ECOv002-calval-tables 1.6.0__py3-none-any.whl → 1.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,3 +3,4 @@ from .error_funcs import *
3
3
  from .plot_funcs import *
4
4
  from .ec_lib import *
5
5
  from .plot_single_model import *
6
+ from .upscale_to_daylight import *
@@ -6,6 +6,8 @@ import geopandas as gpd
6
6
 
7
7
  from shapely.geometry import Point
8
8
 
9
+ from .upscale_to_daylight import upscale_to_daylight
10
+
9
11
  def load_combined_eco_flux_ec_filtered() -> pd.DataFrame:
10
12
  """
11
13
  Load the filtered eddy covariance (EC) flux dataset used for ECOSTRESS Collection 2 ET product validation.
@@ -30,6 +32,7 @@ def load_metadata_ebc_filt() -> gpd.GeoDataFrame:
30
32
 
31
33
  geometry = [Point(xy) for xy in zip(df['Long'], df['Lat'])]
32
34
  gdf = gpd.GeoDataFrame(df, geometry=geometry, crs="EPSG:4326")
35
+ gdf["elevation_m"] = gdf["Elev"]
33
36
 
34
37
  return gdf
35
38
 
@@ -56,12 +59,20 @@ def load_calval_table() -> gpd.GeoDataFrame:
56
59
 
57
60
  merged_df["time_UTC"] = merged_df["eco_time_utc"]
58
61
  merged_df["ST_K"] = np.array(merged_df.LST)
59
- merged_df["ST_C"] = merged_df.ST_K - 273.15
62
+ merged_df["ST_C"] = np.array(merged_df.ST_K - 273.15)
60
63
  merged_df["Ta_C"] = np.array(merged_df.Ta)
61
64
  merged_df["SWin_Wm2"] = np.array(merged_df.Rg)
62
65
  merged_df["emissivity"] = np.array(merged_df.EmisWB)
63
66
 
67
+ merged_df["insitu_LE_Wm2"] = np.array(merged_df.LEcorr50)
68
+ merged_df["insitu_H_Wm2"] = np.array(merged_df.Hcorr50)
69
+ merged_df["insitu_Rn_Wm2"] = np.array(merged_df.NETRAD_filt)
70
+ merged_df["insitu_G_Wm2"] = np.array(merged_df.G_filt)
71
+ merged_df["insitu_SWin_Wm2"] = np.array(merged_df.SW_IN)
72
+
64
73
  # Convert merged DataFrame to GeoDataFrame
65
74
  gdf = gpd.GeoDataFrame(merged_df, geometry=merged_df["geometry"], crs="EPSG:4326")
66
75
 
