EuroEval 15.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of EuroEval might be problematic. Click here for more details.
- euroeval/__init__.py +72 -0
- euroeval/benchmark_config_factory.py +358 -0
- euroeval/benchmark_modules/__init__.py +7 -0
- euroeval/benchmark_modules/base.py +354 -0
- euroeval/benchmark_modules/fresh.py +286 -0
- euroeval/benchmark_modules/hf.py +1185 -0
- euroeval/benchmark_modules/litellm.py +905 -0
- euroeval/benchmark_modules/vllm.py +1171 -0
- euroeval/benchmarker.py +1074 -0
- euroeval/callbacks.py +72 -0
- euroeval/cli.py +281 -0
- euroeval/constants.py +50 -0
- euroeval/data_loading.py +96 -0
- euroeval/data_models.py +474 -0
- euroeval/dataset_configs.py +2001 -0
- euroeval/enums.py +144 -0
- euroeval/exceptions.py +191 -0
- euroeval/finetuning.py +324 -0
- euroeval/generation.py +296 -0
- euroeval/human_evaluation.py +737 -0
- euroeval/languages.py +200 -0
- euroeval/model_cache.py +253 -0
- euroeval/model_config.py +77 -0
- euroeval/model_loading.py +78 -0
- euroeval/scores.py +90 -0
- euroeval/speed_benchmark.py +124 -0
- euroeval/task_utils/__init__.py +1 -0
- euroeval/task_utils/multiple_choice_classification.py +176 -0
- euroeval/task_utils/question_answering.py +698 -0
- euroeval/task_utils/sequence_classification.py +237 -0
- euroeval/task_utils/text_to_text.py +150 -0
- euroeval/task_utils/token_classification.py +464 -0
- euroeval/tasks.py +202 -0
- euroeval/types.py +97 -0
- euroeval/utils.py +574 -0
- euroeval-15.2.0.dist-info/METADATA +234 -0
- euroeval-15.2.0.dist-info/RECORD +40 -0
- euroeval-15.2.0.dist-info/WHEEL +4 -0
- euroeval-15.2.0.dist-info/entry_points.txt +4 -0
- euroeval-15.2.0.dist-info/licenses/LICENSE +21 -0
euroeval/benchmarker.py
ADDED
|
@@ -0,0 +1,1074 @@
|
|
|
1
|
+
"""Class that benchmarks language models."""
|
|
2
|
+
|
|
3
|
+
import json
|
|
4
|
+
import logging
|
|
5
|
+
import re
|
|
6
|
+
import sys
|
|
7
|
+
import typing as t
|
|
8
|
+
from copy import deepcopy
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from shutil import rmtree
|
|
11
|
+
from time import sleep
|
|
12
|
+
|
|
13
|
+
from torch.distributed import destroy_process_group
|
|
14
|
+
|
|
15
|
+
from .benchmark_config_factory import build_benchmark_config
|
|
16
|
+
from .constants import GENERATIVE_PIPELINE_TAGS
|
|
17
|
+
from .data_loading import load_data
|
|
18
|
+
from .data_models import BenchmarkConfigParams, BenchmarkResult
|
|
19
|
+
from .dataset_configs import get_all_dataset_configs
|
|
20
|
+
from .enums import Device, ModelType
|
|
21
|
+
from .exceptions import InvalidBenchmark, InvalidModel
|
|
22
|
+
from .finetuning import finetune
|
|
23
|
+
from .generation import generate
|
|
24
|
+
from .model_config import get_model_config
|
|
25
|
+
from .model_loading import load_model
|
|
26
|
+
from .scores import log_scores
|
|
27
|
+
from .speed_benchmark import benchmark_speed
|
|
28
|
+
from .tasks import SPEED
|
|
29
|
+
from .utils import enforce_reproducibility
|
|
30
|
+
|
|
31
|
+
if t.TYPE_CHECKING:
|
|
32
|
+
from .benchmark_modules import BenchmarkModule
|
|
33
|
+
from .data_models import BenchmarkConfig, DatasetConfig, ModelConfig
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
logger = logging.getLogger("euroeval")
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class Benchmarker:
|
|
40
|
+
"""Benchmarking all the language models.
|
|
41
|
+
|
|
42
|
+
Attributes:
|
|
43
|
+
benchmark_config_default_params:
|
|
44
|
+
The default parameters for the benchmark configuration.
|
|
45
|
+
benchmark_config:
|
|
46
|
+
The benchmark configuration.
|
|
47
|
+
force:
|
|
48
|
+
Whether to force evaluations of models, even if they have been benchmarked
|
|
49
|
+
already.
|
|
50
|
+
results_path:
|
|
51
|
+
The path to the results file.
|
|
52
|
+
benchmark_results:
|
|
53
|
+
The benchmark results.
|
|
54
|
+
"""
|
|
55
|
+
|
|
56
|
+
def __init__(
|
|
57
|
+
self,
|
|
58
|
+
progress_bar: bool = True,
|
|
59
|
+
save_results: bool = True,
|
|
60
|
+
task: str | list[str] | None = None,
|
|
61
|
+
dataset: list[str] | str | None = None,
|
|
62
|
+
language: str | list[str] = "all",
|
|
63
|
+
model_language: str | list[str] | None = None,
|
|
64
|
+
dataset_language: str | list[str] | None = None,
|
|
65
|
+
device: Device | None = None,
|
|
66
|
+
batch_size: int = 32,
|
|
67
|
+
raise_errors: bool = False,
|
|
68
|
+
cache_dir: str = ".euroeval_cache",
|
|
69
|
+
api_key: str | None = None,
|
|
70
|
+
force: bool = False,
|
|
71
|
+
verbose: bool = False,
|
|
72
|
+
trust_remote_code: bool = False,
|
|
73
|
+
use_flash_attention: bool | None = None,
|
|
74
|
+
clear_model_cache: bool = False,
|
|
75
|
+
evaluate_test_split: bool = False,
|
|
76
|
+
few_shot: bool = True,
|
|
77
|
+
num_iterations: int = 10,
|
|
78
|
+
api_base: str | None = None,
|
|
79
|
+
api_version: str | None = None,
|
|
80
|
+
debug: bool = False,
|
|
81
|
+
run_with_cli: bool = False,
|
|
82
|
+
only_allow_safetensors: bool = False,
|
|
83
|
+
) -> None:
|
|
84
|
+
"""Initialise the benchmarker.
|
|
85
|
+
|
|
86
|
+
Args:
|
|
87
|
+
progress_bar:
|
|
88
|
+
Whether progress bars should be shown. Defaults to True.
|
|
89
|
+
save_results:
|
|
90
|
+
Whether to save the benchmark results to
|
|
91
|
+
'euroeval_benchmark_results.jsonl'. Defaults to True.
|
|
92
|
+
task:
|
|
93
|
+
The tasks benchmark the model(s) on. Mutually exclusive with `dataset`.
|
|
94
|
+
If both `task` and `dataset` are None then all datasets will be
|
|
95
|
+
benchmarked.
|
|
96
|
+
dataset:
|
|
97
|
+
The datasets to benchmark on. Mutually exclusive with `task`. If both
|
|
98
|
+
`task` and `dataset` are None then all datasets will be benchmarked.
|
|
99
|
+
language:
|
|
100
|
+
The language codes of the languages to include, both for models and
|
|
101
|
+
datasets. Set this to 'all' if all languages should be considered.
|
|
102
|
+
Defaults to "all".
|
|
103
|
+
model_language:
|
|
104
|
+
The language codes of the languages to include for models. If specified
|
|
105
|
+
then this overrides the `language` parameter for model languages.
|
|
106
|
+
Defaults to None.
