DiadFit 0.0.85__py3-none-any.whl → 0.0.90__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. DiadFit/CO2_EOS.py +2 -2
  2. DiadFit/CO2_H2O_EOS.py +8 -8
  3. DiadFit/CO2_in_bubble_error.py +190 -112
  4. DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  5. DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  6. DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  7. DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  8. DiadFit/Highrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  9. DiadFit/Highrho_polyfit_data_CMASS_24C.pkl +0 -0
  10. DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  11. DiadFit/Lowrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  12. DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  13. DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  14. DiadFit/Lowrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  15. DiadFit/Lowrho_polyfit_data_CMASS_24C.pkl +0 -0
  16. DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  17. DiadFit/Mediumrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  18. DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  19. DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  20. DiadFit/Mediumrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  21. DiadFit/_version.py +1 -1
  22. DiadFit/densimeter_fitting.py +7 -1
  23. DiadFit/densimeters.py +183 -40
  24. DiadFit/density_depth_crustal_profiles.py +37 -5
  25. DiadFit/diads.py +28 -13
  26. DiadFit/error_propagation.py +185 -234
  27. DiadFit/importing_data_files.py +81 -15
  28. DiadFit/ne_lines.py +51 -23
  29. {DiadFit-0.0.85.dist-info → DiadFit-0.0.90.dist-info}/METADATA +1 -1
  30. DiadFit-0.0.90.dist-info/RECORD +50 -0
  31. DiadFit-0.0.85.dist-info/RECORD +0 -42
  32. {DiadFit-0.0.85.dist-info → DiadFit-0.0.90.dist-info}/WHEEL +0 -0
  33. {DiadFit-0.0.85.dist-info → DiadFit-0.0.90.dist-info}/top_level.txt +0 -0
@@ -14,6 +14,70 @@ import datetime
14
14
  import calendar
15
15
 
16
16
  encode="ISO-8859-1"
17
+ ## GEt video mag
18
+
19
+ # Function to check if "Video Image" is in the first line, considering variations
20
+ def line_contains_video_image(line):
21
+ """ This function returns video image information """
22
+ return "video image" in line.lower()
23
+
24
+
25
+ def get_video_mag(metadata_path):
26
+ """ This function finds all the video files in a single folder, and returns a dataframe of the filename and the magnification used.
27
+ """
28
+ folder_path=metadata_path
29
+ data=[]
30
+
31
+
32
+ # Code below this
33
+
34
+
35
+
36
+ # Ensure the directory exists and contains files
37
+ if os.path.exists(folder_path) and os.path.isdir(folder_path):
38
+ # Go through each file in the folder
39
+ for filename in os.listdir(folder_path):
40
+ if filename.endswith('.txt'): # Confirming it's a text file
41
+ file_path = os.path.join(folder_path, filename)
42
+ with open(file_path, 'r', encoding="ISO-8859-1") as file:
43
+ first_line = file.readline()
44
+ # Initialize placeholders for magnification, width, and height
45
+ magnification = None
46
+ image_width = None
47
+ image_height = None
48
+
49
+ if "video image" in first_line.lower(): # Checks if "Video Image" is in the line
50
+ for line in file:
51
+ if "Objective Magnification:" in line:
52
+ magnification = line.split(":")[-1].strip()
53
+ elif "Image Width [µm]:" in line:
54
+ image_width = line.split(":")[-1].strip()
55
+ elif "Image Height [µm]:" in line:
56
+ image_height = line.split(":")[-1].strip()
57
+
58
+ # Add to data if magnification is found (assuming it's mandatory)
59
+ if magnification:
60
+ data.append({
61
+ "Filename": filename,
62
+ "Mag": magnification,
63
+ "Width (µm)": image_width,
64
+ "Height (µm)": image_height
65
+ })
66
+ else:
67
+ print(f"The specified path {folder_path} does not exist or is not a directory.")
68
+
69
+ # Create a DataFrame from the data
70
+ df = pd.DataFrame(data)
71
+
72
+ # Display the DataFrame or a message if empty
73
+ if not df.empty:
74
+ return df
75
+ else:
76
+ print("No data found. Please check the folder path and the content of the files.")
77
+
78
+
79
+
80
+
17
81
 
18
82
  ## Functions for getting file names
19
83
 
@@ -37,7 +101,7 @@ def check_for_duplicates(spectra_path, prefix=True, prefix_str=' ', exception=Tr
37
101
 
38
102
  All_files_spectra= [f for f in listdir(spectra_path) if isfile(join(spectra_path, f))]
39
103
 
