DiadFit 0.0.79__py3-none-any.whl → 0.0.80__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- DiadFit/CO2_H2O_EOS.py +267 -20
- DiadFit/_version.py +1 -1
- {DiadFit-0.0.79.dist-info → DiadFit-0.0.80.dist-info}/METADATA +1 -1
- {DiadFit-0.0.79.dist-info → DiadFit-0.0.80.dist-info}/RECORD +6 -6
- {DiadFit-0.0.79.dist-info → DiadFit-0.0.80.dist-info}/WHEEL +0 -0
- {DiadFit-0.0.79.dist-info → DiadFit-0.0.80.dist-info}/top_level.txt +0 -0
DiadFit/CO2_H2O_EOS.py
CHANGED
@@ -10,6 +10,7 @@ from pathlib import Path
|
|
10
10
|
from pickle import load
|
11
11
|
import pickle
|
12
12
|
import math
|
13
|
+
from DiadFit.CO2_EOS import *
|
13
14
|
|
14
15
|
|
15
16
|
DiadFit_dir=Path(__file__).parent
|
@@ -101,7 +102,107 @@ aH2[13] = -4.13039220 / 10**1 # alpha for CO2
|
|
101
102
|
aH2[14] = -8.47988634 # beta for CO2
|
102
103
|
aH2[15] = 2.800 / 10**2 # gamma for CO2
|
103
104
|
|
105
|
+
## This is for when you only feed a numpy array
|
106
|
+
# def ensure_series(a, b, c):
|
107
|
+
# # Determine the target length
|
108
|
+
# lengths = [len(a) if isinstance(a, pd.Series) else None,
|
109
|
+
# len(b) if isinstance(b, pd.Series) else None,
|
110
|
+
# len(c) if isinstance(c, pd.Series) else None]
|
111
|
+
# lengths = [l for l in lengths if l is not None]
|
112
|
+
# target_length = max(lengths) if lengths else 1
|
113
|
+
#
|
114
|
+
# # Convert each input to a Series of the target length
|
115
|
+
# if not isinstance(a, pd.Series):
|
116
|
+
# a = pd.Series([a] * target_length)
|
117
|
+
# if not isinstance(b, pd.Series):
|
118
|
+
# b = pd.Series([b] * target_length)
|
119
|
+
# if not isinstance(c, pd.Series):
|
120
|
+
# c = pd.Series([c] * target_length)
|
121
|
+
#
|
122
|
+
# return a, b, c
|
123
|
+
#
|
124
|
+
#
|
125
|
+
# def ensure_series_4(a, b, c, d):
|
126
|
+
# # Determine the target length
|
127
|
+
# lengths = [len(a) if isinstance(a, pd.Series) else None,
|
128
|
+
# len(b) if isinstance(b, pd.Series) else None,
|
129
|
+
# len(c) if isinstance(c, pd.Series) else None,
|
130
|
+
# len(d) if isinstance(d, pd.Series) else None]
|
131
|
+
# lengths = [l for l in lengths if l is not None]
|
132
|
+
# target_length = max(lengths) if lengths else 1
|
133
|
+
#
|
134
|
+
# # Convert each input to a Series of the target length
|
135
|
+
# if not isinstance(a, pd.Series):
|
136
|
+
# a = pd.Series([a] * target_length)
|
137
|
+
# if not isinstance(b, pd.Series):
|
138
|
+
# b = pd.Series([b] * target_length)
|
139
|
+
# if not isinstance(c, pd.Series):
|
140
|
+
# c = pd.Series([c] * target_length)
|
141
|
+
# if not isinstance(d, pd.Series):
|
142
|
+
# d = pd.Series([d] * target_length)
|
143
|
+
# return a, b, c, d
|
104
144
|
|
145
|
+
import pandas as pd
|
146
|
+
import numpy as np
|
147
|
+
|
148
|
+
def ensure_series(a, b, c):
|
149
|
+
# Determine the target length
|
150
|
+
lengths = [len(a) if isinstance(a, (pd.Series, np.ndarray)) else None,
|
151
|
+
len(b) if isinstance(b, (pd.Series, np.ndarray)) else None,
|
152
|
+
len(c) if isinstance(c, (pd.Series, np.ndarray)) else None]
|
153
|
+
lengths = [l for l in lengths if l is not None]
|
154
|
+
target_length = max(lengths) if lengths else 1
|
155
|
+
|
156
|
+
# Convert each input to a Series of the target length
|
157
|
+
if not isinstance(a, (pd.Series, np.ndarray)):
|
158
|
+
a = pd.Series([a] * target_length)