|
|
107
|
+
dataset_language:
|
|
108
|
+
The language codes of the languages to include for datasets. If
|
|
109
|
+
specified then this overrides the `language` parameter for dataset
|
|
110
|
+
languages. Defaults to None.
|
|
111
|
+
device:
|
|
112
|
+
The device to use for benchmarking. Defaults to None.
|
|
113
|
+
batch_size:
|
|
114
|
+
The batch size to use. Defaults to 32.
|
|
115
|
+
raise_errors:
|
|
116
|
+
Whether to raise errors instead of skipping the model evaluation.
|
|
117
|
+
Defaults to False.
|
|
118
|
+
cache_dir:
|
|
119
|
+
Directory to store cached models. Defaults to '.euroeval_cache'.
|
|
120
|
+
api_key:
|
|
121
|
+
The API key to use for a given inference API.
|
|
122
|
+
force:
|
|
123
|
+
Whether to force evaluations of models, even if they have been
|
|
124
|
+
benchmarked already. Defaults to False.
|
|
125
|
+
verbose:
|
|
126
|
+
Whether to output additional output. This is automatically set if
|
|
127
|
+
`debug` is True. Defaults to False.
|
|
128
|
+
trust_remote_code:
|
|
129
|
+
Whether to trust remote code when loading models. Defaults to False.
|
|
130
|
+
use_flash_attention:
|
|
131
|
+
Whether to use Flash Attention. If None then it will be used if it is
|
|
132
|
+
installed and the model is a decoder model. Defaults to None.
|
|
133
|
+
clear_model_cache:
|
|
134
|
+
Whether to clear the model cache after benchmarking each model.
|
|
135
|
+
Defaults to False.
|
|
136
|
+
evaluate_test_split:
|
|
137
|
+
Whether to evaluate the test split of the datasets. Defaults to False.
|
|
138
|
+
few_shot:
|
|
139
|
+
Whether to only evaluate the model using few-shot evaluation. Only
|
|
140
|
+
relevant if the model is generative. Defaults to True.
|
|
141
|
+
num_iterations:
|
|
142
|
+
The number of times each model should be evaluated. This is only meant
|
|
143
|
+
to be used for power users, and scores will not be allowed on the
|
|
144
|
+
leaderboards if this is changed. Defaults to 10.
|
|
145
|
+
api_base:
|
|
146
|
+
The base URL for a given inference API. Only relevant if `model` refers
|
|
147
|
+
to a model on an inference API. Defaults to None.
|
|
148
|
+
api_version:
|
|
149
|
+
The version of the API to use. Defaults to None.
|
|
150
|
+
debug:
|
|
151
|
+
Whether to output debug information. Defaults to False.
|
|
152
|
+
run_with_cli:
|
|
153
|
+
Whether the benchmarker is being run from the command-line interface.
|
|
154
|
+
Defaults to False.
|
|
155
|
+
only_allow_safetensors:
|
|
156
|
+
Whether to only allow models that use the safetensors format. Defaults
|
|
157
|
+
to False.
|
|
158
|
+
|
|
159
|
+
Raises:
|
|
160
|
+
ValueError:
|
|
161
|
+
If both `task` and `dataset` are specified.
|
|
162
|
+
"""
|
|
163
|
+
if task is not None and dataset is not None:
|
|
164
|
+
raise ValueError("Only one of `task` and `dataset` can be specified.")
|
|
165
|
+
|
|
166
|
+
self.benchmark_config_default_params = BenchmarkConfigParams(
|
|
167
|
+
progress_bar=progress_bar,
|
|
168
|
+
save_results=save_results,
|
|
169
|
+
task=task,
|
|
170
|
+
dataset=dataset,
|
|
171
|
+
language=language,
|
|
172
|
+
model_language=model_language,
|
|
173
|
+
dataset_language=dataset_language,
|
|
174
|
+
device=device,
|
|
175
|
+
batch_size=batch_size,
|
|
176
|
+
raise_errors=raise_errors,
|
|
177
|
+
cache_dir=cache_dir,
|
|
178
|
+
api_key=api_key,
|
|
179
|
+
force=force,
|
|
180
|
+
verbose=verbose,
|
|
181
|
+
trust_remote_code=trust_remote_code,
|
|
182
|
+
use_flash_attention=use_flash_attention,
|
|
183
|
+
clear_model_cache=clear_model_cache,
|
|
184
|
+
evaluate_test_split=evaluate_test_split,
|
|
185
|
+
few_shot=few_shot,
|
|
186
|
+
num_iterations=num_iterations,
|
|
187
|
+
api_base=api_base,
|
|
188
|
+
api_version=api_version,
|
|
189
|
+
debug=debug,
|
|
190
|
+
run_with_cli=run_with_cli,
|
|
191
|
+
only_allow_safetensors=only_allow_safetensors,
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
self.benchmark_config = build_benchmark_config(
|
|
195
|
+
first_time=True, **self.benchmark_config_default_params.model_dump()
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
# Initialise variable storing model lists, so we only have to fetch it once
|
|
199
|
+
self._model_lists: dict[str, list[str]] | None = None
|
|
200
|
+
|
|
201
|
+
self.results_path = Path.cwd() / "euroeval_benchmark_results.jsonl"
|
|
202
|
+
adjust_logging_level(verbose=self.benchmark_config.verbose)
|
|
203
|
+
|
|
204
|
+
@property
|
|
205
|
+
def benchmark_results(self) -> list[BenchmarkResult]:
|
|
206
|
+
"""The benchmark results."""
|
|
207
|
+
if self.results_path.exists():
|
|
208
|
+
with self.results_path.open() as f:
|
|
209
|
+
return [
|
|
210
|
+
BenchmarkResult.from_dict(json.loads(line))
|
|
211
|
+
for line in f
|
|
212
|
+
if line.strip()
|
|
213
|
+
]
|
|
214
|
+
else:
|
|
215
|
+
return list()
|
|
216
|
+
|
|
217
|
+
def benchmark(
|
|
218
|
+
self,
|
|
219
|
+
model: list[str] | str,
|
|
220
|
+
task: str | list[str] | None = None,
|
|
221
|
+
dataset: list[str] | str | None = None,
|
|
222
|
+
progress_bar: bool | None = None,
|
|
223
|
+
save_results: bool | None = None,
|
|
224
|
+
language: str | list[str] | None = None,
|
|
225
|
+
model_language: str | list[str] | None = None,
|
|
226
|
+
dataset_language: str | list[str] | None = None,
|
|
227
|
+
device: Device | None = None,
|
|
228
|
+
batch_size: int | None = None,
|
|
229
|
+
raise_errors: bool | None = None,
|
|
230
|
+
cache_dir: str | None = None,
|
|
231
|
+
api_key: str | None = None,
|
|
232
|
+
force: bool | None = None,
|
|
233
|
+
verbose: bool | None = None,
|
|
234
|
+
trust_remote_code: bool | None = None,
|
|
235
|
+
use_flash_attention: bool | None = None,
|
|
236
|
+
clear_model_cache: bool | None = None,
|
|
237
|
+
evaluate_test_split: bool | None = None,
|
|
238
|
+
few_shot: bool | None = None,
|
|
239
|
+
num_iterations: int | None = None,
|
|
240
|
+
only_allow_safetensors: bool | None = None,
|
|
241
|
+
) -> list[BenchmarkResult]:
|
|
242
|
+
"""Benchmarks models on datasets.
|
|
243
|
+
|
|
244
|
+
Args:
|
|
245
|
+
model:
|
|
246
|
+
The full Hugging Face Hub path(s) to the pretrained transformer model.
