languages=[DA],
|
|
2056
|
-
labels=["a", "b", "c", "d"],
|
|
2057
|
-
prompt_prefix="Følgende er multiple choice spørgsmål (med svar).",
|
|
2058
|
-
prompt_template="Spørgsmål: {text}\nSvar: {label}",
|
|
2059
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2060
|
-
instruction_prompt="Spørgsmål: {text}\n\nBesvar ovenstående spørgsmål ved at "
|
|
2061
|
-
"svare med 'a', 'b', 'c' eller 'd', og intet andet.",
|
|
2062
|
-
num_few_shot_examples=5,
|
|
2063
|
-
max_generated_tokens=5,
|
|
2064
|
-
)
|
|
2065
|
-
|
|
2066
|
-
NOR_COMMON_SENSE_QA_CONFIG = DatasetConfig(
|
|
2067
|
-
name="nor-common-sense-qa",
|
|
2068
|
-
pretty_name="the truncated version of the Norwegian common-sense reasoning dataset "
|
|
2069
|
-
"NorCommonSenseQA",
|
|
2070
|
-
huggingface_id="EuroEval/nor-common-sense-qa",
|
|
2071
|
-
task=COMMON_SENSE,
|
|
2072
|
-
languages=[NB, NN, NO],
|
|
2073
|
-
labels=["a", "b", "c", "d", "e"],
|
|
2074
|
-
prompt_prefix="Følgende er flervalgsspørsmål (med svar).",
|
|
2075
|
-
prompt_template="Spørsmål: {text}\nSvar: {label}",
|
|
2076
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d", e="e"),
|
|
2077
|
-
instruction_prompt="Spørsmål: {text}\n\nBesvar følgende spørsmål med 'a', 'b', "
|
|
2078
|
-
"'c' eller 'd', og ikke noe annet.",
|
|
2079
|
-
num_few_shot_examples=5,
|
|
2080
|
-
max_generated_tokens=5,
|
|
2081
|
-
)
|
|
2082
|
-
|
|
2083
|
-
HELLASWAG_NO_CONFIG = DatasetConfig(
|
|
2084
|
-
name="hellaswag-no",
|
|
2085
|
-
pretty_name="the truncated version of the Norwegian common-sense reasoning dataset "
|
|
2086
|
-
"HellaSwag-no, translated from the English HellaSwag dataset",
|
|
2087
|
-
huggingface_id="EuroEval/hellaswag-no-mini",
|
|
2088
|
-
task=COMMON_SENSE,
|
|
2089
|
-
languages=[NB, NN, NO],
|
|
2090
|
-
labels=["a", "b", "c", "d"],
|
|
2091
|
-
prompt_prefix="Følgende er flervalgsspørsmål (med svar).",
|
|
2092
|
-
prompt_template="Spørsmål: {text}\nSvar: {label}",
|
|
2093
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2094
|
-
instruction_prompt="Spørsmål: {text}\n\nBesvar følgende spørsmål med 'a', 'b', "
|
|
2095
|
-
"'c' eller 'd', og ikke noe annet.",
|
|
2096
|
-
num_few_shot_examples=5,
|
|
2097
|
-
max_generated_tokens=5,
|
|
2098
|
-
unofficial=True,
|
|
2099
|
-
)
|
|
2100
|
-
|
|
2101
|
-
HELLASWAG_SV_CONFIG = DatasetConfig(
|
|
2102
|
-
name="hellaswag-sv",
|
|
2103
|
-
pretty_name="the truncated version of the Swedish common-sense reasoning dataset "
|
|
2104
|
-
"HellaSwag-sv, translated from the English HellaSwag dataset",
|
|
2105
|
-
huggingface_id="EuroEval/hellaswag-sv-mini",
|
|
2106
|
-
task=COMMON_SENSE,
|
|
2107
|
-
languages=[SV],
|
|
2108
|
-
labels=["a", "b", "c", "d"],
|
|
2109
|
-
prompt_prefix="Följande är flervalsfrågor (med svar).",
|
|
2110
|
-
prompt_template="Fråga: {text}\nSvar: {label}",
|
|
2111