76
+ gdf = upscale_to_daylight(gdf)
77
+
67
78
  return gdf
@@ -109,5 +109,6 @@ def quick_look_plot_single_model(
109
109
  fig.legend(handles=scatter_handles, loc='lower center', bbox_to_anchor=(0.5, -0.05), ncol=7, title='Vegetation Type',fontsize=10)
110
110
  # Adjust layout for better appearance
111
111
  fig.tight_layout()
112
- # Return the figure object for display in Jupyter notebooks
112
+ # Prevent automatic display in Jupyter by closing the figure before returning
113
+ plt.close(fig)
113
114
  return fig
@@ -0,0 +1,18 @@
1
+ import pandas as pd
2
+ from daylight_evapotranspiration import daylight_ET_from_instantaneous_LE
3
+
4
+ def upscale_to_daylight(df: pd.DataFrame, prefix: str = "insitu_") -> pd.DataFrame:
5
+ daylight_results = daylight_ET_from_instantaneous_LE(
6
+ LE_instantaneous_Wm2=df.insitu_LE_Wm2,
7
+ Rn_instantaneous_Wm2=df.insitu_Rn_Wm2,
8
+ G_instantaneous_Wm2=df.insitu_G_Wm2,
9
+ time_UTC=df.time_UTC,
10
+ geometry=df.geometry
11
+ )
12
+
13
+ daylight_results_prefixed = {f"{prefix}{k}": v for k, v in daylight_results.items()}
14
+
15
+ for key, value in daylight_results_prefixed.items():
16
+ df[key] = value
17
+
18
+ return df
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ECOv002-calval-tables
3
- Version: 1.6.0
3
+ Version: 1.9.0
4
4
  Summary: Priestley-Taylor Jet Propulsion Laboratory Soil Moisutre Evapotranspiration Model
5
5
  Author-email: Gregory Halverson <gregory.h.halverson@jpl.nasa.gov>, Zoe Pierrat <zoe.a.pierrat@jpl.nasa.gov>
6
6
  Project-URL: Homepage, https://github.com/gregory-halverson/ECOv002-calval-tables
@@ -9,6 +9,7 @@ Classifier: Operating System :: OS Independent
9
9
  Requires-Python: >=3.10
10
10
  Description-Content-Type: text/markdown
11
11
  License-File: LICENSE
12
+ Requires-Dist: daylight-evapotranspiration>=v1.3.4
12
13
  Requires-Dist: pandas
13
14
  Requires-Dist: geopandas
14
15
  Requires-Dist: numpy
@@ -0,0 +1,20 @@
1
+ ECOv002_calval_tables/ECOv002_calval_tables.py,sha256=6yW19Mvgg94O9rZVCRRjiefjG-a6rwRSyFt-RqiXcIo,170
2
+ ECOv002_calval_tables/__init__.py,sha256=oO0pVascuJs247UwpXq2o23wQPThM1bWEwUhSYiNzMY,60
3
+ ECOv002_calval_tables/combined_eco_flux_EC_filtered.csv,sha256=uSRv1CBMJKUWBgtMlRHB1359kiUFUL1ez2c4m7C4DxU,745225
4
+ ECOv002_calval_tables/ec_lib.py,sha256=0k7CldHMFrcq77OqsXdreJQNEVUHVMCAHmUWNo-63fA,24676
5
+ ECOv002_calval_tables/error_funcs.py,sha256=WFsoYvZyJVF-ppBn0BV2JJADPZN48OJBG2QZ6Lt3uCk,11275
6
+ ECOv002_calval_tables/load_tables.py,sha256=ArOs2wfiB5mRJecbhUH1EgfPh_HA_kvXQ8rH3loVFjI,3133
7
+ ECOv002_calval_tables/metadata_ebc_filt.csv,sha256=74AeCH5DG2Zu8ZFBXUZAW95hlsCjK9K3t6BWRRReR3s,13975
8
+ ECOv002_calval_tables/plot_funcs.py,sha256=asu43YEtWhNehBRKx5ujIiqNn6iePbXW6fC_8Tl8yzI,23988
9
+ ECOv002_calval_tables/plot_single_model.py,sha256=NDCGmY5SfjhTzoH9NKa3uSH_QLvqdWdM-J7QMxKFkpo,5890
10
+ ECOv002_calval_tables/upscale_to_daylight.py,sha256=j0QrsyCSbkLNGSWhQZ8J6ePBUIuwQrIFdP1fUvdjRoU,635
11
+ ECOv002_calval_tables/version.py,sha256=DOnf2BIAf7HAp9SIUIetrDgRoZDL0o7JuKSiC7_ZT_I,87
12
+ ecov002_calval_tables-1.9.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
13
+ tests/test_import_ECOv002_calval_tables.py,sha256=aGFA47BrECJroPH92aO5lT53TPNSd6TI1A9uNVT8pRY,74
14
+ tests/test_import_dependencies.py,sha256=zrPUyx8ikAIdpKVESnanD57T_ttXGE2lca9VoVCSBnM,339
15
+ tests/test_load_calval_table.py,sha256=1ioR2yzv8EfWEU2fSqNZv0yaJPgIn03IAOtacF1td3M,499
16
+ tests/test_load_metadata_ebc_filt.py,sha256=PrBxmR85Q_TgWHZx2sBrtvrlsoCm9FMkGFwSU1ySIVc,561