|
159
|
+
else:
|
160
|
+
a = pd.Series(a)
|
161
|
+
|
162
|
+
if not isinstance(b, (pd.Series, np.ndarray)):
|
163
|
+
b = pd.Series([b] * target_length)
|
164
|
+
else:
|
165
|
+
b = pd.Series(b)
|
166
|
+
|
167
|
+
if not isinstance(c, (pd.Series, np.ndarray)):
|
168
|
+
c = pd.Series([c] * target_length)
|
169
|
+
else:
|
170
|
+
c = pd.Series(c)
|
171
|
+
|
172
|
+
return a, b, c
|
173
|
+
|
174
|
+
|
175
|
+
def ensure_series_4(a, b, c, d):
|
176
|
+
# Determine the target length
|
177
|
+
lengths = [len(a) if isinstance(a, (pd.Series, np.ndarray)) else None,
|
178
|
+
len(b) if isinstance(b, (pd.Series, np.ndarray)) else None,
|
179
|
+
len(c) if isinstance(c, (pd.Series, np.ndarray)) else None,
|
180
|
+
len(d) if isinstance(d, (pd.Series, np.ndarray)) else None]
|
181
|
+
lengths = [l for l in lengths if l is not None]
|
182
|
+
target_length = max(lengths) if lengths else 1
|
183
|
+
|
184
|
+
# Convert each input to a Series of the target length
|
185
|
+
if not isinstance(a, (pd.Series, np.ndarray)):
|
186
|
+
a = pd.Series([a] * target_length)
|
187
|
+
else:
|
188
|
+
a = pd.Series(a)
|
189
|
+
|
190
|
+
if not isinstance(b, (pd.Series, np.ndarray)):
|
191
|
+
b = pd.Series([b] * target_length)
|
192
|
+
else:
|
193
|
+
b = pd.Series(b)
|
194
|
+
|
195
|
+
if not isinstance(c, (pd.Series, np.ndarray)):
|
196
|
+
c = pd.Series([c] * target_length)
|
197
|
+
else:
|
198
|
+
c = pd.Series(c)
|
199
|
+
|
200
|
+
if not isinstance(d, (pd.Series, np.ndarray)):
|
201
|
+
d = pd.Series([d] * target_length)
|
202
|
+
else:
|
203
|
+
d = pd.Series(d)
|
204
|
+
|
205
|
+
return a, b, c, d
|
105
206
|
|
106
207
|
|
107
208
|
|
@@ -178,7 +279,7 @@ def purevolume(i, V, P, B, C, D, E, F, Vc, TK, b, g):
|
|
178
279
|
# Return the final estimated volume
|
179
280
|
return V
|
180
281
|
|
181
|
-
def purepressure(i, V, P,
|
282
|
+
def purepressure(i, V, P, TK):
|
182
283
|
""" Using the pure EOS, this function solves for the best pressure using the pureEOS residual calculated above
|
183
284
|
|
184
285
|
It returns the pressure.
|
@@ -186,6 +287,8 @@ def purepressure(i, V, P, B, C, D, E, F, Vc, TK, b, g):
|
|
186
287
|
"""
|
187
288
|
for iter in range(1, 51):
|
188
289
|
# Calculate the derivative of the pureEOS function at (V, P)
|
290
|
+
k1_temperature, k2_temperature, k3_temperature, a1, a2, g, b, Vc, B, C, D, E, F, Vguess=get_EOS_params(P, TK)
|
291
|
+
|
189
292
|
diff = (pureEOS(i, V, P + 0.0001, B, C, D, E, F, Vc, TK, b, g) - pureEOS(i, V, P, B, C, D, E, F, Vc, TK, b, g)) / 0.0001
|
190
293
|
|
191
294
|
# Update the pressure using the Newton-Raphson method
|
@@ -201,6 +304,9 @@ def purepressure(i, V, P, B, C, D, E, F, Vc, TK, b, g):
|
|
201
304
|
# Return the final estimated pressure
|
202
305
|
return P
|
203
306
|
|
307
|
+
|
308
|
+
|
309
|
+
|
204
310
|
def mol_vol_to_density(mol_vol, XH2O):
|
205
311
|
""" Converts molar mass to molar density for a given XH2O"""
|
206
312
|
density=((1-XH2O)*44 + (XH2O)*18)/mol_vol
|
@@ -265,11 +371,14 @@ def mixvolume(V, P, BVc, CVc2, DVc4, EVc5, FVc2, bmix, gVc2, TK):
|
|
265
371
|
|
266
372
|
return V
|
267
373
|
|
268
|
-
def mixpressure(
|
374
|
+
def mixpressure(P, V, TK, Y):
|
269
375
|
""" This function iterates in pressure space to get the best match to the entered volume using the mixEOS function above.
