DiadFit 1.0.0__py3-none-any.whl → 1.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
DiadFit/CO2_EOS.py CHANGED
@@ -1028,7 +1028,7 @@ def ensure_series(a, b, c):
1028
1028
  else:
1029
1029
  c = pd.Series(c)
1030
1030
 
1031
- return a, b, c
1031
+ return a.reset_index(drop=True), b.reset_index(drop=True), c.reset_index(drop=True)
1032
1032
 
1033
1033
 
1034
1034
  def ensure_series_4(a, b, c, d):
@@ -1061,7 +1061,7 @@ def ensure_series_4(a, b, c, d):
1061
1061
  else:
1062
1062
  d = pd.Series(d)
1063
1063
 
1064
- return a, b, c, d
1064
+ return a.reset_index(drop=True), b.reset_index(drop=True), c.reset_index(drop=True), d.reset_index(drop=True)
1065
1065
 
1066
1066
 
1067
1067
 
@@ -2064,9 +2064,13 @@ def calculate_entrapment_P_XH2O(*, XH2O, CO2_dens_gcm3, T_K, T_K_ambient=37+273.
2064
2064
 
2065
2065
 
2066
2066
  """
2067
+
2067
2068
  XH2O, rho_meas, T_K=ensure_series(a=XH2O, b=CO2_dens_gcm3, c=T_K)
2068
2069
  alpha=XH2O/(1-XH2O)
2069
2070
 
2071
+ # All inputs 194 up to here
2072
+
2073
+
2070
2074
  # IF water is lost
2071
2075
  rho_orig_H_loss=rho_meas*(1+alpha*(18/44))
2072
2076
  # IF water isnt lost
@@ -2083,11 +2087,23 @@ def calculate_entrapment_P_XH2O(*, XH2O, CO2_dens_gcm3, T_K, T_K_ambient=37+273.
2083
2087
 
2084
2088
  # calculate density of H2O using EOS
2085
2089
  H2O_dens=calculate_rho_for_P_T_H2O(P_kbar=P_H2O,T_K=T_K_ambient)
2090
+ H2O_dens=H2O_dens.reset_index(drop=True)
2086
2091
 
2087
2092
  # Calculate the bulk density by re-arranging the two volume equations
2088
2093
  nan_mask = H2O_dens==0
2089
- rho_orig_no_H_loss=(CO2_dens_gcm3*H2O_dens)/((1-XH2O_mass)*H2O_dens+XH2O_mass*CO2_dens_gcm3)
2090
- rho_orig_no_H_loss = np.where(nan_mask, CO2_dens_gcm3, rho_orig_no_H_loss)
2094
+
2095
+ # Debugging
2096
+
2097
+
2098
+
2099
+
2100
+ rho_orig_no_H_loss=(rho_meas*H2O_dens)/((1-XH2O_mass)*H2O_dens+XH2O_mass*rho_meas)
2101
+
2102
+
2103
+
2104
+
2105
+ rho_orig_no_H_loss = np.where(nan_mask, rho_meas, rho_orig_no_H_loss)
2106
+
2091
2107
 
2092
2108
 
2093
2109
 
@@ -159,7 +159,7 @@ plot_figure=True, fig_i=0, neg_values=True):
159
159
 
160
160
  # This is the function doing the work to actually make the simulations for each variable.
161
161
  if error_vol_perc_bub is not None:
162
- print('didnt get inside else loop')
162
+
163
163
 
164
164
  df_synthetic=propagate_CO2_in_bubble_ind(
165
165
  N_dup=N_dup,
DiadFit/H2O_fitting.py CHANGED
@@ -10,7 +10,7 @@ from dataclasses import dataclass
10
10
  from typing import Tuple, Optional
11
11
  from DiadFit.importing_data_files import *
12
12
  from numpy import trapz
13
- from scipy.integrate import simps
13
+ from scipy.integrate import simpson
14
14
  ##
15
15
  def extract_xstal_MI_name(*, files, char_xstal, pos_xstal, char_MI, pos_MI,
16
16
  prefix=True, str_prefix=" ", file_ext='.txt'):
@@ -872,30 +872,30 @@ fit_sil='poly', dpi=200):
872
872
  ydat_sil=y_corr_sil
873
873
 