40
- file_m=np.empty(len(All_files_spectra), dtype=object)
104
+ file_m=np.zeros(len(All_files_spectra), dtype=object)
41
105
  for i in range(0, len(All_files_spectra)):
42
106
  name=All_files_spectra[i]
43
107
  # If no prefix or suffix to remove, simple
@@ -129,6 +193,8 @@ def get_all_txt_files(path):
129
193
  if '.txt' in file and 'pandas' not in file:
130
194
  All_files.append(format(file))
131
195
  return All_files
196
+
197
+ # Function to get magnification of
132
198
 
133
199
 
134
200
  ## Functions to just simply get data to plot up
@@ -925,14 +991,14 @@ def stitch_metadata_in_loop_witec(*, Allfiles, path, prefix=True, trupower=False
925
991
  date_str=[]
926
992
  month_str=[]
927
993
  # Numerical values
928
- Int_time=np.empty(len(Allfiles), dtype=float)
929
- objec=np.empty(len(Allfiles), dtype=float)
930
- time=np.empty(len(Allfiles), dtype=float)
994
+ Int_time=np.zeros(len(Allfiles), dtype=float)
995
+ objec=np.zeros(len(Allfiles), dtype=float)
996
+ time=np.zeros(len(Allfiles), dtype=float)
931
997
 
932
- Day=np.empty(len(Allfiles), dtype=float)
933
- power=np.empty(len(Allfiles), dtype=float)
934
- accumulations=np.empty(len(Allfiles), dtype=float)
935
- spectral_cent=np.empty(len(Allfiles), dtype=float)
998
+ Day=np.zeros(len(Allfiles), dtype=float)
999
+ power=np.zeros(len(Allfiles), dtype=float)
1000
+ accumulations=np.zeros(len(Allfiles), dtype=float)
1001
+ spectral_cent=np.zeros(len(Allfiles), dtype=float)
936
1002
 
937
1003
  for i in tqdm(range(0, len(Allfiles))):
938
1004
  filename1=Allfiles[i] #.rsplit('.',1)[0]
@@ -1081,7 +1147,7 @@ def extracting_filenames_generic(*, names, prefix=False,
1081
1147
 
1082
1148
  file_m=list(names)
1083
1149
 
1084
- file_m=np.empty(len(names), dtype=object)
1150
+ file_m=np.zeros(len(names), dtype=object)
1085
1151
  for i in range(0, len(names)):
1086
1152
  name=names.iloc[i]
1087
1153
  # If no prefix or suffix to remove, simple
@@ -1126,12 +1192,12 @@ def extract_temp_Aranet(df):
1126
1192
  """ Extracts temperature data from the aranet
1127
1193
  """
1128
1194
  TD=str(Temp['Time(dd/mm/yyyy)'])
1129
- hour=np.empty(len(Temp), dtype=object)
1130
- date=np.empty(len(Temp), dtype=object)
1131
- time=np.empty(len(Temp), dtype=object)
1132
- minutes=np.empty(len(Temp), dtype=object)
1133
- seconds=np.empty(len(Temp), dtype=object)
1134
- secs_sm=np.empty(len(Temp), dtype=object)
1195
+ hour=np.zeros(len(Temp), dtype=object)
1196
+ date=np.zeros(len(Temp), dtype=object)
1197
+ time=np.zeros(len(Temp), dtype=object)
1198
+ minutes=np.zeros(len(Temp), dtype=object)
1199
+ seconds=np.zeros(len(Temp), dtype=object)
1200
+ secs_sm=np.zeros(len(Temp), dtype=object)
1135
1201
  for i in range(0, len(Temp)):
1136
1202
  TD=str(Temp['Time(dd/mm/yyyy)'].iloc[i])
1137
1203
  date[i]=TD.split(' ')[0]
DiadFit/ne_lines.py CHANGED
@@ -46,7 +46,16 @@ error_pk2
46
46
  dist = (df['Raman_shift (cm-1)'] - line1_shift).abs()
47
47
  return df.loc[dist.idxmin()]
48
48
 
49
-
49
+ def find_max_row(df, target_shift, tol=2):
50
+ """ This function is used to find the highest amplitude within a predefined ampl range for finding the right Ne line
51
+ """
52
+
53
+ df_filtered = df[(df['Raman_shift (cm-1)'] >= target_shift - tol) & (df['Raman_shift (cm-1)'] <= target_shift + tol)]
54
+
55
+ # Find the row with the maximum intensity within this filtered DataFrame
56
+ max_intensity_row = df_filtered.loc[df_filtered['Intensity'].idxmax()]
57
+
58
+ return max_intensity_row
50
59
 