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2112
|
-
instruction_prompt="Fråga: {text}\n\nBesvara följande fråga med 'a', 'b', 'c' "
|
|
2113
|
-
"eller 'd', och inget annat.",
|
|
2114
|
-
num_few_shot_examples=5,
|
|
2115
|
-
max_generated_tokens=5,
|
|
2116
|
-
)
|
|
2117
|
-
|
|
2118
|
-
HELLASWAG_IS_CONFIG = DatasetConfig(
|
|
2119
|
-
name="hellaswag-is",
|
|
2120
|
-
pretty_name="the truncated version of the Icelandic common-sense reasoning dataset "
|
|
2121
|
-
"HellaSwag-is, translated from the English HellaSwag dataset",
|
|
2122
|
-
huggingface_id="EuroEval/hellaswag-is-mini",
|
|
2123
|
-
task=COMMON_SENSE,
|
|
2124
|
-
languages=[IS],
|
|
2125
|
-
labels=["a", "b", "c", "d"],
|
|
2126
|
-
prompt_prefix="Eftirfarandi eru fjölvalsspurningar (með svörum).",
|
|
2127
|
-
prompt_template="Spurningar: {text}\nSvara: {label}",
|
|
2128
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2129
|
-
instruction_prompt="Spurningar: {text}\n\nSvaraðu eftirfarandi spurningum með 'a', "
|
|
2130
|
-
"'b', 'c' eða 'd', og engu öðru.",
|
|
2131
|
-
num_few_shot_examples=5,
|
|
2132
|
-
max_generated_tokens=5,
|
|
2133
|
-
unofficial=True,
|
|
2134
|
-
)
|
|
2135
|
-
|
|
2136
|
-
WINOGRANDE_IS_CONFIG = DatasetConfig(
|
|
2137
|
-
name="winogrande-is",
|
|
2138
|
-
pretty_name="the Icelandic common-sense reasoning dataset "
|
|
2139
|
-
"Winogrande-is, manually translated from the English Winogrande dataset",
|
|
2140
|
-
huggingface_id="EuroEval/winogrande-is",
|
|
2141
|
-
task=COMMON_SENSE,
|
|
2142
|
-
languages=[IS],
|
|
2143
|
-
labels=["a", "b", "c", "d"],
|
|
2144
|
-
prompt_prefix="Eftirfarandi eru fjölvalsspurningar (með svörum).",
|
|
2145
|
-
prompt_template="Spurningar: {text}\nSvara: {label}",
|
|
2146
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2147
|
-
instruction_prompt="Spurningar: {text}\n\nSvaraðu eftirfarandi spurningum með 'a', "
|
|
2148
|
-
"'b', 'c' eða 'd', og engu öðru.",
|
|
2149
|
-
num_few_shot_examples=5,
|
|
2150
|
-
max_generated_tokens=5,
|
|
2151
|
-
)
|
|
2152
|
-
|
|
2153
|
-
HELLASWAG_DE_CONFIG = DatasetConfig(
|
|
2154
|
-
name="hellaswag-de",
|
|
2155
|
-
pretty_name="the truncated version of the German common-sense reasoning dataset "
|
|
2156
|
-
"HellaSwag-de, translated from the English HellaSwag dataset",
|
|
2157
|
-
huggingface_id="EuroEval/hellaswag-de-mini",
|
|
2158
|
-
task=COMMON_SENSE,
|
|
2159
|
-
languages=[DE],
|
|
2160
|
-
labels=["a", "b", "c", "d"],
|
|
2161
|
-
prompt_prefix="Die folgenden Fragen sind Multiple-Choice-Fragen (mit Antworten).",
|
|
2162
|
-
prompt_template="Frage: {text}\nAntwort: {label}",
|
|
2163
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2164
|
-
instruction_prompt="Frage: {text}\n\nBeantworten Sie die obige Frage mit 'a', 'b', "
|
|
2165
|
-
"'c' oder 'd', und nichts anderes.",
|
|
2166
|
-