|
|
247
|
+
The specific model version to use can be added after the suffix '@':
|
|
248
|
+
"model@v1.0.0". It can be a branch name, a tag name, or a commit id,
|
|
249
|
+
and defaults to the latest version if not specified.
|
|
250
|
+
task:
|
|
251
|
+
The tasks benchmark the model(s) on. Mutually exclusive with `dataset`.
|
|
252
|
+
If both `task` and `dataset` are None then all datasets will be
|
|
253
|
+
benchmarked. Defaults to None.
|
|
254
|
+
dataset:
|
|
255
|
+
The datasets to benchmark on. Mutually exclusive with `task`. If both
|
|
256
|
+
`task` and `dataset` are None then all datasets will be benchmarked.
|
|
257
|
+
Defaults to None.
|
|
258
|
+
progress_bar:
|
|
259
|
+
Whether progress bars should be shown. Defaults to the value specified
|
|
260
|
+
when initialising the benchmarker.
|
|
261
|
+
save_results:
|
|
262
|
+
Whether to save the benchmark results to
|
|
263
|
+
'euroeval_benchmark_results.jsonl'. Defaults to the value specified
|
|
264
|
+
when initialising the benchmarker.
|
|
265
|
+
language:
|
|
266
|
+
The language codes of the languages to include, both for models and
|
|
267
|
+
datasets. Here 'no' means both Bokmål (nb) and Nynorsk (nn). Set this to
|
|
268
|
+
'all' if all languages should be considered. Defaults to the value
|
|
269
|
+
specified when initialising the benchmarker.
|
|
270
|
+
model_language:
|
|
271
|
+
The language codes of the languages to include for models. If specified
|
|
272
|
+
then this overrides the `language` parameter for model languages.
|
|
273
|
+
Defaults to the value specified when initialising the benchmarker.
|
|
274
|
+
dataset_language:
|
|
275
|
+
The language codes of the languages to include for datasets. If
|
|
276
|
+
specified then this overrides the `language` parameter for dataset
|
|
277
|
+
languages. Defaults to the value specified when initialising the
|
|
278
|
+
benchmarker.
|
|
279
|
+
device:
|
|
280
|
+
The device to use for benchmarking. Defaults to the value specified when
|
|
281
|
+
initialising the benchmarker.
|
|
282
|
+
batch_size:
|
|
283
|
+
The batch size to use. Defaults to the value specified when initialising
|
|
284
|
+
the benchmarker.
|
|
285
|
+
raise_errors:
|
|
286
|
+
Whether to raise errors instead of skipping the model evaluation.
|
|
287
|
+
cache_dir:
|
|
288
|
+
Directory to store cached models. Defaults to the value specified when
|
|
289
|
+
initialising the benchmarker.
|
|
290
|
+
api_key:
|
|
291
|
+
The API key to use for a given inference server. Defaults to the value
|
|
292
|
+
specified when initialising the benchmarker.
|
|
293
|
+
force:
|
|
294
|
+
Whether to force evaluations of models, even if they have been
|
|
295
|
+
benchmarked already. Defaults to the value specified when initialising
|
|
296
|
+
the benchmarker.
|
|
297
|
+
verbose:
|
|
298
|
+
Whether to output additional output. Defaults to the value specified
|
|
299
|
+
when initialising the benchmarker.
|
|
300
|
+
trust_remote_code:
|
|
301
|
+
Whether to trust remote code when loading models. Defaults to the value
|
|
302
|
+
specified when initialising the benchmarker.
|
|
303
|
+
use_flash_attention:
|
|
304
|
+
Whether to use Flash Attention. Defaults to the value specified when
|
|
305
|
+
initialising the benchmarker.
|
|
306
|
+
clear_model_cache:
|
|
307
|
+
Whether to clear the model cache after benchmarking each model. Defaults
|
|
308
|
+
to the value specified when initialising the benchmarker.
|
|
309
|
+
evaluate_test_split:
|
|
310
|
+
Whether to evaluate the test split of the datasets. Defaults to the
|
|
311
|
+
value specified when initialising the benchmarker.
|
|
312
|
+
few_shot:
|
|
313
|
+
Whether to only evaluate the model using few-shot evaluation. Only
|
|
314
|
+
relevant if the model is generative. Defaults to the value specified
|
|
315
|
+
when initialising the benchmarker.
|
|
316
|
+
num_iterations:
|
|
317
|
+
The number of times each model should be evaluated. This is only meant
|
|
318
|
+
to be used for power users, and scores will not be allowed on the
|
|
319
|
+
leaderboards if this is changed. Defaults to the value specified when
|
|
320
|
+
initialising the benchmarker.
|
|
321
|
+
only_allow_safetensors:
|
|
322
|
+
Whether to only allow models that use the safetensors format. Defaults
|
|
323
|
+
to the value specified when initialising the benchmarker.
|
|
324
|
+
|
|
325
|
+
Returns:
|
|
326
|
+
A list of benchmark results.
|
|
327
|
+
|
|
328
|
+
Raises:
|
|
329
|
+
ValueError:
|
|
330
|
+
If both `task` and `dataset` are specified.
|
|
331
|
+
"""
|
|
332
|
+
if task is not None and dataset is not None:
|
|
333
|
+
raise ValueError("Only one of `task` and `dataset` can be specified.")
|
|
334
|
+
|
|
335
|
+
benchmark_config = self._get_updated_benchmark_config(
|
|
336
|
+
task=task,
|
|
337
|
+
dataset=dataset,
|
|
338
|
+
progress_bar=progress_bar,
|
|
339
|
+
save_results=save_results,
|
|
340
|
+
language=language,
|
|
341
|
+
model_language=model_language,
|
|
342
|
+
dataset_language=dataset_language,
|
|
343
|
+
device=device,
|
|
344
|
+
batch_size=batch_size,
|
|
345
|
+
raise_errors=raise_errors,
|
|
346
|
+
cache_dir=cache_dir,
|
|
347
|
+
api_key=api_key,
|
|
348
|
+
force=force,
|
|
349
|
+
verbose=verbose,
|
|
350
|
+
trust_remote_code=trust_remote_code,
|
|
351
|
+
use_flash_attention=use_flash_attention,
|
|
352
|
+
clear_model_cache=clear_model_cache,
|
|
353
|
+
evaluate_test_split=evaluate_test_split,
|
|
354
|
+
few_shot=few_shot,
|
|
355
|
+
num_iterations=num_iterations,
|
|
356
|
+
only_allow_safetensors=only_allow_safetensors,
|
|
357
|
+
)
|
|
358
|
+
|
|
359
|
+
adjust_logging_level(verbose=benchmark_config.verbose)
|
|
360
|
+
|
|
361
|
+
if benchmark_config.clear_model_cache:
|
|
362
|
+
clear_model_cache_fn(cache_dir=benchmark_config.cache_dir)
|
|
363
|
+
|
|
364
|
+
model_ids = self._prepare_model_ids(model_id=model)
|
|
365
|
+
dataset_configs = prepare_dataset_configs(
|
|
366
|
+
dataset_names=benchmark_config.datasets
|
|
367
|
+
)
|
|
368
|
+
|
|
369
|
+
current_benchmark_results: list[BenchmarkResult] = list()
|
|
370
|
+
for m_id in model_ids:
|
|
371
|
+
try:
|
|
372
|
+
model_config = get_model_config(
|
|
373
|
+
model_id=m_id, benchmark_config=benchmark_config
|
|
374
|
+
)
|
|
375
|
+
except InvalidModel as e:
|
|
376
|
+
logger.info(e.message)
|
|
377
|
+
continue
|
|
378
|
+
|
|
379
|
+
loaded_model: BenchmarkModule | None = None
|
|
380
|
+
for dataset_config in dataset_configs:
|
|
381
|
+
# Skip if we have already benchmarked this model on this dataset and
|
|
382
|
+
# we are not forcing the benchmark
|
|
383
|
+
if not benchmark_config.force and model_has_been_benchmarked(
|
|
384
|
+
model_id=m_id,
|
|
385
|
+
dataset=dataset_config.name,
|
|
386
|
+
few_shot=benchmark_config.few_shot,
|
|
387
|
+
validation_split=not benchmark_config.evaluate_test_split,
|
|
388
|
+
benchmark_results=self.benchmark_results,
|
|
389
|
+
):
|
|
390
|
+
logger.debug(
|
|
391
|
+
f"Skipping benchmarking {m_id} on {dataset_config.pretty_name},"
|
|
392
|
+
" as it has already been benchmarked."