|
270
376
|
|
271
377
|
"""
|
272
378
|
for iter in range(1, 51):
|
379
|
+
k1_temperature, k2_temperature, k3_temperature, a1, a2, g, b, Vc, B, C, D, E, F, Vguess=get_EOS_params(P, TK)
|
380
|
+
Bij, Vcij, BVc_prm, BVc, Cijk, Vcijk, CVc2_prm, CVc2, Dijklm, Vcijklm, DVc4_prm, DVc4, Eijklmn, Vcijklmn, EVc5_prm, EVc5, Fij, FVc2_prm, FVc2, bmix, b_prm, gijk, gVc2_prm, gVc2=mixing_rules(B, C,D, E, F, Vc, Y, b, g, k1_temperature, k2_temperature, k3_temperature)
|
381
|
+
|
273
382
|
diff = ((mixEOS(V, P + 0.0001, BVc, CVc2, DVc4, EVc5, FVc2, bmix, gVc2, TK)
|
274
383
|
- mixEOS(V, P, BVc, CVc2, DVc4, EVc5, FVc2, bmix, gVc2, TK)) / 0.0001)
|
275
384
|
Pnew = P - mixEOS(V, P, BVc, CVc2, DVc4, EVc5, FVc2, bmix, gVc2, TK) / diff
|
@@ -280,8 +389,10 @@ def mixpressure(V, P, BVc, CVc2, DVc4, EVc5, FVc2, bmix, gVc2, TK):
|
|
280
389
|
return P
|
281
390
|
|
282
391
|
|
392
|
+
|
283
393
|
def mix_lnphi(i, Zmix, BVc_prm, CVc2_prm, DVc4_prm, EVc5_prm, FVc2_prm, FVc2, bmix, b_prm, gVc2, gVc2_prm, Vmix):
|
284
394
|
lnph=0
|
395
|
+
|
285
396
|
lnph = -math.log(Zmix)
|
286
397
|
lnph += (BVc_prm[i] / Vmix)
|
287
398
|
lnph += (CVc2_prm[i] / (2.0 * Vmix ** 2))
|
@@ -735,13 +846,8 @@ def calculate_molar_volume_DZ2006(*, P_kbar, T_K, XH2O):
|
|
735
846
|
|
736
847
|
|
737
848
|
"""
|
738
|
-
|
739
|
-
|
740
|
-
P_kbar = pd.Series(P_kbar)
|
741
|
-
if not isinstance(T_K, pd.Series):
|
742
|
-
T_K = pd.Series(T_K)
|
743
|
-
if not isinstance(XH2O, pd.Series):
|
744
|
-
XH2O = pd.Series(XH2O)
|
849
|
+
|
850
|
+
P_kbar, T_K, XH2O=ensure_series(P_kbar, T_K, XH2O)
|
745
851
|
|
746
852
|
# Check all the same length
|
747
853
|
lengths = [len(P_kbar), len(T_K), len(XH2O)]
|
@@ -760,6 +866,67 @@ def calculate_molar_volume_DZ2006(*, P_kbar, T_K, XH2O):
|
|
760
866
|
|
761
867
|
return mol_vol
|
762
868
|
|
869
|
+
def calculate_Pressure_ind_DZ2006(*, mol_vol, T_K, XH2O, Pguess=None):
|
870
|
+
""" This function calculates pressure for a known molar volume, T in K and XH2O (mol frac) for a single value
|
871
|
+
"""
|
872
|
+
V=mol_vol
|
873
|
+
if Pguess is None:
|
874
|
+
if V>1000:
|
875
|
+
Pguess=1000
|
876
|
+
elif V<10:
|
877
|
+
Pguess=20000
|
878
|
+
else:
|
879
|
+
Pguess=200
|
880
|
+
|
881
|
+
TK=T_K
|
882
|
+
|
883
|
+
# lets do for low pressure initially
|
884
|
+
|
885
|
+
|
886
|
+
if XH2O==0:
|
887
|
+
P=purepressure(1, V, Pguess, TK)
|
888
|
+
|
889
|
+
elif XH2O==1:
|
890
|
+
P=purepressure(0, V, Pguess, TK)
|
891
|
+
|
892
|
+
else:
|
893
|
+
XCO2=1-XH2O
|
894
|
+
Y = [0] * 2
|
895
|
+
Y[0]=XH2O
|
896
|
+
Y[1]=XCO2
|
897
|
+
|
898
|
+
P=mixpressure(Pguess, V, T_K, Y)
|
899
|
+
|
900
|
+
return P
|
901
|
+
|
902
|
+
def calculate_Pressure_DZ2006(*, mol_vol=None, density=None, T_K, XH2O):
|
903
|
+