num_few_shot_examples=5,
|
|
2167
|
-
max_generated_tokens=5,
|
|
2168
|
-
)
|
|
2169
|
-
|
|
2170
|
-
HELLASWAG_NL_CONFIG = DatasetConfig(
|
|
2171
|
-
name="hellaswag-nl",
|
|
2172
|
-
pretty_name="the truncated version of the Dutch common-sense reasoning dataset "
|
|
2173
|
-
"HellaSwag-nl, translated from the English HellaSwag dataset",
|
|
2174
|
-
huggingface_id="EuroEval/hellaswag-nl-mini",
|
|
2175
|
-
task=COMMON_SENSE,
|
|
2176
|
-
languages=[NL],
|
|
2177
|
-
labels=["a", "b", "c", "d"],
|
|
2178
|
-
prompt_prefix="Hieronder staan meerkeuzevragen (met antwoorden).",
|
|
2179
|
-
prompt_template="Vraag: {text}\nAntwoord: {label}",
|
|
2180
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2181
|
-
instruction_prompt="Vraag: {text}\n\nBeantwoord de bovenstaande vraag met 'a', "
|
|
2182
|
-
"'b', 'c' of 'd', en niets anders.",
|
|
2183
|
-
num_few_shot_examples=5,
|
|
2184
|
-
max_generated_tokens=5,
|
|
2185
|
-
)
|
|
2186
|
-
|
|
2187
|
-
HELLASWAG_CONFIG = DatasetConfig(
|
|
2188
|
-
name="hellaswag",
|
|
2189
|
-
pretty_name="the truncated version of the English common-sense reasoning "
|
|
2190
|
-
"dataset HellaSwag",
|
|
2191
|
-
huggingface_id="EuroEval/hellaswag-mini",
|
|
2192
|
-
task=COMMON_SENSE,
|
|
2193
|
-
languages=[EN],
|
|
2194
|
-
labels=["a", "b", "c", "d"],
|
|
2195
|
-
prompt_prefix="The following are multiple choice questions (with answers).",
|
|
2196
|
-
prompt_template="Question: {text}\nAnswer: {label}",
|
|
2197
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2198
|
-
instruction_prompt="Question: {text}\n\nAnswer the above question by replying "
|
|
2199
|
-
"with 'a', 'b', 'c' or 'd', and nothing else.",
|
|
2200
|
-
num_few_shot_examples=5,
|
|
2201
|
-
max_generated_tokens=5,
|
|
2202
|
-
)
|
|
2203
|
-
|
|
2204
|
-
HELLASWAG_FR_CONFIG = DatasetConfig(
|
|
2205
|
-
name="hellaswag-fr",
|
|
2206
|
-
pretty_name="the truncated version of the French common-sense reasoning dataset "
|
|
2207
|
-
"HellaSwag-fr, translated from the English HellaSwag dataset",
|
|
2208
|
-
huggingface_id="EuroEval/hellaswag-fr-mini",
|
|
2209
|
-
task=COMMON_SENSE,
|
|
2210
|
-
languages=[FR],
|
|
2211
|
-
labels=["a", "b", "c", "d"],
|
|
2212
|
-
prompt_prefix="Les questions suivantes sont des questions à choix multiples "
|
|
2213
|
-
"(avec réponses).",
|
|
2214
|
-
prompt_template="Question: {text}\nRéponse: {label}",
|
|
2215
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2216
|
-
instruction_prompt="Question: {text}\n\nRépondez à la question ci-dessus par 'a', "
|
|
2217
|
-
"'b', 'c' ou 'd', et rien d'autre.",
|
|
2218
|
-
num_few_shot_examples=5,
|
|
2219
|
-
max_generated_tokens=5,
|
|
2220
|
-
)
|
|
2221
|
-
|
|
2222
|
-
HELLASWAG_IT_CONFIG = DatasetConfig(
|
|
2223
|
-
name="hellaswag-it",
|
|
2224
|
-
pretty_name="the truncated version of the Italian common-sense reasoning dataset "