|
|
393
|
+
)
|
|
394
|
+
continue
|
|
395
|
+
|
|
396
|
+
# We do not re-initialise generative models as their architecture is not
|
|
397
|
+
# customised to specific datasets
|
|
398
|
+
if model_config.task in GENERATIVE_PIPELINE_TAGS:
|
|
399
|
+
initial_logging(
|
|
400
|
+
model_config=model_config,
|
|
401
|
+
dataset_config=dataset_config,
|
|
402
|
+
benchmark_config=benchmark_config,
|
|
403
|
+
)
|
|
404
|
+
if loaded_model is None:
|
|
405
|
+
logger.info("Loading model...")
|
|
406
|
+
try:
|
|
407
|
+
loaded_model = load_model(
|
|
408
|
+
model_config=model_config,
|
|
409
|
+
dataset_config=dataset_config,
|
|
410
|
+
benchmark_config=benchmark_config,
|
|
411
|
+
)
|
|
412
|
+
except InvalidModel as e:
|
|
413
|
+
if benchmark_config.raise_errors:
|
|
414
|
+
raise e
|
|
415
|
+
logger.info(e.message)
|
|
416
|
+
break
|
|
417
|
+
else:
|
|
418
|
+
loaded_model.dataset_config = dataset_config
|
|
419
|
+
|
|
420
|
+
# Benchmark a single model on a single dataset
|
|
421
|
+
benchmark_output_or_err = self._benchmark_single(
|
|
422
|
+
model=loaded_model,
|
|
423
|
+
model_config=model_config,
|
|
424
|
+
dataset_config=dataset_config,
|
|
425
|
+
benchmark_config=benchmark_config,
|
|
426
|
+
)
|
|
427
|
+
|
|
428
|
+
if (
|
|
429
|
+
isinstance(benchmark_output_or_err, Exception)
|
|
430
|
+
and benchmark_config.raise_errors
|
|
431
|
+
):
|
|
432
|
+
raise benchmark_output_or_err
|
|
433
|
+
|
|
434
|
+
elif isinstance(benchmark_output_or_err, InvalidBenchmark):
|
|
435
|
+
if benchmark_config.raise_errors:
|
|
436
|
+
raise benchmark_output_or_err
|
|
437
|
+
logger.info(
|
|
438
|
+
f"{m_id} could not be benchmarked on "
|
|
439
|
+
f"{dataset_config.pretty_name}. Skipping. The error message "
|
|
440
|
+
f"raised was {benchmark_output_or_err.message!r}."
|
|
441
|
+
)
|
|
442
|
+
continue
|
|
443
|
+
|
|
444
|
+
elif isinstance(benchmark_output_or_err, InvalidModel):
|
|
445
|
+
if benchmark_config.raise_errors:
|
|
446
|
+
raise benchmark_output_or_err
|
|
447
|
+
logger.info(benchmark_output_or_err.message)
|
|
448
|
+
break
|
|
449
|
+
|
|
450
|
+
else:
|
|
451
|
+
record = benchmark_output_or_err
|
|
452
|
+
current_benchmark_results.append(record)
|
|
453
|
+
if benchmark_config.save_results:
|
|
454
|
+
record.append_to_results(results_path=self.results_path)
|
|
455
|
+
|
|
456
|
+
if benchmark_config.clear_model_cache:
|
|
457
|
+
clear_model_cache_fn(cache_dir=benchmark_config.cache_dir)
|
|
458
|
+
|
|
459
|
+
# This avoids the following warning at the end of the benchmarking:
|
|
460
|
+
# Warning: WARNING: process group has NOT been destroyed before we destruct
|
|
461
|
+
# ProcessGroupNCCL. On normal program exit, the application should call
|
|
462
|
+
# destroy_process_group to ensure that any pending NCCL operations have
|
|
463
|
+
# finished in this process. In rare cases this process can exit before this
|
|
464
|
+
# point and block the progress of another member of the process group. This
|
|
465
|
+
# constraint has always been present, but this warning has only been added
|
|
466
|
+
# since PyTorch 2.4 (function operator())
|
|
467
|
+
try:
|
|
468
|
+
destroy_process_group()
|
|
469
|
+
except AssertionError:
|
|
470
|
+
pass
|
|
471
|
+
|
|
472
|
+
return current_benchmark_results
|
|
473
|
+
|
|
474
|
+
def _get_updated_benchmark_config(
|
|
475
|
+
self,
|
|
476
|
+
progress_bar: bool | None = None,
|
|
477
|
+
save_results: bool | None = None,
|
|
478
|
+
task: str | list[str] | None | None = None,
|
|
479
|
+
dataset: str | list[str] | None | None = None,
|
|
480
|
+
language: str | list[str] | None = None,
|
|
481
|
+
model_language: str | list[str] | None | None = None,
|
|
482
|
+
dataset_language: str | list[str] | None | None = None,
|
|
483
|
+
device: Device | None | None = None,
|
|
484
|
+
batch_size: int | None = None,
|
|
485
|
+
raise_errors: bool | None = None,
|
|
486
|
+
cache_dir: str | None = None,
|
|
487
|
+
api_key: str | None | None = None,
|
|
488
|
+
force: bool | None = None,
|
|
489
|
+
verbose: bool | None = None,
|
|
490
|
+
trust_remote_code: bool | None = None,
|
|
491
|
+
use_flash_attention: bool | None | None = None,
|
|
492
|
+
clear_model_cache: bool | None = None,
|
|
493
|
+
evaluate_test_split: bool | None = None,
|
|
494
|
+
few_shot: bool | None = None,
|
|
495
|
+
num_iterations: int | None = None,
|
|
496
|
+
api_base: str | None | None = None,
|
|
497
|
+
api_version: str | None | None = None,
|
|
498
|
+
debug: bool | None = None,
|
|
499
|
+
run_with_cli: bool | None = None,
|
|
500
|
+
only_allow_safetensors: bool | None = None,
|
|
501
|
+
) -> "BenchmarkConfig":
|
|
502
|
+
"""Get an updated benchmark configuration.
|
|
503
|
+
|
|
504
|
+
Args:
|
|
505
|
+
progress_bar:
|
|
506
|
+
Whether progress bars should be shown. If None, then this value will not
|
|
507
|
+
be updated.
|
|
508
|
+
save_results:
|
|
509
|
+
Whether to save the benchmark results to
|
|
510
|
+
'euroeval_benchmark_results.jsonl'. If None, then this value will not
|
|
511
|
+
be updated.
|
|
512
|
+
task:
|
|
513
|
+
The tasks benchmark the model(s) on. If None, then this value will not
|
|
514
|
+
be updated.
|
|
515
|
+
dataset:
|
|
516
|
+
The datasets to benchmark on. If None, then this value will not be
|
|
517
|
+
updated.