874
874
  xspace_sil=xdat_sil[1]-xdat_sil[0]
875
- area_trap = trapz(y_corr_sil, dx=xspace_sil)
876
- area_simps = simps(y_corr_sil, dx=xspace_sil)
875
+ area_trap = trapezoid(y_corr_sil, dx=xspace_sil)
876
+ area_simps = simpson(y_corr_sil, dx=xspace_sil)
877
877
  # Just the LW area
878
878
  xsil_LW=xdat_sil[(xdat_sil>LW[0]) & (xdat_sil<LW[1])]
879
879
  y_corr_sil_LW=y_corr_sil[(xdat_sil>LW[0]) & (xdat_sil<LW[1])]
880
880
  xspace_sil_LW=xsil_LW[1]-xsil_LW[0]
881
- area_trap_LW=trapz(y_corr_sil_LW, dx=xspace_sil_LW)
882
- area_simp_LW=simps(y_corr_sil_LW, dx=xspace_sil_LW)
881
+ area_trap_LW=trapezoid(y_corr_sil_LW, dx=xspace_sil_LW)
882
+ area_simp_LW=simpson(y_corr_sil_LW, dx=xspace_sil_LW)
883
883
 
884
884
 
885
885
  # Just the HW area
886
886
  xsil_HW=xdat_sil[(xdat_sil>HW[0]) & (xdat_sil<HW[1])]
887
887
  y_corr_sil_HW=y_corr_sil[(xdat_sil>HW[0]) & (xdat_sil<HW[1])]
888
888
  xspace_sil_HW=xsil_HW[1]-xsil_HW[0]
889
- area_trap_HW=trapz(y_corr_sil_HW, dx=xspace_sil_HW)
890
- area_simp_HW=simps(y_corr_sil_HW, dx=xspace_sil_HW)
889
+ area_trap_HW=trapezoid(y_corr_sil_HW, dx=xspace_sil_HW)
890
+ area_simp_HW=simpson(y_corr_sil_HW, dx=xspace_sil_HW)
891
891
 
892
892
  # MW
893
893
  if MW is not None:
894
894
  xsil_MW=xdat_sil[(xdat_sil>MW[0]) & (xdat_sil<MW[1])]
895
895
  y_corr_sil_MW=y_corr_sil[(xdat_sil>MW[0]) & (xdat_sil<MW[1])]
896
896
  xspace_sil_MW=xsil_MW[1]-xsil_MW[0]
897
- area_trap_MW=trapz(y_corr_sil_MW, dx=xspace_sil_MW)
898
- area_simp_MW=simps(y_corr_sil_MW, dx=xspace_sil_MW)
897
+ area_trap_MW=trapezoid(y_corr_sil_MW, dx=xspace_sil_MW)
898
+ area_simp_MW=simpson(y_corr_sil_MW, dx=xspace_sil_MW)
899
899
 
900
900
 
901
901
  # Plotting what its doing
@@ -1155,8 +1155,8 @@ def fit_area_for_water_region(*, path, filename, Spectra=None, config1: water_bc
1155
1155
 
1156
1156
 
1157
1157
  xspace_water=xdat_water[1]-xdat_water[0]
1158
- area_trap = trapz(y_corr_water, dx=xspace_water)
1159
- area_simps = simps(y_corr_water, dx=xspace_water)
1158
+ area_trap = trapezoid(y_corr_water, dx=xspace_water)
1159
+ area_simps = simpson(y_corr_water, dx=xspace_water)
1160
1160
 
1161
1161
 
1162
1162
  # Plotting what its doing
DiadFit/_version.py CHANGED
@@ -5,4 +5,4 @@
5
5
  # 1) we don't load dependencies by storing it in __init__.py
6
6
  # 2) we can import it in setup.py for the same reason
7
7
  # 3) we can import it into your module
8
- __version__ = '1.0.0'
8
+ __version__ = '1.0.2'
DiadFit/densimeters.py CHANGED
@@ -944,20 +944,29 @@ def merge_fit_files(path):
944
944
 
945
945
  if os.path.exists(os.path.join(path, 'Weak_Diads.xlsx')):
946
946
  grp1 = pd.read_excel(os.path.join(path, 'Weak_Diads.xlsx'))
947
+ grp1['Standard']='No'
947
948
  else:
948
949
  grp1 = None
949
950
 