|
|
2225
|
-
"HellaSwag-it, translated from the English HellaSwag dataset",
|
|
2226
|
-
huggingface_id="EuroEval/hellaswag-it-mini",
|
|
2227
|
-
task=COMMON_SENSE,
|
|
2228
|
-
languages=[IT],
|
|
2229
|
-
labels=["a", "b", "c", "d"],
|
|
2230
|
-
prompt_prefix="Le seguenti sono domande a scelta multipla (con relative risposte).",
|
|
2231
|
-
prompt_template="Domanda: {text}\nRéponse: {label}",
|
|
2232
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2233
|
-
instruction_prompt="Domanda: {text}\n\nRispondete alla domanda precedente con "
|
|
2234
|
-
"'a', 'b', 'c' o 'd' e nient'altro.",
|
|
2235
|
-
num_few_shot_examples=5,
|
|
2236
|
-
max_generated_tokens=5,
|
|
2237
|
-
)
|
|
2238
|
-
|
|
2239
|
-
# TODO: Faroese common sense reasoning
|
|
2240
|
-
|
|
2241
|
-
|
|
2242
|
-
### MULTIPLE CHOICE READING COMPREHENSION DATASETS ###
|
|
2243
|
-
|
|
2244
|
-
BELEBELE_DA_CONFIG = DatasetConfig(
|
|
2245
|
-
name="belebele-da",
|
|
2246
|
-
pretty_name="the Danish multiple choice reading comprehension dataset BeleBele-da, "
|
|
2247
|
-
"translated from the English BeleBele dataset",
|
|
2248
|
-
huggingface_id="EuroEval/belebele-da-mini",
|
|
2249
|
-
task=MCRC,
|
|
2250
|
-
languages=[DA],
|
|
2251
|
-
labels=["a", "b", "c", "d"],
|
|
2252
|
-
prompt_prefix="Følgende er tekster med tilhørende multiple choice spørgsmål og "
|
|
2253
|
-
"svar.",
|
|
2254
|
-
prompt_template="{text}\nSvar: {label}",
|
|
2255
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2256
|
-
instruction_prompt="{text}\n\nBesvar ovenstående spørgsmål ved at "
|
|
2257
|
-
"svare med 'a', 'b', 'c' eller 'd', og intet andet.",
|
|
2258
|
-
num_few_shot_examples=5,
|
|
2259
|
-
max_generated_tokens=5,
|
|
2260
|
-
unofficial=True,
|
|
2261
|
-
)
|
|
2262
|
-
|
|
2263
|
-
BELEBELE_SV_CONFIG = DatasetConfig(
|
|
2264
|
-
name="belebele-sv",
|
|
2265
|
-
pretty_name="the Swedish multiple choice reading comprehension dataset "
|
|
2266
|
-
"BeleBele-sv, translated from the English BeleBele dataset",
|
|
2267
|
-
huggingface_id="EuroEval/belebele-sv-mini",
|
|
2268
|
-
task=MCRC,
|
|
2269
|
-
languages=[SV],
|
|
2270
|
-
labels=["a", "b", "c", "d"],
|
|
2271
|
-
prompt_prefix="Nedan följer texter med tillhörande multiple choice frågor och "
|
|
2272
|
-
"svar.",
|
|
2273
|
-
prompt_template="{text}\nSvar: {label}",
|
|
2274
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2275
|
-
instruction_prompt="{text}\n\nBesvara följande fråga med 'a', 'b', 'c' "
|
|
2276
|
-
"eller 'd', och inget annat.",
|
|
2277
|
-
num_few_shot_examples=5,
|
|
2278
|
-
max_generated_tokens=5,
|
|
2279
|
-
unofficial=True,
|
|
2280
|
-
)
|
|
2281
|
-
|
|
2282
|
-
BELEBELE_NO_CONFIG = DatasetConfig(
|
|
2283
|
-
name="belebele-no",
|
|
2284
|
-
pretty_name="the Norwegian multiple choice reading comprehension dataset "