|
|
518
|
+
language:
|
|
519
|
+
The language codes of the languages to include, both for models and
|
|
520
|
+
datasets. If None, then this value will not be updated.
|
|
521
|
+
model_language:
|
|
522
|
+
The language codes of the languages to include for models. If None, then
|
|
523
|
+
this value will not be updated.
|
|
524
|
+
dataset_language:
|
|
525
|
+
The language codes of the languages to include for datasets. If None,
|
|
526
|
+
then this value will not be updated.
|
|
527
|
+
device:
|
|
528
|
+
The device to use for benchmarking. If None, then this value will not be
|
|
529
|
+
updated.
|
|
530
|
+
batch_size:
|
|
531
|
+
The batch size to use. If None, then this value will not be updated.
|
|
532
|
+
raise_errors:
|
|
533
|
+
Whether to raise errors instead of skipping the model evaluation. If
|
|
534
|
+
None, then this value will not be updated.
|
|
535
|
+
cache_dir:
|
|
536
|
+
Directory to store cached models. If None, then this value will not be
|
|
537
|
+
updated.
|
|
538
|
+
api_key:
|
|
539
|
+
The API key to use for a given inference server. If None, then this
|
|
540
|
+
value will not be updated.
|
|
541
|
+
force:
|
|
542
|
+
Whether to force evaluations of models, even if they have been
|
|
543
|
+
benchmarked already. If None, then this value will not be updated.
|
|
544
|
+
verbose:
|
|
545
|
+
Whether to output additional output. If None, then this value will not
|
|
546
|
+
be updated.
|
|
547
|
+
trust_remote_code:
|
|
548
|
+
Whether to trust remote code when loading models. If None, then this
|
|
549
|
+
value will not be updated.
|
|
550
|
+
use_flash_attention:
|
|
551
|
+
Whether to use Flash Attention. If None, then this value will not be
|
|
552
|
+
updated.
|
|
553
|
+
clear_model_cache:
|
|
554
|
+
Whether to clear the model cache after benchmarking each model. If None,
|
|
555
|
+
then this value will not be updated.
|
|
556
|
+
evaluate_test_split:
|
|
557
|
+
Whether to evaluate the test split of the datasets. If None, then this
|
|
558
|
+
value will not be updated.
|
|
559
|
+
few_shot:
|
|
560
|
+
Whether to only evaluate the model using few-shot evaluation. If None,
|
|
561
|
+
then this value will not be updated.
|
|
562
|
+
num_iterations:
|
|
563
|
+
The number of times each model should be evaluated. If None, then this
|
|
564
|
+
value will not be updated.
|
|
565
|
+
api_base:
|
|
566
|
+
The base URL for a given inference API. If None, then this value will
|
|
567
|
+
not be updated.
|
|
568
|
+
api_version:
|
|
569
|
+
The version of the API to use. If None, then this value will not be
|
|
570
|
+
updated.
|
|
571
|
+
debug:
|
|
572
|
+
Whether to output debug information. If None, then this value will not
|
|
573
|
+
be updated.
|
|
574
|
+
run_with_cli:
|
|
575
|
+
Whether the benchmarker is being run from the command-line interface.
|
|
576
|
+
If None, then this value will not be updated.
|
|
577
|
+
only_allow_safetensors:
|
|
578
|
+
Whether to only allow models that use the safetensors format. If None,
|
|
579
|
+
then this value will not be updated.
|
|
580
|
+
|
|
581
|
+
Returns:
|
|
582
|
+
The updated benchmark configuration.
|
|
583
|
+
"""
|
|
584
|
+
benchmark_config_params = deepcopy(self.benchmark_config_default_params)
|
|
585
|
+
|
|
586
|
+
if progress_bar is not None:
|
|
587
|
+
benchmark_config_params.progress_bar = progress_bar
|
|
588
|
+
if save_results is not None:
|
|
589
|
+
benchmark_config_params.save_results = save_results
|
|
590
|
+
if task is not None:
|
|
591
|
+
benchmark_config_params.task = task
|
|
592
|
+
benchmark_config_params.dataset = None
|
|
593
|
+
if dataset is not None:
|
|
594
|
+
benchmark_config_params.dataset = dataset
|
|
595
|
+
benchmark_config_params.task = None
|
|
596
|
+
if language is not None:
|
|
597
|
+
benchmark_config_params.language = language
|
|
598
|
+
if model_language is not None:
|
|
599
|
+
benchmark_config_params.model_language = model_language
|
|
600
|
+
if dataset_language is not None:
|
|
601
|
+
benchmark_config_params.dataset_language = dataset_language
|
|
602
|
+
if device is not None:
|
|
603
|
+
benchmark_config_params.device = device
|
|
604
|
+
if batch_size is not None:
|
|
605
|
+
benchmark_config_params.batch_size = batch_size
|
|
606
|
+
if raise_errors is not None:
|
|
607
|
+
benchmark_config_params.raise_errors = raise_errors
|
|
608
|
+
if cache_dir is not None:
|
|
609
|
+
benchmark_config_params.cache_dir = cache_dir
|
|
610
|
+
if api_key is not None:
|
|
611
|
+
benchmark_config_params.api_key = api_key
|
|
612
|
+
if force is not None:
|
|
613
|
+
benchmark_config_params.force = force
|
|
614
|
+
if verbose is not None:
|
|
615
|
+
benchmark_config_params.verbose = verbose
|
|
616
|
+
if trust_remote_code is not None:
|
|
617
|
+
benchmark_config_params.trust_remote_code = trust_remote_code
|
|
618
|
+
if use_flash_attention is not None:
|
|
619
|
+
benchmark_config_params.use_flash_attention = use_flash_attention
|
|
620
|
+
if clear_model_cache is not None:
|
|
621
|
+
benchmark_config_params.clear_model_cache = clear_model_cache
|
|
622
|
+
if evaluate_test_split is not None:
|
|
623
|
+
benchmark_config_params.evaluate_test_split = evaluate_test_split
|
|
624
|
+
if few_shot is not None:
|
|
625
|
+
benchmark_config_params.few_shot = few_shot
|
|
626
|
+
if num_iterations is not None:
|
|
627
|
+
benchmark_config_params.num_iterations = num_iterations
|
|
628
|
+
if api_base is not None:
|
|
629
|
+
benchmark_config_params.api_base = api_base
|
|
630
|
+
if api_version is not None:
|
|
631
|
+
benchmark_config_params.api_version = api_version
|
|
632
|
+
if debug is not None:
|
|
633
|
+
benchmark_config_params.debug = debug
|
|
634
|
+
if run_with_cli is not None:
|
|
635
|
+
benchmark_config_params.run_with_cli = run_with_cli
|
|
636
|
+
if only_allow_safetensors is not None:
|
|
637
|
+
benchmark_config_params.only_allow_safetensors = only_allow_safetensors
|
|
638
|
+
|
|
639
|
+
return build_benchmark_config(**benchmark_config_params.model_dump())
|
|
640
|
+
|
|
641
|
+
def _prepare_model_ids(self, model_id: list[str] | str) -> list[str]:
|
|
642
|
+
"""Prepare the model ID(s) to be benchmarked.
|
|
643
|
+
|
|
644
|
+
Args:
|
|
645
|
+
model_id:
|
|
646
|
+
The model ID(s) of the models to benchmark.
|
|
647
|
+
|
|
648
|
+
Returns:
|
|
649
|
+
The prepared list of model IDs.