950
951
  if os.path.exists(os.path.join(path, 'Medium_Diads.xlsx')):
951
952
  grp2 = pd.read_excel(os.path.join(path, 'Medium_Diads.xlsx'))
953
+ grp2['Standard']='No'
952
954
  else:
953
955
  grp2 = None
954
956
 
955
957
  if os.path.exists(os.path.join(path, 'Strong_Diads.xlsx')):
956
958
  grp3 = pd.read_excel(os.path.join(path, 'Strong_Diads.xlsx'))
959
+ grp3['Standard']='No'
957
960
  else:
958
961
  grp3 = None
962
+
963
+ if os.path.exists(os.path.join(path, 'Std_Diads.xlsx')):
964
+ grp4 = pd.read_excel(os.path.join(path, 'Std_Diads.xlsx'))
965
+ grp4['Standard']='Yes'
966
+ else:
967
+ grp4 = None
959
968
 
960
- df2 = pd.concat([grp1, grp2, grp3], axis=0).reset_index(drop=True)
969
+ df2 = pd.concat([grp1, grp2, grp3, grp4], axis=0).reset_index(drop=True)
961
970
 
962
971
  if discard is not None:
963
972
  discard_cols=discard[discard.columns.intersection(df2.columns)]
DiadFit/diads.py CHANGED
@@ -17,8 +17,8 @@ from dataclasses import dataclass
17
17
  import matplotlib.patches as patches
18
18
  import warnings as w
19
19
  from tqdm import tqdm
20
- from numpy import trapz
21
- from scipy.integrate import simps
20
+ from scipy.integrate import trapezoid
21
+ from scipy.integrate import simpson
22
22
  from scipy.interpolate import interp1d
23
23
 
24
24
  # Allowed models
@@ -725,7 +725,7 @@ def plot_peak_params(fit_params,
725
725
  def filter_splitting_prominence(*, fit_params, data_y_all,
726
726
  x_cord,
727
727
  splitting_limits=[100, 107],
728
- lower_diad1_prom=10, exclude_str):
728
+ lower_diad1_prom=10, exclude_str=None, str_filt=None):
729
729
  """ Filters Spectra based on approximate splitting, draws a plot showing spectra to discard and those to keep
730
730
 
731
731
  Parameters
@@ -746,6 +746,12 @@ def filter_splitting_prominence(*, fit_params, data_y_all,
746
746
  Only keeps spectra that meet the splitting parameter, and have an absolute
747
747
  diad1 prominence greater than this value (helps filter out other weird spectra)
748
748
 
749
+ exclude_str: str
750
+ Excludes files with this string.
751
+
752
+ str_filt: str
753
+ Filters just based on string in filename
754
+
749
755
  Returns
750
756
  --------------
751
757
  fit_params_filt: pd.DataFrame
@@ -759,21 +765,30 @@ def filter_splitting_prominence(*, fit_params, data_y_all,
759
765
 
760
766
 
761
767
  """
768
+ if str_filt is not None:
769
+ filt=fit_params['filename'].str.contains(str_filt)
762
770
 
763
- reas_split=(fit_params['approx_split'].between(splitting_limits[0], splitting_limits[1]))
764
- reas_heigh=fit_params['Diad1_abs_prom']>lower_diad1_prom
765
- if exclude_str is not None:
766
- name_in_file=~fit_params['filename'].str.contains(exclude_str)
767
771
  else:
768
- name_in_file=reas_heigh
769
772
 
770
- fit_params_filt=fit_params.loc[(reas_split&reas_heigh&name_in_file)].reset_index(drop=True)
771
- fit_params_disc=fit_params.loc[~(reas_split&reas_heigh&name_in_file)].reset_index(drop=True)
773
+ reas_split=(fit_params['approx_split'].between(splitting_limits[0], splitting_limits[1]))
774
+ reas_heigh=fit_params['Diad1_abs_prom']>lower_diad1_prom
775
+
776
+ if exclude_str is not None:
777
+ name_in_file=~fit_params['filename'].str.contains(exclude_str)
778
+ else:
779
+ name_in_file=reas_heigh
780
+
781
+ filt=reas_split&reas_heigh&name_in_file
782
+
783
+ fit_params_filt=fit_params.loc[filt].reset_index(drop=True)
784
+ fit_params_disc=fit_params.loc[~(filt)].reset_index(drop=True)
772
785
 