|
|
2285
|
-
"BeleBele-no, translated from the English BeleBele dataset",
|
|
2286
|
-
huggingface_id="EuroEval/belebele-no-mini",
|
|
2287
|
-
task=MCRC,
|
|
2288
|
-
languages=[NB, NN, NO],
|
|
2289
|
-
labels=["a", "b", "c", "d"],
|
|
2290
|
-
prompt_prefix="Her følger tekster med tilhørende multiple choice spørsmål og svar.",
|
|
2291
|
-
prompt_template="{text}\nSvar: {label}",
|
|
2292
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2293
|
-
instruction_prompt="{text}\n\nBesvar følgende spørsmål med 'a', 'b', "
|
|
2294
|
-
"'c' eller 'd', og ikke noe annet.",
|
|
2295
|
-
num_few_shot_examples=5,
|
|
2296
|
-
max_generated_tokens=5,
|
|
2297
|
-
unofficial=True,
|
|
2298
|
-
)
|
|
2299
|
-
|
|
2300
|
-
BELEBELE_IS_CONFIG = DatasetConfig(
|
|
2301
|
-
name="belebele-is",
|
|
2302
|
-
pretty_name="the Icelandic multiple choice reading comprehension dataset "
|
|
2303
|
-
"BeleBele-is, translated from the English BeleBele dataset",
|
|
2304
|
-
huggingface_id="EuroEval/belebele-is-mini",
|
|
2305
|
-
task=MCRC,
|
|
2306
|
-
languages=[IS],
|
|
2307
|
-
labels=["a", "b", "c", "d"],
|
|
2308
|
-
prompt_prefix="Eftirfarandi eru textar með tilheyrandi fjölvalsspurningum og "
|
|
2309
|
-
"svörum.",
|
|
2310
|
-
prompt_template="{text}\nSvara: {label}",
|
|
2311
|
-
instruction_prompt="{text}\n\nSvaraðu eftirfarandi spurningum með 'a', "
|
|
2312
|
-
"'b', 'c' eða 'd', og engu öðru.",
|
|
2313
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2314
|
-
num_few_shot_examples=5,
|
|
2315
|
-
max_generated_tokens=5,
|
|
2316
|
-
unofficial=True,
|
|
2317
|
-
)
|
|
2318
|
-
|
|
2319
|
-
BELEBELE_DE_CONFIG = DatasetConfig(
|
|
2320
|
-
name="belebele-de",
|
|
2321
|
-
pretty_name="the German multiple choice reading comprehension dataset BeleBele-de, "
|
|
2322
|
-
"translated from the English BeleBele dataset",
|
|
2323
|
-
huggingface_id="EuroEval/belebele-de-mini",
|
|
2324
|
-
task=MCRC,
|
|
2325
|
-
languages=[DE],
|
|
2326
|
-
labels=["a", "b", "c", "d"],
|
|
2327
|
-
prompt_prefix="Die folgenden Texte sind mit dazugehörigen Multiple-Choice-Fragen "
|
|
2328
|
-
"und Antworten.",
|
|
2329
|
-
prompt_template="{text}\nAntwort: {label}",
|
|
2330
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2331
|
-
instruction_prompt="{text}\n\nBeantworten Sie die obige Frage mit 'a', 'b', "
|
|
2332
|
-
"'c' oder 'd', und nichts anderes.",
|
|
2333
|
-
num_few_shot_examples=5,
|
|
2334
|
-
max_generated_tokens=5,
|
|
2335
|
-
unofficial=True,
|
|
2336
|
-
)
|
|
2337
|
-
|
|
2338
|
-
BELEBELE_NL_CONFIG = DatasetConfig(
|
|
2339
|
-
name="belebele-nl",
|
|
2340
|
-
pretty_name="the Dutch multiple choice reading comprehension dataset BeleBele-nl, "
|
|
2341
|
-
"translated from the English BeleBele dataset",
|
|
2342
|
-
huggingface_id="EuroEval/belebele-nl-mini",
|
|
2343
|
-
task=MCRC,
|
|