""" Used to calculate molar volume in a loop for multiple inputs
|
904
|
+
|
905
|
+
|
906
|
+
"""
|
907
|
+
# Make all a panda series
|
908
|
+
|
909
|
+
|
910
|
+
|
911
|
+
if mol_vol is None and density is not None:
|
912
|
+
mol_vol=density_to_mol_vol(density=density, XH2O=XH2O)
|
913
|
+
|
914
|
+
mol_vol, T_K, XH2O=ensure_series(mol_vol, T_K, XH2O)
|
915
|
+
|
916
|
+
# Check all the same length
|
917
|
+
lengths = [len(mol_vol), len(T_K), len(XH2O)]
|
918
|
+
if len(set(lengths)) != 1:
|
919
|
+
raise ValueError("All input Pandas Series must have the same length.")
|
920
|
+
|
921
|
+
# Set up loop
|
922
|
+
P=np.empty(len(mol_vol), float)
|
923
|
+
|
924
|
+
for i in range(0, len(mol_vol)):
|
925
|
+
P[i]=calculate_Pressure_ind_DZ2006(mol_vol=mol_vol.iloc[i].astype(float), T_K=T_K.iloc[i].astype(float), XH2O=XH2O.iloc[i].astype(float))
|
926
|
+
|
927
|
+
|
928
|
+
|
929
|
+
return P
|
763
930
|
|
764
931
|
|
765
932
|
def mix_fugacity(*, P_kbar, T_K, XH2O, Vmix):
|
@@ -768,14 +935,10 @@ def mix_fugacity(*, P_kbar, T_K, XH2O, Vmix):
|
|
768
935
|
|
769
936
|
"""
|
770
937
|
# Make everything a pandas series
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
775
|
-
if not isinstance(XH2O, pd.Series):
|
776
|
-
XH2O = pd.Series(XH2O)
|
777
|
-
if not isinstance(Vmix, pd.Series):
|
778
|
-
Vmix = pd.Series(Vmix)
|
938
|
+
|
939
|
+
P_kbar, T_K, XH2O, Vmix=ensure_series_4(P_kbar, T_K, XH2O, Vmix)
|
940
|
+
|
941
|
+
|
779
942
|
|
780
943
|
#Check all the same length
|
781
944
|
lengths = [len(P_kbar), len(T_K), len(XH2O), len(Vmix)]
|
@@ -796,16 +959,44 @@ def mix_fugacity(*, P_kbar, T_K, XH2O, Vmix):
|
|
796
959
|
|
797
960
|
|
798
961
|
def mol_vol_to_density(*, mol_vol, XH2O):
|
799
|
-
""" Converts molar mass to
|
962
|
+
""" Converts molar mass to density for a given XH2O"""
|
800
963
|
density=((1-XH2O)*44 + (XH2O)*18)/mol_vol
|
801
964
|
return density
|
802
965
|
|
966
|
+
def density_to_mol_vol(*, density, XH2O):
|
967
|
+
""" Converts density in g/cm3 to molar volume for a given XH2O"""
|
968
|
+
mol_vol=((1-XH2O)*44 + (XH2O)*18)/density
|
969
|
+
return mol_vol
|
970
|
+
|
971
|
+
|
972
|
+
|
973
|
+
def calc_prop_knownP_EOS_DZ2006(*, P_kbar=1, T_K=1200, XH2O=1):
|
974
|
+
""" This function calculates molar volume, density, compressability factor, fugacity, and activity for mixed H2O-CO2 fluids
|
975
|
+
using the EOS of Span and Wanger. It assumes you know P, T, and XH2O.
|
976
|
+
|
977
|
+
Parameters
|
978
|
+
-------------------
|
979
|
+
P_kbar: float, np.array, pd.Series
|
980
|
+
Pressure in kbar
|
981
|
+
T_K: float, np.array, pd.Series
|
982
|
+
Temperature in Kelvin
|
983
|
+
XH2O: float, np.array, pd.Series
|
984
|
+
Molar fraction of H2O in the fluid phase.