51
60
  def calculate_Ne_splitting(wavelength=532.05, line1_shift=1117, line2_shift=1447, cut_off_intensity=2000):
52
61
  """
@@ -72,23 +81,48 @@ def calculate_Ne_splitting(wavelength=532.05, line1_shift=1117, line2_shift=1447
72
81
  """
73
82
 
74
83
  df_Ne=calculate_Ne_line_positions(wavelength=wavelength, cut_off_intensity=cut_off_intensity)
75
-
76
- closest1=find_closest(df_Ne, line1_shift).loc['Raman_shift (cm-1)']
77
- closest2=find_closest(df_Ne, line2_shift).loc['Raman_shift (cm-1)']
78
- closest_1_int=find_closest(df_Ne, line1_shift).loc['Intensity']
79
- closest_2_int=find_closest(df_Ne, line2_shift).loc['Intensity']
80
-
81
- diff=abs(closest1-closest2)
82
-
83
- df=pd.DataFrame(data={'Ne_Split': diff,
84
+ #
85
+ # closest1=find_closest(df_Ne, line1_shift).loc['Raman_shift (cm-1)']
86
+ # closest2=find_closest(df_Ne, line2_shift).loc['Raman_shift (cm-1)']
87
+ # closest_1_int=find_closest(df_Ne, line1_shift).loc['Intensity']
88
+ # closest_2_int=find_closest(df_Ne, line2_shift).loc['Intensity']
89
+ #
90
+ # diff=abs(closest1-closest2)
91
+ #
92
+ # df=pd.DataFrame(data={'Ne_Split': diff,
93
+ # 'Line_1': closest1,
94
+ # 'Line_2': closest2,
95
+ # 'Line_1_int': closest_1_int,
96
+ # 'Line_2_int': closest_2_int,
97
+ # 'Entered Pos Line 1': line1_shift,
98
+ # 'Entered Pos Line 2': line2_shift}, index=[0])
99
+ #
100
+ #
101
+ # return df
102
+ # Use the new function to find the lines of interest
103
+ closest1_row = find_max_row(df_Ne, line1_shift)
104
+ closest2_row = find_max_row(df_Ne, line2_shift)
105
+
106
+ # Extract the required values from the rows
107
+ closest1 = closest1_row['Raman_shift (cm-1)']
108
+ closest2 = closest2_row['Raman_shift (cm-1)']
109
+ closest_1_int = closest1_row['Intensity']
110
+ closest_2_int = closest2_row['Intensity']
111
+
112
+ # Calculate the difference
113
+ diff = abs(closest1 - closest2)
114
+
115
+ # Create the DataFrame
116
+ df = pd.DataFrame(data={
117
+ 'Ne_Split': diff,
84
118
  'Line_1': closest1,
85
119
  'Line_2': closest2,
86
120
  'Line_1_int': closest_1_int,
87
121
  'Line_2_int': closest_2_int,
88
122
  'Entered Pos Line 1': line1_shift,
89
- 'Entered Pos Line 2': line2_shift}, index=[0])
90
-
91
-
123
+ 'Entered Pos Line 2': line2_shift
124
+ }, index=[0])
125
+
92
126
  return df
93
127
 
94
128
  def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
@@ -131,10 +165,7 @@ def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
131
165
  553.36788,
132
166
  553.86510,
133
167
  555.90978,
134
- 556.24416,
135
-
136
- 556.27662,
137
- 556.30531,
168
+
138
169
 
139
170
 
140
171
 
@@ -333,10 +364,7 @@ def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
333
364
  750,
334
365
  500,
335
366
  350,
336
- 1500,
337
-
338
- 5000,
339
- 750,
367
+
340
368
 
341
369
 
342
370
 
@@ -1728,8 +1756,8 @@ def filter_Ne_Line_neighbours(*, df_combo=None, Corr_factor=None, number_av=6, o
1728
1756
  """
1729
1757
  if df_combo is not None:
1730
1758
  Corr_factor=df_combo['Ne_Corr']
1731
- Corr_factor_Filt=np.empty(len(Corr_factor), dtype=float)
1732
- median_loop=np.empty(len(Corr_factor), dtype=float)
1759
+ Corr_factor_Filt=np.zeros(len(Corr_factor), dtype=float)
1760
+ median_loop=np.zeros(len(Corr_factor), dtype=float)
1733
1761
 
