DiadFit 1.0.2__py3-none-any.whl → 1.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
DiadFit/H2O_fitting.py CHANGED
@@ -872,13 +872,14 @@ fit_sil='poly', dpi=200):
872
872
  ydat_sil=y_corr_sil
873
873
 
874
874
  xspace_sil=xdat_sil[1]-xdat_sil[0]
875
- area_trap = trapezoid(y_corr_sil, dx=xspace_sil)
875
+ area_trap = trapz(y_corr_sil, dx=xspace_sil)
876
876
  area_simps = simpson(y_corr_sil, dx=xspace_sil)
877
+
877
878
  # Just the LW area
878
879
  xsil_LW=xdat_sil[(xdat_sil>LW[0]) & (xdat_sil<LW[1])]
879
880
  y_corr_sil_LW=y_corr_sil[(xdat_sil>LW[0]) & (xdat_sil<LW[1])]
880
881
  xspace_sil_LW=xsil_LW[1]-xsil_LW[0]
881
- area_trap_LW=trapezoid(y_corr_sil_LW, dx=xspace_sil_LW)
882
+ area_trap_LW=trapz(y_corr_sil_LW, dx=xspace_sil_LW)
882
883
  area_simp_LW=simpson(y_corr_sil_LW, dx=xspace_sil_LW)
883
884
 
884
885
 
@@ -886,7 +887,7 @@ fit_sil='poly', dpi=200):
886
887
  xsil_HW=xdat_sil[(xdat_sil>HW[0]) & (xdat_sil<HW[1])]
887
888
  y_corr_sil_HW=y_corr_sil[(xdat_sil>HW[0]) & (xdat_sil<HW[1])]
888
889
  xspace_sil_HW=xsil_HW[1]-xsil_HW[0]
889
- area_trap_HW=trapezoid(y_corr_sil_HW, dx=xspace_sil_HW)
890
+ area_trap_HW=trapz(y_corr_sil_HW, dx=xspace_sil_HW)
890
891
  area_simp_HW=simpson(y_corr_sil_HW, dx=xspace_sil_HW)
891
892
 
892
893
  # MW
@@ -894,7 +895,7 @@ fit_sil='poly', dpi=200):
894
895
  xsil_MW=xdat_sil[(xdat_sil>MW[0]) & (xdat_sil<MW[1])]
895
896
  y_corr_sil_MW=y_corr_sil[(xdat_sil>MW[0]) & (xdat_sil<MW[1])]
896
897
  xspace_sil_MW=xsil_MW[1]-xsil_MW[0]
897
- area_trap_MW=trapezoid(y_corr_sil_MW, dx=xspace_sil_MW)
898
+ area_trap_MW=trapz(y_corr_sil_MW, dx=xspace_sil_MW)
898
899
  area_simp_MW=simpson(y_corr_sil_MW, dx=xspace_sil_MW)
899
900
 
900
901
 
@@ -966,8 +967,8 @@ fit_sil='poly', dpi=200):
966
967
  'Silicate_Simpson_Area': area_simps,
967
968
  'LW_Silicate_Trapezoid_Area':area_trap_LW,
968
969
  'LW_Silicate_Simpson_Area':area_simp_LW,
969
- 'HW_Silicate_Trapezoid_Area':area_trap_LW,
970
- 'HW_Silicate_Simpson_Area':area_simp_LW,
970
+ 'HW_Silicate_Trapezoid_Area':area_trap_HW,
971
+ 'HW_Silicate_Simpson_Area':area_simp_HW,
971
972
  }, index=[0])
972
973
 
973
974
  if MW is not None:
@@ -1039,7 +1040,8 @@ def fit_area_for_water_region(*, path, filename, Spectra=None, config1: water_bc
1039
1040
  Returns
1040
1041
  -------
1041
1042
  pd.DataFrame
1042
- DataFrame with columns for 'Water_Trapezoid_Area', 'Water_Simpson_Area', as well as parameters for the selected background positions
1043
+ DataFrame with columns for different areas, and parameters for choosen background positions.
1044
+
1043
1045
 
1044
1046
  """
1045
1047
  Water=Spectra
@@ -1155,7 +1157,7 @@ def fit_area_for_water_region(*, path, filename, Spectra=None, config1: water_bc
1155
1157
 