|
985
|
+
|
986
|
+
Returns
|
987
|
+
-------------------
|
988
|
+
pd.DataFrame
|
989
|
+
|
990
|
+
"""
|
991
|
+
|
803
992
|
|
804
993
|
|
994
|
+
# First, check all pd Series
|
995
|
+
|
805
996
|
|
806
|
-
def H2O_CO2_EOS_DZ2006_knownP(*, P_kbar=1, T_K=1200, XH2O=1):
|
807
|
-
""" Function to return a dataframe of outputs when you know P, T_K and XH2O"""
|
808
997
|
mol_vol=calculate_molar_volume_DZ2006(P_kbar=P_kbar, T_K=T_K, XH2O=XH2O)
|
998
|
+
|
999
|
+
|
809
1000
|
f_H2O, f_CO2, a_H2O, a_CO2, Zmix=mix_fugacity(P_kbar=P_kbar, T_K=T_K, XH2O=XH2O,
|
810
1001
|
Vmix=mol_vol)
|
811
1002
|
density=mol_vol_to_density(mol_vol=mol_vol, XH2O=XH2O)
|
@@ -831,6 +1022,62 @@ def H2O_CO2_EOS_DZ2006_knownP(*, P_kbar=1, T_K=1200, XH2O=1):
|
|
831
1022
|
|
832
1023
|
|
833
1024
|
|
1025
|
+
def calculate_entrapment_P_XH2O(*, XH2O, CO2_dens_gcm3, T_K):
|
1026
|
+
"""" This function calculates pressure for a measured CO$_2$ density, temperature and estimate of initial XH2O.
|
1027
|
+
It first corrects the density to obtain a bulk density for a CO2-H2O mix, assuming that H2O was lost from the inclusion.
|
1028
|
+
correcting for XH2O. It assumes that H2O has been lost from the inclusion (see Hansteen and Klugel, 2008 for method). It also calculates using other
|
1029
|
+
pure CO2 equation of states for comparison
|
1030
|
+
|
1031
|
+
Parameters
|
1032
|
+
----------------------
|
1033
|
+
XH2O: float, pd.Series.
|
1034
|
+
The molar fraction of H2O in the fluid. Should be between 0 and 1. Can get an estimate from say VESical.
|
1035
|
+
|
1036
|
+
CO2_dens_gcm3: float, pd.Series
|
1037
|
+
Measured CO2 density in g/cm3
|
1038
|
+
|
1039
|
+
T_K: float, pd.Series
|
1040
|
+
Temperature in Kelvin.
|
1041
|
+
|
1042
|
+
Returns
|
1043
|
+
-----------------------------
|
1044
|
+
pd.DataFrame:
|
1045
|
+
Columns showing:
|
1046
|
+
P_kbar_pureCO2_SW96: Pressure calculated for the measured CO$_2$ density using the pure CO2 EOS from Span and Wanger (1996)
|
1047
|
+
P_kbar_pureCO2_SP94: Pressure calculated for the measured CO$_2$ density using the pure CO2 EOS from Sterner and Pitzer (1994)
|
1048
|
+
P_kbar_pureCO2_DZ06: Pressure calculated from the measured CO$_2$ density using the pure CO2 EOs from Duan and Zhang (2006)
|
1049
|
+
P_kbar_mixCO2_DZ06: Pressure calculated from the reconstructed mixed fluid density using the mixed EOS from Duan and Zhang (2006)
|
1050
|
+
P Mix/P Pure DZ06: Correction factor - e.g. how much deeper the pressure is from the mixed EOS
|
1051
|
+
rho_mix_calc: Bulk density calculated (C+H) at time of entrapment
|
1052
|
+
CO2_dens_gcm3: Input CO2 density
|
1053
|
+
T_K: input temperature
|
1054
|
+
XH2O: input molar fraction of H2O
|
1055
|
+
|
1056
|
+
"""
|
1057
|
+
XH2O, rho_meas, T_K=ensure_series(a=XH2O, b=CO2_dens_gcm3, c=T_K)
|
1058
|
+
alpha=XH2O/(1-XH2O)
|
1059
|
+
# This gets the bulk density of the CO2-H2O fluid
|
1060
|
+
