DiadFit 0.0.78__py3-none-any.whl → 0.0.80__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
DiadFit/ne_lines.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
3
  import matplotlib.pyplot as plt
4
4
  from matplotlib import patches
5
5
  import lmfit
6
- from lmfit.models import GaussianModel, VoigtModel, LinearModel, ConstantModel, PseudoVoigtModel
6
+ from lmfit.models import GaussianModel, VoigtModel, LinearModel, ConstantModel, PseudoVoigtModel, SkewedVoigtModel
7
7
  from scipy.signal import find_peaks
8
8
  import os
9
9
  import re
@@ -88,7 +88,8 @@ def calculate_Ne_splitting(wavelength=532.05, line1_shift=1117, line2_shift=1447
88
88
  def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
89
89
  """
90
90
  Calculates Raman shift for a given laser wavelength of Ne lines, using the datatable from NIST of Ne line
91
- emissoin in air and the intensity of each line.
91
+ emissoin in air and the intensity of each line.
92
+ Data from https://physics.nist.gov/PhysRefData/ASD/lines_form.html
92
93
 
93
94
  Parameters
94
95
  ---------------
@@ -106,6 +107,31 @@ def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
106
107
  """
107
108
 
108
109
  Ne_emission_line_air=np.array([
110
+
111
+
112
+ 541.85584,
113
+ 542.009,
114
+ 542.0155,
115
+ 543.36513,
116
+ 544.7120,
117
+
118
+ 544.85091,
119
+ 549.44158,
120
+ 550.73442,
121
+ 551.1176,
122
+ 551.1485,
123
+
124
+ 552.063,
125
+ 553.36788,
126
+ 553.86510,
127
+ 555.90978,
128
+ 556.24416,
129
+
130
+ 556.27662,
131
+ 556.30531,
132
+
133
+
134
+
109
135
  556.244160,
110
136
  556.276620,
111
137
  556.305310,
@@ -142,7 +168,34 @@ def calculate_Ne_line_positions(wavelength=532.05, cut_off_intensity=2000):
142
168
 
143
169
  ])
144
170
 
145
- Intensity=np.array([1500.00,
171
+ Intensity=np.array([
172
+
173
+ 1500,
174
+ 12 ,
175
+ 500,
176
+ 2500,
177
+ 80,
178
+
179
+ 1500,
180
+ 500,
181
+ 250,
182
+ 30,
183
+ 150,
184
+
185
+ 30,
186
+ 750,
187
+ 500,
188
+ 350,
189
+ 1500,
190
+
191
+ 5000,
192
+ 750,
193
+
194
+
195
+
196
+
197
+
198
+ 1500.00,
146
199
  5000.00,
147
200
  750.00,
148
201
  350.00,
@@ -689,6 +742,8 @@ const_params=True, spec_res=0.4) :
689
742
  model0 = PseudoVoigtModel(prefix='p0_')#+ ConstantModel(prefix='c0')
690
743
  if model_name=="VoigtModel":
691
744
  model0 = VoigtModel(prefix='p0_')#+ ConstantModel(prefix='c0')
745
+ if model_name=='SkewedVoigtModel':
746
+ model0=SkewedVoigtModel(prefix='p0_')
692
747
 
693
748
  pars0 = model0.make_params()
694
749
  pars0['p0_center'].set(Ne_center, min=Ne_center-2*spec_res, max=Ne_center+2*spec_res)
@@ -725,6 +780,10 @@ const_params=True, spec_res=0.4) :
725
780
  model1 = PseudoVoigtModel(prefix='p1_')#+ ConstantModel(prefix='c0')
726
781
  if model_name=="VoigtModel":
727
782
  model1 = VoigtModel(prefix='p1_')#+ ConstantModel(prefix='c0')
783
+
784
+ if model_name=='SkewedVoigtModel':
785
+ model1=SkewedVoigtModel(prefix='p1_')
786
+
728
787
  pars1 = model1.make_params()
729
788
  pars1['p1_'+ 'amplitude'].set(Amp_p0, min=min_off*Amp_p0, max=max_off*Amp_p0)
730
789
  pars1['p1_'+ 'center'].set(Center_p0, min=Center_p0-spec_res/2, max=Center_p0+spec_res/2)
@@ -737,6 +796,8 @@ const_params=True, spec_res=0.4) :
737
796
  peak = PseudoVoigtModel(prefix='p2_')#+ ConstantModel(prefix='c0')
738
797
  if model_name=="VoigtModel":
739
798
  peak = VoigtModel(prefix='p2_')#+ ConstantModel(prefix='c0')
799
+ if model_name=='SkewedVoigtModel':
800
+ peak=SkewedVoigtModel(prefix='p2_')
740
801
 