17
+ ecov002_calval_tables-1.9.0.dist-info/METADATA,sha256=kHJaEm-NN208WNqbfTq_aciKkEjlxiNguxy7SgHb1lY,3363
18
+ ecov002_calval_tables-1.9.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
19
+ ecov002_calval_tables-1.9.0.dist-info/top_level.txt,sha256=Ps10Nh0VWk-CGqZd2xXwmvGGQ-MEhNaWT0BFGId_M3I,28
20
+ ecov002_calval_tables-1.9.0.dist-info/RECORD,,
@@ -0,0 +1,2 @@
1
+ def test_import_ECOv002_calval_tables():
2
+ import ECOv002_calval_tables
@@ -0,0 +1,17 @@
1
+ import pytest
2
+
3
+ # List of dependencies
4
+ dependencies = [
5
+ "pandas",
6
+ "geopandas",
7
+ "numpy",
8
+ "sklearn",
9
+ "scipy",
10
+ "matplotlib",
11
+ "shapely"
12
+ ]
13
+
14
+ # Generate individual test functions for each dependency
15
+ @pytest.mark.parametrize("dependency", dependencies)
16
+ def test_dependency_import(dependency):
17
+ __import__(dependency)
@@ -0,0 +1,14 @@
1
+ import unittest
2
+ import geopandas as gpd
3
+ from ECOv002_calval_tables import load_calval_table
4
+
5
+ class TestLoadCalvalTable(unittest.TestCase):
6
+ def test_returns_geodataframe_with_valid_geometry(self):
7
+ gdf = load_calval_table()
8
+ self.assertIsInstance(gdf, gpd.GeoDataFrame)
9
+ self.assertIn('geometry', gdf.columns)
10
+ self.assertTrue(all(gdf.geometry.geom_type == 'Point'))
11
+ self.assertTrue(gdf.geometry.is_valid.all())
12
+
13
+ if __name__ == "__main__":
14
+ unittest.main()
@@ -0,0 +1,15 @@
1
+ import unittest
2
+ import geopandas as gpd
3
+ from ECOv002_calval_tables import load_metadata_ebc_filt
4
+
5
+ class TestLoadMetadataEbcFilt(unittest.TestCase):
6
+ def test_returns_geodataframe_with_valid_geometry(self):
7
+ gdf = load_metadata_ebc_filt()
8
+ self.assertIsInstance(gdf, gpd.GeoDataFrame)
9
+ self.assertIn('geometry', gdf.columns)
10
+ # Check all geometries are valid Points
11
+ self.assertTrue(all(gdf.geometry.geom_type == 'Point'))
12
+ self.assertTrue(gdf.geometry.is_valid.all())
13
+
14
+ if __name__ == "__main__":
15
+ unittest.main()
@@ -1,15 +0,0 @@
1
- ECOv002_calval_tables/ECOv002_calval_tables.py,sha256=k8y7TEevSX3Y6NhEU1qg_CySd-f_T4omNNJFc7ZxXcY,135
2
- ECOv002_calval_tables/__init__.py,sha256=oO0pVascuJs247UwpXq2o23wQPThM1bWEwUhSYiNzMY,60
3
- ECOv002_calval_tables/combined_eco_flux_EC_filtered.csv,sha256=uSRv1CBMJKUWBgtMlRHB1359kiUFUL1ez2c4m7C4DxU,745225
4
- ECOv002_calval_tables/ec_lib.py,sha256=0k7CldHMFrcq77OqsXdreJQNEVUHVMCAHmUWNo-63fA,24676
5
- ECOv002_calval_tables/error_funcs.py,sha256=WFsoYvZyJVF-ppBn0BV2JJADPZN48OJBG2QZ6Lt3uCk,11275
6
- ECOv002_calval_tables/load_tables.py,sha256=m9UEz07yIrM-m2PaYv2g_TnBLN5Wjg7yUuMzs-T25Gk,2685
7
- ECOv002_calval_tables/metadata_ebc_filt.csv,sha256=74AeCH5DG2Zu8ZFBXUZAW95hlsCjK9K3t6BWRRReR3s,13975
8
- ECOv002_calval_tables/plot_funcs.py,sha256=asu43YEtWhNehBRKx5ujIiqNn6iePbXW6fC_8Tl8yzI,23988
9
- ECOv002_calval_tables/plot_single_model.py,sha256=1McpBLyLm8oM-7wA0sDEgEQY_AM_8aisxcDUuKPBrDM,5853
10
- ECOv002_calval_tables/version.py,sha256=DOnf2BIAf7HAp9SIUIetrDgRoZDL0o7JuKSiC7_ZT_I,87
11
- ecov002_calval_tables-1.6.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
12
- ecov002_calval_tables-1.6.0.dist-info/METADATA,sha256=_bQvh2W1unTzjawE2rtBYJX1Vb252MVH4pa6AxSOWNg,3312
13
- ecov002_calval_tables-1.6.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
14
- ecov002_calval_tables-1.6.0.dist-info/top_level.txt,sha256=ePbA84g_XQHWQUAQEVo6gmyuW0WLUzPg2IfHyoGqUqg,22
15
- ecov002_calval_tables-1.6.0.dist-info/RECORD,,