rho_orig=rho_meas*(1+alpha*(18/44))
|
1061
|
+
# Lets calculate the pressure using SW96
|
1062
|
+
P_SW=calculate_P_for_rho_T(T_K=T_K, CO2_dens_gcm3=rho_meas, EOS='SW96')
|
1063
|
+
P_SP=calculate_P_for_rho_T(T_K=T_K, CO2_dens_gcm3=rho_meas, EOS='SP94')
|
1064
|
+
# Same for DZ2006
|
1065
|
+
P_DZ=calculate_Pressure_DZ2006(density=rho_meas, T_K=T_K, XH2O=XH2O*0)
|
1066
|
+
# Now doing it with XH2O
|
1067
|
+
P_DZ_mix=calculate_Pressure_DZ2006(density=rho_orig, T_K=T_K, XH2O=XH2O)
|
1068
|
+
|
1069
|
+
df=pd.DataFrame(data={
|
1070
|
+
'P_kbar_pureCO2_SW96': P_SW['P_kbar'],
|
1071
|
+
'P_kbar_pureCO2_SP94': P_SW['P_kbar'],
|
1072
|
+
'P_kbar_pureCO2_DZ06': P_DZ/1000,
|
1073
|
+
'P_kbar_mixCO2_DZ06': P_DZ_mix/1000,
|
1074
|
+
'P Mix/P Pure DZ06': P_DZ_mix/P_DZ,
|
1075
|
+
'rho_mix_calc': rho_orig,
|
1076
|
+
'CO2_dens_gcm3': rho_meas,
|
1077
|
+
'T_K': T_K,
|
1078
|
+
'XH2O': XH2O})
|
1079
|
+
|
1080
|
+
return df
|
834
1081
|
|
835
1082
|
|
836
1083
|
|
DiadFit/_version.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1
1
|
DiadFit/CO2_EOS.py,sha256=AeiM_s0cIVip5i5q1Shy8QXTUWz4XHG0VnfuBH5qRDY,28034
|
2
|
-
DiadFit/CO2_H2O_EOS.py,sha256=
|
2
|
+
DiadFit/CO2_H2O_EOS.py,sha256=TLU2goWB6yGFbN4RBS0dRXG0oDQuuG0JftW32DZHmn4,37722
|
3
3
|
DiadFit/CO2_in_bubble_error.py,sha256=Ga_hNA63m-OZg2hBOqM7VvpJhnvvTCg6L3Qixh1Bh7A,14196
|
4
4
|
DiadFit/H2O_fitting.py,sha256=pbEa0JivZFAmWxEGY5VMetD95BGNCzkaatfXRVAV4fs,43889
|
5
5
|
DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
|
@@ -22,7 +22,7 @@ DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrY
|
|
22
22
|
DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
|
23
23
|
DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
|
24
24
|
DiadFit/__init__.py,sha256=wXZHfLvkI9ye1TFrdykATP8Kn7I-UdNFBTmHZI1V9EQ,1181
|
25
|
-
DiadFit/_version.py,sha256=
|
25
|
+
DiadFit/_version.py,sha256=SazyQZ1u3ZbLcm4V_X0Afuz2vYszLoDthUrzhh_eAB4,296
|
26
26
|
DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
|
27
27
|
DiadFit/cosmicray_filter.py,sha256=SqowmxChJG4Is6_K5E5OqJ1WaSWSaGKg-hSDBOJIVA0,23626
|
28
28
|
DiadFit/densimeter_fitting.py,sha256=Uel9a4qUVz6r-my09uuHFRjD9oPFF-kd5ZBPYfYfOQM,8086
|
@@ -34,7 +34,7 @@ DiadFit/importing_data_files.py,sha256=zghBVGWLLQaG9dWKSIa7KaDmqUBmyhm7ZgBmV5f4S
|
|
34
34
|
DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
|
35
35
|
DiadFit/ne_lines.py,sha256=-Xv62LJ2OOGSCeKsQjmXZ7yD3g2ZOG1okxvVp8PYzXM,67144
|
36
36
|
DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
|
37
|
-
DiadFit-0.0.
|
38
|
-
DiadFit-0.0.
|
39
|
-
DiadFit-0.0.
|
40
|
-
DiadFit-0.0.
|
37
|
+
DiadFit-0.0.80.dist-info/METADATA,sha256=EWYJK6FLJ5O1UaUS66QjXOPadAJQiJ41C1I8ZTR5riQ,1159
|
38
|
+
DiadFit-0.0.80.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
39
|
+
DiadFit-0.0.80.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
|
40
|
+
DiadFit-0.0.80.dist-info/RECORD,,
|
File without changes
|
File without changes
|