1734
1762
  for i in range(0, len(Corr_factor)):
1735
1763
  if i<len(Corr_factor)/2: # For first half, do 5 after
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 0.0.85
3
+ Version: 0.0.90
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
@@ -0,0 +1,50 @@
1
+ DiadFit/CO2_EOS.py,sha256=XMBh6sTwBX5jjQFecVaab4ZbQixZv0YLuN4aXx17rWc,28050
2
+ DiadFit/CO2_H2O_EOS.py,sha256=UFMFsw9c6sRv0_I3pe9ahdNK_3Ea9gIQkL_1C542WZo,44011
3
+ DiadFit/CO2_in_bubble_error.py,sha256=fkTuuC1wLdc0nZHj9TRgcy1UvqZ5KjoM52jH7B3ERTk,19769
4
+ DiadFit/H2O_fitting.py,sha256=E3xD9VkYNDdmsQ3wZNkMOHhPkNO0F-al_Vb9Q8ZR6oI,43888
5
+ DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
6
+ DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=oBOarETLyfq2DJhYGQrJofgHjvRMLamE6G2b7EE5m-Y,1213
7
+ DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl,sha256=OG1qip_xU1hl3xp3HC8e9_2497-KYEV3Xz3mx0gdJ4Y,1213
8
+ DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl,sha256=GaD0ojHbC-bhKKZt9DvXhbRLeKwcRvP0SnJjDfzTDr0,1213
9
+ DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl,sha256=qATzWByjHSXt8JYK8eUbhbGOZFA4EBrWEJoQQ-lqExc,1213
10
+ DiadFit/Highrho_polyfit_dataUCB_1220_1567.pkl,sha256=MIAByHpoV23UmNMzN0vv4He1HZRychbSrYYQNta81Z0,1213
11
+ DiadFit/Highrho_polyfit_data_CCMR.pkl,sha256=8hgi0kFoEn6aWAHl0hX34ez3EDAndPXWX3wlBvqPQdA,909
12
+ DiadFit/Highrho_polyfit_data_CMASS.pkl,sha256=g592Rk7HwM93_Ws8lg1RSun5GkqBZmdENQGf3rZv1Ig,829
13
+ DiadFit/Highrho_polyfit_data_CMASS_24C.pkl,sha256=5dPSwuO0m9KdQoyRiruOzk327c2qNc9eyLy-gSEWEO0,1757
14
+ DiadFit/Lowrho_polyfit_data.pkl,sha256=LFg0C3D3FXzhp_LdwZ3xzdxDZzrA70xvFACCBwLmpF0,751
15
+ DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl,sha256=_9iX3nh69g_hlCTkvJ7mzUDvISo4sz_oAgBABwM2gIU,751
16
+ DiadFit/Lowrho_polyfit_dataUCB_1117_1447.pkl,sha256=MrhNaLetqQ8KCz_7Wz92PWUz9Un3u6RzeJQStTWLL0k,751
17
+ DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl,sha256=Axb2icTCgUDqCsNxqlKNOi3rPiYBsNEvBjWGqatnAU8,751
18
+ DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl,sha256=x4lSOrsvRXSRC5Locr8s7m0jCNty8qZy8mI4DNPNlSM,751
19
+ DiadFit/Lowrho_polyfit_dataUCB_1220_1567.pkl,sha256=pxaoAWLWZ-k4EwbeFutSpQ7I_2UB7p8gPYirFE8KX6I,751
20
+ DiadFit/Lowrho_polyfit_data_CCMR.pkl,sha256=G58_l4TpdBmVdsR1z6FWTQ9qDsemNeZOJvbCl-36zKs,1141
21
+ DiadFit/Lowrho_polyfit_data_CMASS.pkl,sha256=meT16KSMUAlxb0XC1T-vTa-X3ooJ2JjdWFJetHHCQfQ,997
22
+ DiadFit/Lowrho_polyfit_data_CMASS_24C.pkl,sha256=JaW515xTp0_ZNpgWVOAwRYyEWR58iwEySi7j075Izsw,1045
23
+ DiadFit/Mediumrho_polyfit_data.pkl,sha256=zfl3MuTE-Oyz0T9tsYS0uU43tL9zSqrdss9sGHldRb0,1301
24
+ DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl,sha256=UWzO_O4cAaNk51zXachKlnW31tom2nCFDnOZlWTRA8Y,1301
25
+ DiadFit/Mediumrho_polyfit_dataUCB_1117_1447.pkl,sha256=RsegZ8n6R7Wk2rg7rjzRbtSBeKTwAI7VZ-HTiqNlpJo,1301
26
+ DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl,sha256=Rzp0LV864x9y5rzMWY8xKsxLGYU54iPcEEQsPTjmGRs,1301