1156
1158
 
1157
1159
  xspace_water=xdat_water[1]-xdat_water[0]
1158
- area_trap = trapezoid(y_corr_water, dx=xspace_water)
1160
+ area_trap = trapz(y_corr_water, dx=xspace_water)
1159
1161
  area_simps = simpson(y_corr_water, dx=xspace_water)
1160
1162
 
1161
1163
 
@@ -1242,10 +1244,12 @@ def stitch_dataframes_together(df_sil, df_water, MI_file, Host_file=None, save_
1242
1244
  Returns
1243
1245
  -----------
1244
1246
  pd.DataFrame
1245
- DataFrame with columns for MI filename, HW:LW_Trapezoid, HW:LW_Simpson, Water_Trapezoid_Area,
1246
- Water_Simpson_Area, Silicate_Trapezoid_Area, and Silicate_Simpson_Area.
1247
- If Host_file is provided,
1248
- the DataFrame will also include a column for Host filename.
1247
+ DataFrame with columns for MI filename,
1248
+ Silicate_Trapezoid_Area, Silicate_Simpson_Area = Total Silicate Area using trapezoid or Simpson method
1249
+ LW_Trapezoid_Area, LW_Simpson_Area,  MW_Trapezoid_Area, MW_Simpson_Area, HW_Trapezoid_Area, HW_Simpson_Area = Areas of LW, MW and HW Silicate areas (following Shiavi) using Trapezoid or Simpson integration methodWater_Trapezoid_area,
1250
+ Water_Simpson_area = Total area under water peak using Simpson or Trapezoid Integration method.
1251
+ Water_to_HW_ratio_Simpson, Water_to_HW_ratio_Trapezoid: Ratio of Total water area divided by the HW silicate area
1252
+ Water_to_Total_Silicate_ratio_Simpson, Water_to_Total_Silicate_ratio_Trapezoid: Ratio of Total water area divided by the HW silicate area
1249
1253
 
1250
1254
 
1251
1255
  """
@@ -1253,16 +1257,20 @@ def stitch_dataframes_together(df_sil, df_water, MI_file, Host_file=None, save_
1253
1257
  if Host_file is not None:
1254
1258
  Combo_Area.insert(0, 'Host filename', Host_file)
1255
1259
  Combo_Area.insert(1, 'MI filename', MI_file)
1256
- Combo_Area.insert(2, 'HW:LW_Trapezoid',
1260
+ Combo_Area.insert(2, 'Water_to_HW_ratio_Trapezoid',
1257
1261
  Combo_Area['Water_Trapezoid_Area']/Combo_Area['HW_Silicate_Trapezoid_Area'])
1258
- Combo_Area.insert(3, 'HW:LW_Simpson',
1262
+ Combo_Area.insert(3, 'Water_to_HW_ratio_Simpson',
1259
1263
  Combo_Area['Water_Simpson_Area']/Combo_Area['HW_Silicate_Simpson_Area'])
1264
+ Combo_Area.insert(4, 'Water_to_Total_Silicate_ratio_Trapezoid',
1265
+ Combo_Area['Water_Trapezoid_Area']/Combo_Area['Silicate_Trapezoid_Area'])
1266
+ Combo_Area.insert(5, 'Water_to_Total_Silicate_ratio_Simpson',
1267
+ Combo_Area['Water_Simpson_Area']/Combo_Area['Silicate_Simpson_Area'])
1260
1268
 
1261
1269
  if Host_file is not None:
1262
- cols_to_move=['Host filename', 'MI filename', 'HW:LW_Trapezoid', 'HW:LW_Simpson',
1270
+ cols_to_move=['Host filename', 'MI filename', 'Water_to_HW_ratio_Trapezoid', 'Water_to_HW_ratio_Simpson', 'Water_to_Total_Silicate_ratio_Trapezoid', 'Water_to_Total_Silicate_ratio_Simpson',
1263
1271
  'Water_Trapezoid_Area', 'Water_Simpson_Area', 'Silicate_Trapezoid_Area', 'Silicate_Simpson_Area']
1264
1272
  else:
1265
- cols_to_move=['MI filename', 'HW:LW_Trapezoid', 'HW:LW_Simpson',
1273
+ cols_to_move=['MI filename', 'Water_to_HW_ratio_Trapezoid', 'Water_to_HW_ratio_Simpson', 'Water_to_Total_Silicate_ratio_Trapezoid', 'Water_to_Total_Silicate_ratio_Simpson',
1266
1274
  'Water_Trapezoid_Area', 'Water_Simpson_Area', 'Silicate_Trapezoid_Area', 'Silicate_Simpson_Area']
1267
1275
 