|
|
650
|
+
"""
|
|
651
|
+
model_ids = [model_id] if isinstance(model_id, str) else model_id
|
|
652
|
+
|
|
653
|
+
# Reorder the `model_ids` list to include the ones present in the benchmark
|
|
654
|
+
# results first
|
|
655
|
+
benchmarked_model_ids = [
|
|
656
|
+
re.sub(r"\(.+\)", "", record.model).strip()
|
|
657
|
+
for record in self.benchmark_results
|
|
658
|
+
]
|
|
659
|
+
model_ids_sorted = [m_id for m_id in model_ids if m_id in benchmarked_model_ids]
|
|
660
|
+
model_ids_sorted += [
|
|
661
|
+
m_id for m_id in model_ids if m_id not in benchmarked_model_ids
|
|
662
|
+
]
|
|
663
|
+
|
|
664
|
+
return [m_id.rstrip(" /") for m_id in model_ids_sorted]
|
|
665
|
+
|
|
666
|
+
def _benchmark_single(
|
|
667
|
+
self,
|
|
668
|
+
model: "BenchmarkModule | None",
|
|
669
|
+
model_config: "ModelConfig",
|
|
670
|
+
dataset_config: "DatasetConfig",
|
|
671
|
+
benchmark_config: "BenchmarkConfig",
|
|
672
|
+
) -> BenchmarkResult | InvalidBenchmark | InvalidModel:
|
|
673
|
+
"""Benchmark a single model on a single dataset.
|
|
674
|
+
|
|
675
|
+
Args:
|
|
676
|
+
model:
|
|
677
|
+
The model to benchmark.
|
|
678
|
+
model_config:
|
|
679
|
+
The configuration of the model we are evaluating.
|
|
680
|
+
dataset_config:
|
|
681
|
+
The configuration of the dataset we are evaluating on.
|
|
682
|
+
benchmark_config:
|
|
683
|
+
The general benchmark configuration.
|
|
684
|
+
|
|
685
|
+
Returns:
|
|
686
|
+
The benchmark result, or an error if the benchmark was unsuccessful.
|
|
687
|
+
"""
|
|
688
|
+
if model is None:
|
|
689
|
+
initial_logging(
|
|
690
|
+
model_config=model_config,
|
|
691
|
+
dataset_config=dataset_config,
|
|
692
|
+
benchmark_config=benchmark_config,
|
|
693
|
+
)
|
|
694
|
+
|
|
695
|
+
while True:
|
|
696
|
+
try:
|
|
697
|
+
# Set random seeds to enforce reproducibility of the randomly
|
|
698
|
+
# initialised weights
|
|
699
|
+
rng = enforce_reproducibility()
|
|
700
|
+
|
|
701
|
+
if model is None or model_config.model_type != ModelType.GENERATIVE:
|
|
702
|
+
logger.info("Loading model...")
|
|
703
|
+
model = load_model(
|
|
704
|
+
model_config=model_config,
|
|
705
|
+
dataset_config=dataset_config,
|
|
706
|
+
benchmark_config=benchmark_config,
|
|
707
|
+
)
|
|
708
|
+
assert model is not None
|
|
709
|
+
|
|
710
|
+
if dataset_config.task == SPEED:
|
|
711
|
+
scores = benchmark_speed(
|
|
712
|
+
model=model, benchmark_config=self.benchmark_config
|
|
713
|
+
)
|
|
714
|
+
|
|
715
|
+
else:
|
|
716
|
+
bootstrapped_datasets = load_data(
|
|
717
|
+
rng=rng,
|
|
718
|
+
dataset_config=dataset_config,
|
|
719
|
+
benchmark_config=benchmark_config,
|
|
720
|
+
)
|
|
721
|
+
prepared_datasets = model.prepare_datasets(
|
|
722
|
+
datasets=bootstrapped_datasets, task=dataset_config.task
|
|
723
|
+
)
|
|
724
|
+
if model_config.model_type == ModelType.GENERATIVE:
|
|
725
|
+
scores = generate(
|
|
726
|
+
model=model,
|
|
727
|
+
datasets=prepared_datasets,
|
|
728
|
+
model_config=model_config,
|
|
729
|
+
dataset_config=dataset_config,
|
|
730
|
+
benchmark_config=self.benchmark_config,
|
|
731
|
+
)
|
|
732
|
+
else:
|
|
733
|
+
scores = finetune(
|
|
734
|
+
model=model,
|
|
735
|
+
datasets=prepared_datasets,
|
|
736
|
+
model_config=model_config,
|
|
737
|
+
dataset_config=dataset_config,
|
|
738
|
+
benchmark_config=benchmark_config,
|
|
739
|
+
)
|
|
740
|
+
|
|
741
|
+
results = log_scores(
|
|
742
|
+
dataset_name=dataset_config.pretty_name,
|
|
743
|
+
metric_configs=dataset_config.task.metrics,
|
|
744
|
+
scores=scores,
|
|
745
|
+
model_id=model_config.model_id,
|
|
746
|
+
)
|
|
747
|
+
|
|
748
|
+
record = BenchmarkResult(
|
|
749
|
+
dataset=dataset_config.name,
|
|
750
|
+
task=dataset_config.task.name,
|
|
751
|
+
dataset_languages=[
|
|
752
|
+
language.code for language in dataset_config.languages
|
|
753
|
+
],
|
|
754
|
+
model=model_config.model_id,
|
|
755
|
+
results=results,
|
|
756
|
+
num_model_parameters=model.num_params,
|
|
757
|
+
max_sequence_length=model.model_max_length,
|
|
758
|
+
vocabulary_size=model.vocab_size,
|
|
759
|
+
merge=model_config.merge,
|
|
760
|
+
generative=model_config.model_type == ModelType.GENERATIVE,
|
|
761
|
+
generative_type=(
|
|
762
|
+
model.generative_type.value
|
|
763
|
+
if model.generative_type is not None
|
|
764
|
+
else None
|
|
765
|
+
),
|
|
766
|
+
few_shot=benchmark_config.few_shot,
|
|
767
|
+
validation_split=not benchmark_config.evaluate_test_split,
|
|
768
|
+
)
|
|
769
|
+
logger.debug(f"Results:\n{results}")
|
|
770
|
+
return record
|
|
771
|
+
|
|
772
|
+
except (InvalidBenchmark, InvalidModel) as e:
|
|
773
|
+
# If the model ID is not valid then raise an error
|
|
774
|
+
model_err_msg = "does not exist on the Hugging Face Hub"
|
|
775
|
+
if benchmark_config.raise_errors and model_err_msg in str(e):
|
|
776
|
+
raise e
|
|
777
|
+
|
|
778
|
+
# Otherwise, if the error is due to Hugging Face Hub being down, then
|
|
779
|
+
# wait a bit and try again
|
|
780
|
+
elif "The Hugging Face Hub seems to be down." in str(e):
|
|
781
|
+
wait_time = 30
|
|
782
|
+
logger.debug(
|
|
783
|
+
"The Hugging Face Hub seems to be down. Retrying in "
|
|
784
|
+
f"{wait_time} seconds."
|
|
785
|
+
)
|
|
786
|
+
sleep(wait_time)
|
|
787
|
+
continue
|
|
788
|
+
|
|
789
|
+
# Otherwise, if the error is due to the MPS fallback not being enabled,
|
|
790
|
+
# then raise an error asking the user to enable it
|
|
791
|
+
elif "PYTORCH_ENABLE_MPS_FALLBACK" in str(e):
|
|
792
|
+
raise RuntimeError(
|
|
793
|
+
"The benchmark failed because the environment variable "
|
|
794
|
+
"`PYTORCH_ENABLE_MPS_FALLBACK` is not set. Please set this "
|
|
795
|
+
"environment variable to `1` and try again."