773
786
  print('Keeping N='+str(len(fit_params_filt)))
774
787
  print('Discarding N='+str(len(fit_params_disc)))
775
788
 
776
- filt=reas_split&reas_heigh&name_in_file
789
+
790
+
791
+ # Then apply to get data
777
792
  data_y_filt=data_y_all[:, (filt)]
778
793
  data_y_disc=data_y_all[:, ~(filt)]
779
794
 
@@ -804,17 +819,111 @@ def filter_splitting_prominence(*, fit_params, data_y_all,
804
819
  Diff=np.nanmax(data_y_filt[:, i])-np.nanmin(data_y_filt[:, i])
805
820
  av_prom_Keep=fit_params_filt['Diad1_abs_prom'].iloc[i]
806
821
  prom_filt=prom_filt+av_prom_Keep
822
+ file=fit_params_filt['filename'].iloc[i]
823
+ ax2.plot(x_cord+i*5, (data_y_filt[:, i]-np.nanmin(data_y_filt[:, i]))/Diff+i/3, '-b', lw=0.5)
824
+ yplot=np.quantile((data_y_filt[:, i]-np.nanmin(data_y_filt[:, i]))/Diff+i/3, 0.65)
825
+ ax2.annotate(str(file), xy=(1450+i*5, yplot),
826
+ xycoords="data", fontsize=8, bbox=dict(facecolor='white', edgecolor='none', pad=2))
827
+
828
+
829
+ ax2.set_xlim([1250, 1450+i*5])
830
+ ax2.set_xticks([])
831
+ ax2.set_yticks([])
832
+
833
+ return fit_params_filt.reset_index(drop=True), data_y_filt, fit_params_disc.reset_index(drop=True), data_y_disc
834
+
835
+ def filter_by_string(*, fit_params, data_y_all,
836
+ x_cord,
837
+ str_filt=None):
838
+ """ Filters Spectra based on approximate splitting, draws a plot showing spectra to discard and those to keep
839
+
840
+ Parameters
841
+ --------------
842
+ fit_params: pd.dataframe
843
+ dataframe of fit parameters from loop_approx_diad_fits
844
+
845
+ data_y_all: np.array
846
+ y coordinates of each spectra from loop_approx_diad_fits, used for plotting visualizatoins
847
+
848
+ x_cord: np.array
849
+ x coordinates of 1 spectra. Assumes all x coordinates the same length
850
+
851
+
852
+
853
+ str_filt: str
854
+ Filters just based on string in filename. Keeps files with string in, discards those without.
855
+
856
+ Returns
857
+ --------------
858
+ fit_params_filt: pd.DataFrame
859
+ dataframe of fit parameters for spectra to keep
860
+ data_y_filt: np.array
861
+ y coordinates of spectra to keep
862
+ fit_params_disc: pd.DataFrame
863
+ dataframe of fit parameters for spectra to discard
864
+ data_y_disc: np.array
865
+ y coordinates of spectra to discard
866
+
867
+
868
+ """
869
+
870
+ filt=fit_params['filename'].str.contains(str_filt)
871
+
872
+
873
+ fit_params_filt=fit_params.loc[filt].reset_index(drop=True)
874
+ fit_params_disc=fit_params.loc[~(filt)].reset_index(drop=True)
875
+
876
+ print('Keeping N='+str(len(fit_params_filt)))
877
+ print('Discarding N='+str(len(fit_params_disc)))
878
+
879
+
880
+
881
+ # Then apply to get data
882
+ data_y_filt=data_y_all[:, (filt)]
883
+ data_y_disc=data_y_all[:, ~(filt)]
884
+
885
+ intc=800
886
+ prom_filt=0
887
+ prom_disc=0
888
+ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,5))
889
+ ax1.set_title('Samples')
890
+ ax2.set_title('Standards')
891
+ if sum(~filt)>0:
892
+ for i in range(0, np.shape(data_y_disc)[1]):
893
+ av_prom_disc=np.abs(np.nanmedian(fit_params_disc['Diad1_abs_prom'])/intc)
894
+ Diff=np.nanmax(data_y_disc[:, i])-np.nanmin(data_y_disc[:, i])
895
+ av_prom_Keep=fit_params_disc['Diad1_abs_prom'].iloc[i]
896
+ prom_disc=prom_disc+av_prom_disc
897
+ ax1.plot(x_cord+i*5, (data_y_disc[:, i]-np.nanmin(data_y_disc[:, i]))/Diff+i/3, '-r', lw=0.5)
898
+ yplot=np.quantile((data_y_disc[:, i]-np.nanmin(data_y_disc[:, i]))/Diff+i/3, 0.65)
899
+ file=fit_params_disc['filename'].iloc[i]
900
+ file = file.replace("_CRR_DiadFit", "")
901
+ ax1.annotate(str(file), xy=(1450+i*5, yplot),
902
+ xycoords="data", fontsize=8, bbox=dict(facecolor='white', edgecolor='none', pad=2))
903
+
904
+ ax1.set_xlim([1250, 1500+i*5])
905
+ ax1.set_xticks([])
906
+ ax1.set_yticks([])
907
+ if sum(filt)>0:
908
+ for i in range(0, np.shape(data_y_filt)[1]):
909
+ Diff=np.nanmax(data_y_filt[:, i])-np.nanmin(data_y_filt[:, i])
910
+ av_prom_Keep=fit_params_filt['Diad1_abs_prom'].iloc[i]
911
+ prom_filt=prom_filt+av_prom_Keep
912
+ file=fit_params_filt['filename'].iloc[i]
807
913
  ax2.plot(x_cord+i*5, (data_y_filt[:, i]-np.nanmin(data_y_filt[:, i]))/Diff+i/3, '-b', lw=0.5)
914
+ yplot=np.quantile((data_y_filt[:, i]-np.nanmin(data_y_filt[:, i]))/Diff+i/3, 0.65)
915
+ ax2.annotate(str(file), xy=(1450+i*5, yplot),
916
+ xycoords="data", fontsize=8, bbox=dict(facecolor='white', edgecolor='none', pad=2))
808
917
 