1268
1276
 
DiadFit/_version.py CHANGED
@@ -5,4 +5,4 @@
5
5
  # 1) we don't load dependencies by storing it in __init__.py
6
6
  # 2) we can import it in setup.py for the same reason
7
7
  # 3) we can import it into your module
8
- __version__ = '1.0.2'
8
+ __version__ = '1.0.5'
DiadFit/densimeters.py CHANGED
@@ -267,8 +267,8 @@ def propagate_error_split_neon_peakfit(*, df_fits, Ne_corr=None, Ne_err=None, pr
267
267
 
268
268
 
269
269
  # Get the peak fit errors
270
- Diad1_err=df_fits['Diad1_cent_err'].fillna(0)
271
- Diad2_err=df_fits['Diad2_cent_err'].fillna(0)
270
+ Diad1_err=df_fits['Diad1_cent_err'].fillna(0).infer_objects()
271
+ Diad2_err=df_fits['Diad2_cent_err'].fillna(0).infer_objects()
272
272
  split_err=(Diad1_err**2 + Diad2_err**2)**0.5
273
273
  Combo_err= (((df_fits['Splitting']* (Ne_err))**2) + (pref_Ne *split_err )**2 )**0.5
274
274
 
DiadFit/diads.py CHANGED
@@ -7,6 +7,7 @@ from lmfit.models import GaussianModel, VoigtModel, LinearModel, ConstantModel,
7
7
  from scipy.signal import find_peaks
8
8
  from scipy.signal.windows import gaussian
9
9
 
10
+
10
11
  import os
11
12
  import re
12
13
  from os import listdir
@@ -21,6 +22,7 @@ from scipy.integrate import trapezoid
21
22
  from scipy.integrate import simpson
22
23
  from scipy.interpolate import interp1d
23
24
 
25
+
24
26
  # Allowed models
25
27
 
26
28
  allowed_models = ["VoigtModel", "PseudoVoigtModel", "Pearson4Model", "SkewedVoigtModel"]
@@ -2549,7 +2551,7 @@ def fit_gaussian_voigt_generic_diad(config1, *, diad1=False, diad2=False, path=N
2549
2551
  # Final check - that Gaussian isnt anywhere near the height of the diad
2550
2552
 
2551
2553
 
2552
- df_out=df_out.fillna(0)
2554
+ df_out=df_out.fillna(0).infer_objects()
2553
2555
 
2554
2556
  return result, df_out, y_best_fit, x_lin, components, xdat, ydat, ax1_xlim, ax2_xlim, residual_diad_coords, ydat_inrange, xdat_inrange
2555
2557
 
DiadFit/ne_lines.py CHANGED
@@ -1531,9 +1531,9 @@ plot_figure=True, loop=True,
1531
1531
 
1532
1532
  df_combo=df
1533
1533
  pk1_peak_cent_values = df_combo['pk1_peak_cent'].values
1534
- pk1_peak_cent_errors = df_combo['error_pk1'].fillna(0).values
1534
+ pk1_peak_cent_errors = df_combo['error_pk1'].fillna(0).infer_objects().values
1535
1535
  pk2_peak_cent_values = df_combo['pk2_peak_cent'].values
1536
- pk2_peak_cent_errors = df_combo['error_pk2'].fillna(0).values
1536
+ pk2_peak_cent_errors = df_combo['error_pk2'].fillna(0).infer_objects().values
1537
1537
 
1538
1538
  constant=df_combo['deltaNe']
1539
1539
 
@@ -1568,7 +1568,7 @@ def plot_Ne_corrections(df=None, x_axis=None, x_label='index', marker='o', mec='
1568
1568
 