27
+ DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl,sha256=PW0zZj2bygTp8Iyn3wfN6upX7xQyBP3BVNwoK9tiOV8,1301
28
+ DiadFit/Mediumrho_polyfit_dataUCB_1220_1567.pkl,sha256=jHLbOKrqmcrpIphq5FhrVY19cMxJU2dnbEVJfzpDyM4,1301
29
+ DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrYCsx8KI4SQ4,1221
30
+ DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
31
+ DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
32
+ DiadFit/__init__.py,sha256=wXZHfLvkI9ye1TFrdykATP8Kn7I-UdNFBTmHZI1V9EQ,1181
33
+ DiadFit/_version.py,sha256=aINOvFeNRIgbYOZbmj7_XKZ9NuwaBZOXcPrGceZkzIg,296
34
+ DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
35
+ DiadFit/cosmicray_filter.py,sha256=a45x2_nmpi9Qcjc_L39UA9JOd1NMorIjtTRGnCdG3MU,23634
36
+ DiadFit/densimeter_fitting.py,sha256=zEyCwq1zDV3z6-MIu-eZqgp3YQPUGqwZiKczN3-22LQ,8247
37
+ DiadFit/densimeters.py,sha256=mC4SX3M00t4n_Qsl64MboLROWbkmwgmqrJxWXyvRxW8,54780
38
+ DiadFit/density_depth_crustal_profiles.py,sha256=b072IJaoGDydKpqWWKoJHeXKIkcIXxKf82whpvLAPpw,17761
39
+ DiadFit/diads.py,sha256=zGzK_TM5iFL7_9BFnQR1Rpncr3HNmq8RBhBbLoKq_7I,176663
40
+ DiadFit/error_propagation.py,sha256=rwYu6TXbAIaRMSI3vYWh8SlS3BEn6guYp97EVOjU8ck,40666
41
+ DiadFit/importing_data_files.py,sha256=0Cx_CKJZR8efssMzQit0aPRh_rsjQFGXgLtI285FW_k,41961
42
+ DiadFit/lookup_table.csv,sha256=Hs1tmSQ9ArTUDv3ymEXbvnLlPBxYUP0P51dz7xAKk-Q,2946857
43
+ DiadFit/lookup_table_noneg.csv,sha256=HelvewKbBy4cqT2GAqsMo-1ps1lBYqZ-8hCJZWPGfhI,3330249
44
+ DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
45
+ DiadFit/ne_lines.py,sha256=6z9oo4lgh0iYv1mkSscgzCt_Pe4gQTnquG99pR6cJS8,63811
46
+ DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
47
+ DiadFit-0.0.90.dist-info/METADATA,sha256=1yHM-yHju-h2D1nZGepVlIQ0GvB_9k6F7JujVWesdvI,1170
48
+ DiadFit-0.0.90.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
49
+ DiadFit-0.0.90.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
50
+ DiadFit-0.0.90.dist-info/RECORD,,
@@ -1,42 +0,0 @@
1
- DiadFit/CO2_EOS.py,sha256=VJVcHilrgecra7OZuC1VN6jmMnf7wZIseZF2zLe-puw,28050
2
- DiadFit/CO2_H2O_EOS.py,sha256=ovNa5DjN2Z5MEhT2cLJ0eYAYx_Lx_TgRgg1v8Qc1tnE,44011
3
- DiadFit/CO2_in_bubble_error.py,sha256=RTae1Dvv-LFpExopY5dwhb7IOJKzaeFwgjuh0kbVedI,15135
4
- DiadFit/H2O_fitting.py,sha256=E3xD9VkYNDdmsQ3wZNkMOHhPkNO0F-al_Vb9Q8ZR6oI,43888
5
- DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
6
- DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=B7nX560JpBBBssSgr50oDDG-UKsNxAjp235eytquVaI,1213
7
- DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl,sha256=0_eZVQ3Byh9u5xW9TnvlUJg_-bTDSjG3EpVhCutZZkk,1213
8
- DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl,sha256=eQw3HIsZ7xRr9QKBKsxuZKyRdlMbnaFxtxlM72jcRjU,1213
9
- DiadFit/Highrho_polyfit_data_CCMR.pkl,sha256=8hgi0kFoEn6aWAHl0hX34ez3EDAndPXWX3wlBvqPQdA,909
10