809
918
 
810
919
  ax2.set_xlim([1250, 1450+i*5])
811
920
  ax2.set_xticks([])
812
921
  ax2.set_yticks([])
813
922
 
814
- return fit_params_filt, data_y_filt, fit_params_disc, data_y_disc
923
+ return fit_params_filt.reset_index(drop=True), data_y_filt, fit_params_disc.reset_index(drop=True), data_y_disc
815
924
 
816
925
 
817
- def identify_diad_group(*, fit_params, data_y, x_cord, filter_bool,y_fig_scale=0.1, grp_filter='Weak'):
926
+ def identify_diad_group(*, fit_params, data_y, x_cord, filter_bool,y_fig_scale=0.1, grp_filter='Weak', str_filt=None):
818
927
 
819
928
  """Sorts diads into two groups. Those meeting the 'filter_bool' criteria, and those not
820
929
  meeting this criteria. Ones meeting the criteria are shown on the left hand plot,
@@ -853,6 +962,9 @@ def identify_diad_group(*, fit_params, data_y, x_cord, filter_bool,y_fig_scale=
853
962
 
854
963
 
855
964
  """
965
+ if str_filt is not None:
966
+ filt_name=~fit_params['filename'].str.contains(str_filt)
967
+ filt_bool=filt_name&filt_bool
856
968
 
857
969
  if np.shape(data_y)[1]==0:
858
970
  Group1_df=pd.DataFrame().reindex_like(fit_params)
@@ -3835,8 +3947,8 @@ path=None, filename=None, filetype=None,
3835
3947
 
3836
3948
 
3837
3949
  xspace_sil=x_new[1]-x_new[0]
3838
- area_trap = trapz(Baseline_ysub_sil, dx=xspace_sil)
3839
- area_simps = simps(Baseline_ysub_sil, dx=xspace_sil)
3950
+ area_trap = trapezoid(Baseline_ysub_sil, dx=xspace_sil)
3951
+ area_simps = simpson(Baseline_ysub_sil, dx=xspace_sil)
3840
3952
 