1569
1569
  # Pk1 center vs. X
1570
1570
 
1571
- ax5.errorbar(x, df['pk1_peak_cent'], xerr=0, yerr=df['error_pk1'].fillna(0),
1571
+ ax5.errorbar(x, df['pk1_peak_cent'], xerr=0, yerr=df['error_pk1'].fillna(0).infer_objects(),
1572
1572
  fmt='o', ecolor='k', elinewidth=0.8, mfc='b', ms=5, mec='k', capsize=3)
1573
1573
  ax5.set_xlabel(x_label)
1574
1574
  ax5.set_ylabel('Peak 1 center')
@@ -1576,15 +1576,15 @@ def plot_Ne_corrections(df=None, x_axis=None, x_label='index', marker='o', mec='
1576
1576
  # Pk2 center vs. X
1577
1577
 
1578
1578
  ax6.plot(x, df['pk2_peak_cent'], marker, mec='k', mfc='r')
1579
- ax6.errorbar(x, df['pk2_peak_cent'], xerr=0, yerr=df['error_pk2'].fillna(0),
1579
+ ax6.errorbar(x, df['pk2_peak_cent'], xerr=0, yerr=df['error_pk2'].fillna(0).infer_objects(),
1580
1580
  fmt='o', ecolor='k', elinewidth=0.8, mfc='r', ms=5, mec='k', capsize=3)
1581
1581
 
1582
1582
  ax6.set_xlabel(x_label)
1583
1583
  ax6.set_ylabel('Peak 2 center')
1584
1584
 
1585
1585
  #
1586
- ax3.errorbar(df['Ne_Corr'], df['pk2_peak_cent'], xerr=df['1σ_Ne_Corr'].fillna(0),
1587
- yerr=df['error_pk2'].fillna(0),
1586
+ ax3.errorbar(df['Ne_Corr'], df['pk2_peak_cent'], xerr=df['1σ_Ne_Corr'].fillna(0).infer_objects(),
1587
+ yerr=df['error_pk2'].fillna(0).infer_objects(),
1588
1588
  fmt='o', ecolor='k', elinewidth=0.8, mfc='b', ms=5, mec='k', capsize=3)
1589
1589
 
1590
1590
 
@@ -1592,14 +1592,14 @@ def plot_Ne_corrections(df=None, x_axis=None, x_label='index', marker='o', mec='
1592
1592
  ax3.set_ylabel('Peak 2 center')
1593
1593
 
1594
1594
 
1595
- ax4.errorbar(df['Ne_Corr'], df['pk1_peak_cent'], xerr=df['1σ_Ne_Corr'].fillna(0),
1596
- yerr=df['error_pk1'].fillna(0),
1595
+ ax4.errorbar(df['Ne_Corr'], df['pk1_peak_cent'], xerr=df['1σ_Ne_Corr'].fillna(0).infer_objects(),
1596
+ yerr=df['error_pk1'].fillna(0).infer_objects(),
1597
1597
  fmt='o', ecolor='k', elinewidth=0.8, mfc='b', ms=5, mec='k', capsize=3)
1598
1598
  ax4.set_xlabel('Ne Correction factor')
1599
1599
  ax4.set_ylabel('Peak 1 center')
1600
1600
 
1601
1601
  # Ne correction factor vs. time
1602
- ax1.errorbar(x, df['Ne_Corr'], xerr=0, yerr=df['1σ_Ne_Corr'].fillna(0),
1602
+ ax1.errorbar(x, df['Ne_Corr'], xerr=0, yerr=df['1σ_Ne_Corr'].fillna(0).infer_objects(),
1603
1603
  fmt='o', ecolor='k', elinewidth=0.8, mfc='grey', ms=5, mec='k',capsize=3)
1604
1604
 