- DiadFit/Highrho_polyfit_data_CMASS.pkl,sha256=g592Rk7HwM93_Ws8lg1RSun5GkqBZmdENQGf3rZv1Ig,829
11
- DiadFit/Lowrho_polyfit_data.pkl,sha256=LFg0C3D3FXzhp_LdwZ3xzdxDZzrA70xvFACCBwLmpF0,751
12
- DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl,sha256=FttCfGvf9dKOXvFHeYLP3w1_N93N8_X4jwx9o5U_JOA,751
13
- DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl,sha256=y_53yUG4lv_OIYVWs7BTJjqVh3w55EJ_7pkk8NWodOc,751
14
- DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl,sha256=UNpo1WPgbqTApazne0DYbflrRr1kGbWXWA97XjNRQlg,751
15
- DiadFit/Lowrho_polyfit_data_CCMR.pkl,sha256=G58_l4TpdBmVdsR1z6FWTQ9qDsemNeZOJvbCl-36zKs,1141
16
- DiadFit/Lowrho_polyfit_data_CMASS.pkl,sha256=meT16KSMUAlxb0XC1T-vTa-X3ooJ2JjdWFJetHHCQfQ,997
17
- DiadFit/Mediumrho_polyfit_data.pkl,sha256=zfl3MuTE-Oyz0T9tsYS0uU43tL9zSqrdss9sGHldRb0,1301
18
- DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl,sha256=oGlsChnHyH4rWOg-HBsrW_oQKGoqe6-2zRodpHH9MSA,1301
19
- DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl,sha256=Qxj74-mcCFj8LmwgqdChqNlw4XMXlOuuL03SZNZz5R8,1301
20
- DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl,sha256=zdo1t0F8X6S8ovPldH9Hu2kYQGHU18w67TK48isp4NI,1301
21
- DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrYCsx8KI4SQ4,1221
22
- DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
23
- DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
24
- DiadFit/__init__.py,sha256=wXZHfLvkI9ye1TFrdykATP8Kn7I-UdNFBTmHZI1V9EQ,1181
25
- DiadFit/_version.py,sha256=hIfQHxP44V4g0sYEP6Hi4ni7quBcHy8sikP5VMQMXYk,296
26
- DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
27
- DiadFit/cosmicray_filter.py,sha256=a45x2_nmpi9Qcjc_L39UA9JOd1NMorIjtTRGnCdG3MU,23634
28
- DiadFit/densimeter_fitting.py,sha256=Uel9a4qUVz6r-my09uuHFRjD9oPFF-kd5ZBPYfYfOQM,8086
29
- DiadFit/densimeters.py,sha256=e5C-SLGG3hAQA3041ayyVI6INlb9KCCOkvoFr8mM_Ek,49419
30
- DiadFit/density_depth_crustal_profiles.py,sha256=XPauKf62hMp-iw701XfphaVe3o6LRJSwuQXAcSDXv6s,16983
31
- DiadFit/diads.py,sha256=75wgWa_cZu3xtIzWpYBfTDCnt9lxxXX1s607egFxoQA,176163
32
- DiadFit/error_propagation.py,sha256=uNOWEl4hxoay3FydKeku69rWppGkZC1HOYWiqo9rA0c,41533
33
- DiadFit/importing_data_files.py,sha256=SUpjk2cm2zGhyUEimib2MnaNAzMVo99uf3N5IKSWl8Q,39312
34
- DiadFit/lookup_table.csv,sha256=Hs1tmSQ9ArTUDv3ymEXbvnLlPBxYUP0P51dz7xAKk-Q,2946857
35
- DiadFit/lookup_table_noneg.csv,sha256=HelvewKbBy4cqT2GAqsMo-1ps1lBYqZ-8hCJZWPGfhI,3330249
36
- DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
37
- DiadFit/ne_lines.py,sha256=OGzqWgPRjJMm3AFVeEQtj6jmq4ua0h5c1c9tTR7Q7XA,62563
38
- DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
39
- DiadFit-0.0.85.dist-info/METADATA,sha256=9qzaSSLT9ix8JzmXSlJ-CiHwlNVecHh_oFxurPz2A-E,1170
40
- DiadFit-0.0.85.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
41
- DiadFit-0.0.85.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
42
- DiadFit-0.0.85.dist-info/RECORD,,