3841
3953
 
3842
3954
 
@@ -331,6 +331,8 @@ error_CO2_dens=0, error_type_CO2_dens='Abs', error_dist_CO2_dens='normal',
331
331
 
332
332
  # Check for panda Series
333
333
 
334
+
335
+
334
336
  def convert_inputs_to_series(T_K, error_T_K, CO2_dens_gcm3, error_CO2_dens_gcm3, XH2O, error_XH2O):
335
337
  # Create a list of all inputs
336
338
  inputs = [T_K, error_T_K, CO2_dens_gcm3, error_CO2_dens_gcm3, XH2O, error_XH2O]
@@ -341,11 +343,17 @@ def convert_inputs_to_series(T_K, error_T_K, CO2_dens_gcm3, error_CO2_dens_gcm3,
341
343
  # Unpack the converted inputs back to their respective variables
342
344
  T_K, error_T_K, CO2_dens_gcm3, error_CO2_dens_gcm3, XH2O, error_XH2O = converted_inputs
343
345
 
344
- # Continue with the function using the possibly converted inputs...
345
- # For demonstration, just return the converted inputs
346
- return T_K, error_T_K, CO2_dens_gcm3, error_CO2_dens_gcm3, XH2O, error_XH2O
347
-
346
+ # Reset index only if the input is a pandas Series
347
+ T_K = T_K.reset_index(drop=True) if isinstance(T_K, pd.Series) else T_K
348
+ error_T_K = error_T_K.reset_index(drop=True) if isinstance(error_T_K, pd.Series) else error_T_K
349
+ CO2_dens_gcm3 = CO2_dens_gcm3.reset_index(drop=True) if isinstance(CO2_dens_gcm3, pd.Series) else CO2_dens_gcm3
350
+ error_CO2_dens_gcm3 = error_CO2_dens_gcm3.reset_index(drop=True) if isinstance(error_CO2_dens_gcm3, pd.Series) else error_CO2_dens_gcm3
351
+ XH2O = XH2O.reset_index(drop=True) if isinstance(XH2O, pd.Series) else XH2O
352
+ error_XH2O = error_XH2O.reset_index(drop=True) if isinstance(error_XH2O, pd.Series) else error_XH2O
348
353
 
354
+ # Return the possibly converted inputs
355
+ return T_K, error_T_K, CO2_dens_gcm3, error_CO2_dens_gcm3, XH2O, error_XH2O
356
+
349
357
 