|
|
796
|
+
)
|
|
797
|
+
|
|
798
|
+
elif benchmark_config.raise_errors:
|
|
799
|
+
raise e
|
|
800
|
+
return e
|
|
801
|
+
|
|
802
|
+
def __call__(
|
|
803
|
+
self,
|
|
804
|
+
model: list[str] | str,
|
|
805
|
+
task: str | list[str] | None = None,
|
|
806
|
+
dataset: list[str] | str | None = None,
|
|
807
|
+
progress_bar: bool | None = None,
|
|
808
|
+
save_results: bool | None = None,
|
|
809
|
+
language: str | list[str] | None = None,
|
|
810
|
+
model_language: str | list[str] | None = None,
|
|
811
|
+
dataset_language: str | list[str] | None = None,
|
|
812
|
+
device: Device | None = None,
|
|
813
|
+
batch_size: int | None = None,
|
|
814
|
+
raise_errors: bool | None = None,
|
|
815
|
+
cache_dir: str | None = None,
|
|
816
|
+
api_key: str | None = None,
|
|
817
|
+
force: bool | None = None,
|
|
818
|
+
verbose: bool | None = None,
|
|
819
|
+
trust_remote_code: bool | None = None,
|
|
820
|
+
use_flash_attention: bool | None = None,
|
|
821
|
+
clear_model_cache: bool | None = None,
|
|
822
|
+
evaluate_test_split: bool | None = None,
|
|
823
|
+
few_shot: bool | None = None,
|
|
824
|
+
num_iterations: int | None = None,
|
|
825
|
+
only_allow_safetensors: bool | None = None,
|
|
826
|
+
) -> list[BenchmarkResult]:
|
|
827
|
+
"""Benchmarks models on datasets.
|
|
828
|
+
|
|
829
|
+
Args:
|
|
830
|
+
model:
|
|
831
|
+
The full Hugging Face Hub path(s) to the pretrained transformer model.
|
|
832
|
+
The specific model version to use can be added after the suffix '@':
|
|
833
|
+
"model@v1.0.0". It can be a branch name, a tag name, or a commit id,
|
|
834
|
+
and defaults to the latest version if not specified.
|
|
835
|
+
task:
|
|
836
|
+
The tasks benchmark the model(s) on. Mutually exclusive with `dataset`.
|
|
837
|
+
If both `task` and `dataset` are None then all datasets will be
|
|
838
|
+
benchmarked. Defaults to None.
|
|
839
|
+
dataset:
|
|
840
|
+
The datasets to benchmark on. Mutually exclusive with `task`. If both
|
|
841
|
+
`task` and `dataset` are None then all datasets will be benchmarked.
|
|
842
|
+
Defaults to None.
|
|
843
|
+
progress_bar:
|
|
844
|
+
Whether progress bars should be shown. Defaults to the value specified
|
|
845
|
+
when initialising the benchmarker.
|
|
846
|
+
save_results:
|
|
847
|
+
Whether to save the benchmark results to
|
|
848
|
+
'euroeval_benchmark_results.jsonl'. Defaults to the value specified
|
|
849
|
+
when initialising the benchmarker.
|
|
850
|
+
language:
|
|
851
|
+
The language codes of the languages to include, both for models and
|
|
852
|
+
datasets. Here 'no' means both Bokmål (nb) and Nynorsk (nn). Set this to
|
|
853
|
+
'all' if all languages should be considered. Defaults to the value
|
|
854
|
+
specified when initialising the benchmarker.
|
|
855
|
+
model_language:
|
|
856
|
+
The language codes of the languages to include for models. If specified
|
|
857
|
+
then this overrides the `language` parameter for model languages.
|
|
858
|
+
Defaults to the value specified when initialising the benchmarker.
|
|
859
|
+
dataset_language:
|
|
860
|
+
The language codes of the languages to include for datasets. If
|
|
861
|
+
specified then this overrides the `language` parameter for dataset
|
|
862
|
+
languages. Defaults to the value specified when initialising the
|
|
863
|
+
benchmarker.
|
|
864
|
+
device:
|
|
865
|
+
The device to use for benchmarking. Defaults to the value specified when
|
|
866
|
+
initialising the benchmarker.
|
|
867
|
+
batch_size:
|
|
868
|
+
The batch size to use. Defaults to the value specified when initialising
|
|
869
|
+
the benchmarker.
|
|
870
|
+
raise_errors:
|
|
871
|
+
Whether to raise errors instead of skipping the model evaluation.
|
|
872
|
+
cache_dir:
|
|
873
|
+
Directory to store cached models. Defaults to the value specified when
|
|
874
|
+
initialising the benchmarker.
|
|
875
|
+
api_key:
|
|
876
|
+
The API key to use for a given inference server. Defaults to the value
|
|
877
|
+
specified when initialising the benchmarker.
|
|
878
|
+
force:
|
|
879
|
+
Whether to force evaluations of models, even if they have been
|
|
880
|
+
benchmarked already. Defaults to the value specified when initialising
|
|
881
|
+
the benchmarker.
|
|
882
|
+
verbose:
|
|
883
|
+
Whether to output additional output. Defaults to the value specified
|
|
884
|
+
when initialising the benchmarker.
|
|
885
|
+
trust_remote_code:
|
|
886
|
+
Whether to trust remote code when loading models. Defaults to the value
|
|
887
|
+
specified when initialising the benchmarker.
|
|
888
|
+
use_flash_attention:
|
|
889
|
+
Whether to use Flash Attention. Defaults to the value specified when
|
|
890
|
+
initialising the benchmarker.
|
|
891
|
+
clear_model_cache:
|
|
892
|
+
Whether to clear the model cache after benchmarking each model. Defaults
|
|
893
|
+
to the value specified when initialising the benchmarker.
|
|
894
|
+
evaluate_test_split:
|
|
895
|
+
Whether to evaluate the test split of the datasets. Defaults to the
|
|
896
|
+
value specified when initialising the benchmarker.
|
|
897
|
+
few_shot:
|
|
898
|
+
Whether to only evaluate the model using few-shot evaluation. Only
|
|
899
|
+
relevant if the model is generative. Defaults to the value specified
|
|
900
|
+
when initialising the benchmarker.
|
|
901
|
+
num_iterations:
|
|
902
|
+
The number of times each model should be evaluated. This is only meant
|
|
903
|
+
to be used for power users, and scores will not be allowed on the
|
|
904
|
+
leaderboards if this is changed. Defaults to the value specified when
|
|
905
|
+
initialising the benchmarker.
|
|
906
|
+
only_allow_safetensors:
|
|
907
|
+
Whether to only allow models that use the safetensors format. Defaults
|
|
908
|
+
to the value specified when initialising the benchmarker.
|
|
909
|
+
|
|
910
|
+
Returns:
|
|
911
|
+
A list of benchmark results.
|
|
912
|
+
|
|
913
|
+
Raises:
|
|
914
|
+
ValueError:
|
|
915
|
+
If both `task` and `dataset` are specified.
|
|
916
|
+
"""
|
|
917
|
+
logger.warning(
|
|
918
|
+
"Calling the `Benchmarker` class directly is deprecated. Please use the "
|
|
919
|
+
"`benchmark` function instead. This will be removed in a future version."