2344
|
-
languages=[NL],
|
|
2345
|
-
labels=["a", "b", "c", "d"],
|
|
2346
|
-
prompt_prefix="Hieronder staan teksten met bijbehorende multiple choice vragen en "
|
|
2347
|
-
"antwoorden.",
|
|
2348
|
-
prompt_template="{text}\nAntwoord: {label}",
|
|
2349
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2350
|
-
instruction_prompt="{text}\n\nBeantwoord de bovenstaande vraag met 'a', 'b', "
|
|
2351
|
-
"'c' of 'd', en niets anders.",
|
|
2352
|
-
num_few_shot_examples=5,
|
|
2353
|
-
max_generated_tokens=5,
|
|
2354
|
-
unofficial=True,
|
|
2355
|
-
)
|
|
2356
|
-
|
|
2357
|
-
BELEBELE_FR_CONFIG = DatasetConfig(
|
|
2358
|
-
name="belebele-fr",
|
|
2359
|
-
pretty_name="the French multiple choice reading comprehension dataset BeleBele-fr, "
|
|
2360
|
-
"translated from the English BeleBele dataset",
|
|
2361
|
-
huggingface_id="EuroEval/belebele-fr-mini",
|
|
2362
|
-
task=MCRC,
|
|
2363
|
-
languages=[FR],
|
|
2364
|
-
labels=["a", "b", "c", "d"],
|
|
2365
|
-
prompt_prefix="Les textes suivants sont accompagnés de questions à choix "
|
|
2366
|
-
"multiples et de réponses.",
|
|
2367
|
-
prompt_template="{text}\nRéponse: {label}",
|
|
2368
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2369
|
-
instruction_prompt="{text}\n\nRépondez à la question ci-dessus par 'a', "
|
|
2370
|
-
"'b', 'c' ou 'd', et rien d'autre.",
|
|
2371
|
-
num_few_shot_examples=5,
|
|
2372
|
-
max_generated_tokens=5,
|
|
2373
|
-
unofficial=True,
|
|
2374
|
-
)
|
|
2375
|
-
|
|
2376
|
-
BELEBELE_CONFIG = DatasetConfig(
|
|
2377
|
-
name="belebele",
|
|
2378
|
-
pretty_name="the English multiple choice reading comprehension dataset BeleBele",
|
|
2379
|
-
huggingface_id="EuroEval/belebele-mini",
|
|
2380
|
-
task=MCRC,
|
|
2381
|
-
languages=[EN],
|
|
2382
|
-
labels=["a", "b", "c", "d"],
|
|
2383
|
-
prompt_prefix="The following are texts with accompanying multiple choice questions "
|
|
2384
|
-
"and answers.",
|
|
2385
|
-
prompt_template="{text}\nAnswer: {label}",
|
|
2386
|
-
prompt_label_mapping=dict(a="a", b="b", c="c", d="d"),
|
|
2387
|
-
instruction_prompt="{text}\n\nAnswer the above question by replying "
|
|
2388
|
-
"with 'a', 'b', 'c' or 'd', and nothing else.",
|
|
2389
|
-
num_few_shot_examples=5,
|
|
2390
|
-
max_generated_tokens=5,
|
|
2391
|
-
unofficial=True,
|
|
2392
|
-
)
|
|
2393
|
-
|
|
2394
|
-
|
|
2395
|
-
### SPEED ESTIMATION DATASETS ###
|
|
2396
|
-
|
|
2397
|
-
SPEED_CONFIG = DatasetConfig(
|
|
2398
|
-
name="speed",
|
|
2399
|
-
pretty_name="the speed estimation benchmark",
|
|
2400
|
-
huggingface_id="",
|
|
2401
|
-
task=SPEED,
|
|
2402
|
-
languages=list(get_all_languages().values()),
|
|
2403
|
-
prompt_prefix="",
|
|
2404
|
-
prompt_template="",
|
|
2405
|
-
instruction_prompt="",
|
|
2406
|
-
num_few_shot_examples=0,
|
|
2407
|
-
max_generated_tokens=5,
|
|
2408
|
-
)
|