350
358
 
351
359
  def propagate_FI_uncertainty(sample_ID, CO2_dens_gcm3, T_K, multiprocess='default', cores='default',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 1.0.0
3
+ Version: 1.0.2
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
@@ -9,13 +9,13 @@ License: UNKNOWN
9
9
  Platform: UNKNOWN
10
10
  Classifier: Programming Language :: Python :: 3
11
11
  Classifier: Operating System :: OS Independent
12
- Requires-Python: >=3.7
12
+ Requires-Python: >=3.8
13
13
  Description-Content-Type: text/markdown
14
14
  Requires-Dist: pandas
15
15
  Requires-Dist: numpy <2
16
16
  Requires-Dist: matplotlib
17
17
  Requires-Dist: scikit-learn
18
- Requires-Dist: scipy
18
+ Requires-Dist: scipy >1.6
19
19
  Requires-Dist: lmfit >=1.1.0
20
20
  Requires-Dist: tqdm
21
21
  Requires-Dist: python-docx
@@ -1,6 +1,6 @@
1
- DiadFit/CO2_EOS.py,sha256=ti9HEZynM-BoiPGYG1C7vUpO-RNZY-NqmjUl2FFnO3E,73918
2
- DiadFit/CO2_in_bubble_error.py,sha256=ehr1JZCjwVLD24A3tl2RW-UsdTTJV39zHs49JD9ZpLg,21271
3
- DiadFit/H2O_fitting.py,sha256=E3xD9VkYNDdmsQ3wZNkMOHhPkNO0F-al_Vb9Q8ZR6oI,43888
1
+ DiadFit/CO2_EOS.py,sha256=H2_th8DP5m9oJ-IZCg9XncuOogQy_AE8ihiT-4zlIOo,74170
2
+ DiadFit/CO2_in_bubble_error.py,sha256=Nq5YEf2oa2rWRreEPXl2lEA86NXOGvll0Gca2AOu_RE,21224
3
+ DiadFit/H2O_fitting.py,sha256=ZOLWL8j7HQYKlx1-ISm1twvH34jhrGFwukU8ElRj0Dw,43920
4
4
  DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
5
5
  DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=oBOarETLyfq2DJhYGQrJofgHjvRMLamE6G2b7EE5m-Y,1213
6
6
  DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl,sha256=OG1qip_xU1hl3xp3HC8e9_2497-KYEV3Xz3mx0gdJ4Y,1213
@@ -29,21 +29,21 @@ DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrY
29
29
  DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
30
30
  DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
31
31
  DiadFit/__init__.py,sha256=F-HjhCYKL_U8PfiH8tZ9DUCkxPvo6lAslJS4fyvxkbY,1148
32
- DiadFit/_version.py,sha256=v3boCh9grt_Ozt8KUuSV2NTg8ZSYLiJfte4wgxefVbk,295
32
+ DiadFit/_version.py,sha256=X0PLLhZnpIdwlS5nJADl6Y4cVKJ40aHv2hvu4kkgAGQ,295
33
33
  DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
34
34
  DiadFit/cosmicray_filter.py,sha256=a45x2_nmpi9Qcjc_L39UA9JOd1NMorIjtTRGnCdG3MU,23634
35
35
  DiadFit/densimeter_fitting.py,sha256=zEyCwq1zDV3z6-MIu-eZqgp3YQPUGqwZiKczN3-22LQ,8247
36
- DiadFit/densimeters.py,sha256=0_Kh9KxyCnGp8cep3zif3eIQIlMLpPbQj7eF9JHiGWk,54956
36
+ DiadFit/densimeters.py,sha256=p3jY9709vKegCfWZIwoU4Rt5jFfwJJQobLb71AXUxAY,55250
37
37
  DiadFit/density_depth_crustal_profiles.py,sha256=b072IJaoGDydKpqWWKoJHeXKIkcIXxKf82whpvLAPpw,17761
38
- DiadFit/diads.py,sha256=zGzK_TM5iFL7_9BFnQR1Rpncr3HNmq8RBhBbLoKq_7I,176663
39
- DiadFit/error_propagation.py,sha256=STJUqjdhwo0geXi0iZ9XN0RD3t7qYqbNGHzelfLOANQ,50038
38
+ DiadFit/diads.py,sha256=RWFesTt_W52u_-N9Cr2VtHuKrR038XKf3-dDLx5CNYY,180888
39
+ DiadFit/error_propagation.py,sha256=ipYI-Nwjv4f0sBdUiGeYV4wLcLGUXzKRrquNnc72d3c,50620
40
40
  DiadFit/importing_data_files.py,sha256=0Cx_CKJZR8efssMzQit0aPRh_rsjQFGXgLtI285FW_k,41961
41
41
  DiadFit/lookup_table.csv,sha256=Hs1tmSQ9ArTUDv3ymEXbvnLlPBxYUP0P51dz7xAKk-Q,2946857
42
42
  DiadFit/lookup_table_noneg.csv,sha256=HelvewKbBy4cqT2GAqsMo-1ps1lBYqZ-8hCJZWPGfhI,3330249
43
43
  DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
44
44
  DiadFit/ne_lines.py,sha256=6z9oo4lgh0iYv1mkSscgzCt_Pe4gQTnquG99pR6cJS8,63811
45
45
  DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
46
- DiadFit-1.0.0.dist-info/METADATA,sha256=PVcVAd7UDrIeBqratoKKVBe1nCoXv_M3-1jKSrQTFc4,1169
47
- DiadFit-1.0.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
48
- DiadFit-1.0.0.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
49
- DiadFit-1.0.0.dist-info/RECORD,,
46
+ DiadFit-1.0.2.dist-info/METADATA,sha256=EjFCY1urZhZ_wc2Wxb8f0NC8gNgV-JaFY1ShqDBpnoQ,1174
47
+ DiadFit-1.0.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
48
+ DiadFit-1.0.2.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
49
+ DiadFit-1.0.2.dist-info/RECORD,,