1605
1605
  ax1.set_ylabel('Ne Correction factor')
DiadFit/relaxifi.py CHANGED
@@ -493,13 +493,27 @@ def stretch_at_constant_Pext(*,R_m,b_m,T_K,EOS='SW96',Pinternal_MPa,Pexternal_MP
493
493
  results = pd.DataFrame([{'Time(s)': 0,
494
494
  'Step':0,
495
495
  'dt(s)':0,
496
- 'Pexternal(MPa)': Pexternal_MPa,
497
- 'Pinternal(MPa)': Pinternal_MPa,
498
- 'dR/dt(m/s)': calculate_dR_dt(R_m=R_m, b_m=b_m, Pinternal_MPa=Pinternal_MPa, Pexternal_MPa=Pexternal_MPa, T_K=T_K),
499
- 'Fi_radius(μm)': R_m*10**6,
500
- 'b (distance to xtal rim -μm)':b_m*10**6,
496
+ 'Pexternal(MPa)': float(Pexternal_MPa),
497
+ 'Pinternal(MPa)': float(Pinternal_MPa),
498
+ 'dR/dt(m/s)': float(calculate_dR_dt(R_m=R_m, b_m=b_m, Pinternal_MPa=Pinternal_MPa, Pexternal_MPa=Pexternal_MPa, T_K=T_K)),
499
+ 'Fi_radius(μm)': float(R_m*10**6),
500
+ 'b (distance to xtal rim -μm)':float(b_m*10**6),
501
501
  '\u0394R/R0 (fractional change in radius)':0,
502
- 'CO2_dens_gcm3': CO2_dens_initial}], index=range(steps))
502
+ 'CO2_dens_gcm3': float(CO2_dens_initial)}], index=range(steps))
503
+
504
+ results = results.astype({
505
+ 'Time(s)': 'float64',
506
+ 'Step': 'int64',
507
+ 'dt(s)': 'float64',
508
+ 'Pexternal(MPa)': 'float64',
509
+ 'Pinternal(MPa)': 'float64',
510
+ 'dR/dt(m/s)': 'float64',
511
+ 'Fi_radius(μm)': 'float64',
512
+ 'b (distance to xtal rim -μm)': 'float64',
513
+ '\u0394R/R0 (fractional change in radius)': 'float64',
514
+ 'CO2_dens_gcm3': 'float64'
515
+ })
516
+
503
517
 
504
518
  dt_s=totaltime_s/steps
505
519
 
@@ -515,9 +529,10 @@ def stretch_at_constant_Pext(*,R_m,b_m,T_K,EOS='SW96',Pinternal_MPa,Pexternal_MP
515
529
  if update_b==True:
516
530
  b_m=1000*R_m
517
531
 
518
- results.loc[step] = [step * dt_s, step, dt_s, Pexternal_MPa, Pinternal_MPa, dR_dt, R_m * 10 ** 6, b_m * 10 ** 6,
519
- (R_m * 10 ** 6 - results.loc[0, 'Fi_radius(μm)']) / results.loc[0, 'Fi_radius(μm)'],
520
- CO2_dens_new]
532
+ results.loc[step] = [float(step * dt_s), int(step), float(dt_s), float(Pexternal_MPa), float(Pinternal_MPa),
533
+ float(dR_dt), float(R_m * 10 ** 6), float(b_m * 10 ** 6),
534
+ float((R_m * 10 ** 6 - results.loc[0, 'Fi_radius(μm)']) / results.loc[0, 'Fi_radius(μm)']),
535
+ float(CO2_dens_new)]
521
536
 
522
537
  if report_results == 'startendonly':
523
538
  results.drop(index=list(range(1, results.shape[0] - 1)), inplace=True) # Drop all rows except first and last
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 1.0.2
3
+ Version: 1.0.5
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
@@ -12,11 +12,11 @@ Classifier: Operating System :: OS Independent
12
12
  Requires-Python: >=3.8
13
13
  Description-Content-Type: text/markdown
14
14
  Requires-Dist: pandas
15
- Requires-Dist: numpy <2
15
+ Requires-Dist: numpy<2
16
16
  Requires-Dist: matplotlib
17
17
  Requires-Dist: scikit-learn
18
- Requires-Dist: scipy >1.6
19
- Requires-Dist: lmfit >=1.1.0
18
+ Requires-Dist: scipy>1.6
19
+ Requires-Dist: lmfit>=1.1.0
20
20
  Requires-Dist: tqdm
21
21
  Requires-Dist: python-docx
22
22
 