|
|
920
|
+
)
|
|
921
|
+
return self.benchmark(
|
|
922
|
+
model=model,
|
|
923
|
+
task=task,
|
|
924
|
+
dataset=dataset,
|
|
925
|
+
progress_bar=progress_bar,
|
|
926
|
+
save_results=save_results,
|
|
927
|
+
language=language,
|
|
928
|
+
model_language=model_language,
|
|
929
|
+
dataset_language=dataset_language,
|
|
930
|
+
device=device,
|
|
931
|
+
batch_size=batch_size,
|
|
932
|
+
raise_errors=raise_errors,
|
|
933
|
+
cache_dir=cache_dir,
|
|
934
|
+
api_key=api_key,
|
|
935
|
+
force=force,
|
|
936
|
+
verbose=verbose,
|
|
937
|
+
trust_remote_code=trust_remote_code,
|
|
938
|
+
use_flash_attention=use_flash_attention,
|
|
939
|
+
clear_model_cache=clear_model_cache,
|
|
940
|
+
evaluate_test_split=evaluate_test_split,
|
|
941
|
+
few_shot=few_shot,
|
|
942
|
+
num_iterations=num_iterations,
|
|
943
|
+
only_allow_safetensors=only_allow_safetensors,
|
|
944
|
+
)
|
|
945
|
+
|
|
946
|
+
|
|
947
|
+
def model_has_been_benchmarked(
|
|
948
|
+
model_id: str,
|
|
949
|
+
dataset: str,
|
|
950
|
+
few_shot: bool,
|
|
951
|
+
validation_split: bool,
|
|
952
|
+
benchmark_results: list[BenchmarkResult],
|
|
953
|
+
) -> bool:
|
|
954
|
+
"""Checks whether a model has already been benchmarked on a dataset.
|
|
955
|
+
|
|
956
|
+
Args:
|
|
957
|
+
model_id:
|
|
958
|
+
The model ID.
|
|
959
|
+
dataset:
|
|
960
|
+
The dataset.
|
|
961
|
+
few_shot:
|
|
962
|
+
Whether the model was evaluated using few-shot evaluation.
|
|
963
|
+
validation_split:
|
|
964
|
+
Whether the model was evaluated on the validation split.
|
|
965
|
+
benchmark_results:
|
|
966
|
+
The benchmark results.
|
|
967
|
+
|
|
968
|
+
Returns:
|
|
969
|
+
Whether the model has already been evaluated on the dataset.
|
|
970
|
+
"""
|
|
971
|
+
for record in benchmark_results:
|
|
972
|
+
same_evaluation = record.model == model_id and record.dataset == dataset
|
|
973
|
+
same_validation_split_setting = record.validation_split == validation_split
|
|
974
|
+
same_few_shot_setting = record.few_shot == few_shot or not record.generative
|
|
975
|
+
if same_evaluation and same_validation_split_setting and same_few_shot_setting:
|
|
976
|
+
return True
|
|
977
|
+
return False
|
|
978
|
+
|
|
979
|
+
|
|
980
|
+
def adjust_logging_level(verbose: bool, ignore_testing: bool = False) -> int:
|
|
981
|
+
"""Adjust the logging level based on verbosity.
|
|
982
|
+
|
|
983
|
+
Args:
|
|
984
|
+
verbose:
|
|
985
|
+
Whether to output additional output.
|
|
986
|
+
ignore_testing:
|
|
987
|
+
Whether to ignore the testing flag.
|
|
988
|
+
|
|
989
|
+
Returns:
|
|
990
|
+
The logging level that was set.
|
|
991
|
+
"""
|
|
992
|
+
if hasattr(sys, "_called_from_test") and not ignore_testing:
|
|
993
|
+
logging_level = logging.CRITICAL
|
|
994
|
+
elif verbose:
|
|
995
|
+
logging_level = logging.DEBUG
|
|
996
|
+
else:
|
|
997
|
+
logging_level = logging.INFO
|
|
998
|
+
logger.setLevel(logging_level)
|
|
999
|
+
return logging_level
|
|
1000
|
+
|
|
1001
|
+
|
|
1002
|
+
def clear_model_cache_fn(cache_dir: str) -> None:
|
|
1003
|
+
"""Clear the model cache.
|
|
1004
|
+
|
|
1005
|
+
Note that this will not remove the stored completions.
|
|
1006
|
+
|
|
1007
|
+
Args:
|
|
1008
|
+
cache_dir:
|
|
1009
|
+
The path to the cache directory.
|
|
1010
|
+
"""
|
|
1011
|
+
model_cache_path = Path(cache_dir) / "model_cache"
|
|
1012
|
+
model_cache_path.mkdir(parents=True, exist_ok=True)
|
|
1013
|
+
for model_dir in model_cache_path.iterdir():
|
|
1014
|
+
if model_dir.is_dir():
|
|
1015
|
+
for sub_model_dir in model_dir.iterdir():
|
|
1016
|
+
if sub_model_dir.is_dir():
|
|
1017
|
+
rmtree(sub_model_dir)
|
|
1018
|
+
|
|
1019
|
+
|
|
1020
|
+
def prepare_dataset_configs(dataset_names: list[str]) -> list["DatasetConfig"]:
|
|
1021
|
+
"""Prepare the dataset configuration(s) to be benchmarked.
|
|
1022
|
+
|
|
1023
|
+
Args:
|
|
1024
|
+
dataset_names:
|
|
1025
|
+
The dataset names to benchmark.
|
|
1026
|
+
|
|
1027
|
+
Returns:
|
|
1028
|
+
The prepared list of model IDs.
|
|
1029
|
+
"""
|
|
1030
|
+
return [
|
|
1031
|
+
cfg for cfg in get_all_dataset_configs().values() if cfg.name in dataset_names
|
|
1032
|
+
]
|
|
1033
|
+
|
|
1034
|
+
|
|
1035
|
+
def initial_logging(
|
|
1036
|
+
model_config: "ModelConfig",
|
|
1037
|
+
dataset_config: "DatasetConfig",
|
|
1038
|
+
benchmark_config: "BenchmarkConfig",
|
|
1039
|
+
) -> None:
|
|
1040
|
+
"""Initial logging at the start of the benchmarking process.
|
|
1041
|
+
|
|
1042
|
+
Args:
|
|
1043
|
+
model_config:
|
|
1044
|
+
The configuration of the model we are evaluating.
|
|
1045
|
+
dataset_config:
|
|
1046
|
+
The configuration of the dataset we are evaluating on.
|
|
1047
|
+
benchmark_config:
|
|
1048
|
+
The general benchmark configuration.
|
|
1049
|
+
"""
|
|
1050
|
+
split_type = "validation" if not benchmark_config.evaluate_test_split else "test"
|
|
1051
|
+
if model_config.task in GENERATIVE_PIPELINE_TAGS:
|
|
1052
|
+
if benchmark_config.few_shot:
|
|
1053
|
+
eval_type = "Few-shot benchmarking"
|
|
1054
|
+
else:
|
|
1055
|
+
eval_type = "Zero-shot benchmarking"
|
|
1056
|
+
else:
|
|
1057
|
+
eval_type = "Benchmarking"
|
|
1058
|
+
logger.info(
|
|
1059
|
+
f"{eval_type} {model_config.model_id} on the {split_type} split of "
|
|
1060
|
+
f"{dataset_config.pretty_name}"
|
|
1061
|
+
)
|
|
1062
|
+
|
|
1063
|
+
if dataset_config.unofficial:
|
|
1064
|
+
logger.info(
|
|
1065
|
+
f"Note that the {dataset_config.name!r} dataset is unofficial, "
|
|
1066
|
+
"meaning that the resulting evaluation will not be included in the "
|
|
1067
|
+
"official leaderboard."
|
|
1068
|
+
)
|
|
1069
|
+
if benchmark_config.debug:
|
|
1070
|
+
logger.info(
|
|
1071
|
+
"Running in debug mode. This will output additional information, as "
|
|
1072
|
+
"well as store the model outputs in the current directory after each "
|
|
1073
|
+
"batch. For this reason, evaluation will be slower."
|
|
1074
|
+
)
|