@@ -1,6 +1,6 @@
1
1
  DiadFit/CO2_EOS.py,sha256=H2_th8DP5m9oJ-IZCg9XncuOogQy_AE8ihiT-4zlIOo,74170
2
2
  DiadFit/CO2_in_bubble_error.py,sha256=Nq5YEf2oa2rWRreEPXl2lEA86NXOGvll0Gca2AOu_RE,21224
3
- DiadFit/H2O_fitting.py,sha256=ZOLWL8j7HQYKlx1-ISm1twvH34jhrGFwukU8ElRj0Dw,43920
3
+ DiadFit/H2O_fitting.py,sha256=XLNNgqmiIyj-ysRQeQFnk08Dlr6tFHFySY3Z-wEadxs,44914
4
4
  DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
5
5
  DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=oBOarETLyfq2DJhYGQrJofgHjvRMLamE6G2b7EE5m-Y,1213
6
6
  DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl,sha256=OG1qip_xU1hl3xp3HC8e9_2497-KYEV3Xz3mx0gdJ4Y,1213
@@ -29,21 +29,21 @@ DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrY
29
29
  DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
30
30
  DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
31
31
  DiadFit/__init__.py,sha256=F-HjhCYKL_U8PfiH8tZ9DUCkxPvo6lAslJS4fyvxkbY,1148
32
- DiadFit/_version.py,sha256=X0PLLhZnpIdwlS5nJADl6Y4cVKJ40aHv2hvu4kkgAGQ,295
32
+ DiadFit/_version.py,sha256=599vLXXrjZtWlaxUrZujLY2-Ub1qzeOKj5Sk5VZAYKo,295
33
33
  DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
34
34
  DiadFit/cosmicray_filter.py,sha256=a45x2_nmpi9Qcjc_L39UA9JOd1NMorIjtTRGnCdG3MU,23634
35
35
  DiadFit/densimeter_fitting.py,sha256=zEyCwq1zDV3z6-MIu-eZqgp3YQPUGqwZiKczN3-22LQ,8247
36
- DiadFit/densimeters.py,sha256=p3jY9709vKegCfWZIwoU4Rt5jFfwJJQobLb71AXUxAY,55250
36
+ DiadFit/densimeters.py,sha256=pSD8s9_9949bjWTbXU6SwoNgvsVBKGfQVf-JYMMtjrs,55282
37
37
  DiadFit/density_depth_crustal_profiles.py,sha256=b072IJaoGDydKpqWWKoJHeXKIkcIXxKf82whpvLAPpw,17761
38
- DiadFit/diads.py,sha256=RWFesTt_W52u_-N9Cr2VtHuKrR038XKf3-dDLx5CNYY,180888
38
+ DiadFit/diads.py,sha256=ELG6wgEaGCYFj0IeA2F9QasYNmMVmFOi0rOl0oXv1pU,180906
39
39
  DiadFit/error_propagation.py,sha256=ipYI-Nwjv4f0sBdUiGeYV4wLcLGUXzKRrquNnc72d3c,50620
40
40
  DiadFit/importing_data_files.py,sha256=0Cx_CKJZR8efssMzQit0aPRh_rsjQFGXgLtI285FW_k,41961
41
41
  DiadFit/lookup_table.csv,sha256=Hs1tmSQ9ArTUDv3ymEXbvnLlPBxYUP0P51dz7xAKk-Q,2946857
42
42
  DiadFit/lookup_table_noneg.csv,sha256=HelvewKbBy4cqT2GAqsMo-1ps1lBYqZ-8hCJZWPGfhI,3330249
43
43
  DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
44
- DiadFit/ne_lines.py,sha256=6z9oo4lgh0iYv1mkSscgzCt_Pe4gQTnquG99pR6cJS8,63811
45
- DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
46
- DiadFit-1.0.2.dist-info/METADATA,sha256=EjFCY1urZhZ_wc2Wxb8f0NC8gNgV-JaFY1ShqDBpnoQ,1174
47
- DiadFit-1.0.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
48
- DiadFit-1.0.2.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
49
- DiadFit-1.0.2.dist-info/RECORD,,
44
+ DiadFit/ne_lines.py,sha256=in27yyvtlONf80KA2SREJ8xEemHvYTiWmd2-LOeJ7Tk,63955
45
+ DiadFit/relaxifi.py,sha256=ZJ1LPWU1qKM8kU1ym4Ltp8skI_lMlhbCVhW6C1UhLb8,32109
46
+ DiadFit-1.0.5.dist-info/METADATA,sha256=rz8zJHYmknOrLusf8A65vAdHe3-T3JeTriprj6FT4RI,1171
47
+ DiadFit-1.0.5.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
48
+ DiadFit-1.0.5.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
49
+ DiadFit-1.0.5.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: bdist_wheel (0.44.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5