741
802
 
742
803
  pars = peak.make_params()
@@ -791,6 +852,8 @@ const_params=True, spec_res=0.4) :
791
852
  model_combo = PseudoVoigtModel(prefix='p1_')#+ ConstantModel(prefix='c0')
792
853
  if model_name=="VoigtModel":
793
854
  model_combo= VoigtModel(prefix='p1_')#+ ConstantModel(prefix='c0')
855
+ if model_name=='SkewedVoigtModel':
856
+ model_combo=SkewedVoigtModel(prefix='p1_')
794
857
 
795
858
 
796
859
 
@@ -934,6 +997,8 @@ model_name='PseudoVoigtModel', print_report=False, const_params=True, spec_res=0
934
997
  model = PseudoVoigtModel()#+ ConstantModel(prefix='c0')
935
998
  if model_name=="VoigtModel":
936
999
  model = VoigtModel()#+ ConstantModel(prefix='c0')
1000
+ if model_name=="SkewedVoigtModel":
1001
+ model = SkewedVoigtModel()#+ ConstantModel(prefix='c0')
937
1002
 
938
1003
 
939
1004
 
@@ -1660,10 +1725,48 @@ def filter_Ne_Line_neighbours(*, df_combo=None, Corr_factor=None, number_av=6, o
1660
1725
  ## Lets make a plotting function for this notebook
1661
1726
 
1662
1727
  def generate_Ne_corr_model(*, time, Ne_corr, N_poly=3, CI=0.67, bootstrap=False, std_error=True, N_bootstrap=500,save_fig=False, pkl_name='polyfit_data.pkl'):
1728
+ """ This function takes time stamp and Ne correctoin data to make a predictive polynomial, which it then saves as a pkl file
1729
+
1730
+ Parameters
1731
+ ---------------
1732
+ time: pd.Series
1733
+ Time through the run
1734
+
1735
+ Ne_corr: df or pd.Series
1736
+ if dataframe, has to have the column 'Ne_corr'
1737
+ Else, just Ne correction factor as a pd.Series itself
1738
+
1739
+ CI: float. Default 0.67
1740
+ Confidence interval to save as uncertainty on model.
1741
+
1742
+ Either:
1743
+
1744
+ std_error: bool (True)
1745
+ calculates uncertainty on model using CI
1746
+
1747
+ Or:
1748
+ boostrap: bool (False)
1749
+ Used for testing of method, keep as False
1750
+
1751
+ save_fig:bool
1752
+ Saves figure.
1753
+
1754
+ pkl_name: str
1755
+ Name of model that is saved.
1756
+
1757
+
1758
+
1759
+
1760
+
1761
+ """
1663
1762
  # Define the x and y values
1664
1763
  x_all = np.array([time])
1665
- y_all = np.array([Ne_corr['Ne_Corr']])
1666
- y_err=Ne_corr['1σ_Ne_Corr']
1764
+ if isinstance(Ne_corr, pd.DataFrame):
1765
+ y_all = np.array([Ne_corr['Ne_Corr']])
1766
+ y_err=Ne_corr['1σ_Ne_Corr']
1767
+ else:
1768
+ y_all=Ne_corr
1769
+ y_err=0*Ne_corr
1667
1770
  non_nan_indices = ~np.isnan(x_all) & ~np.isnan(y_all)
1668
1771
 
1669
1772
  # Filter out NaN values
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 0.0.78
3
+ Version: 0.0.80
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
@@ -1,33 +1,40 @@
1
- DiadFit/CO2_EOS.py,sha256=gkR8mp1zbXBmGlar7vBqJHVH-P7-hrqGJ8_Rijt1jtw,27460
2
- DiadFit/CO2_in_bubble_error.py,sha256=N-Ox8LcJV98ui_3B7n4oaSjiA4EapZiSnZDWw3EuZ60,14042
1
+ DiadFit/CO2_EOS.py,sha256=AeiM_s0cIVip5i5q1Shy8QXTUWz4XHG0VnfuBH5qRDY,28034
2
+ DiadFit/CO2_H2O_EOS.py,sha256=TLU2goWB6yGFbN4RBS0dRXG0oDQuuG0JftW32DZHmn4,37722
3
+ DiadFit/CO2_in_bubble_error.py,sha256=Ga_hNA63m-OZg2hBOqM7VvpJhnvvTCg6L3Qixh1Bh7A,14196
3
4
  DiadFit/H2O_fitting.py,sha256=pbEa0JivZFAmWxEGY5VMetD95BGNCzkaatfXRVAV4fs,43889
4
5
  DiadFit/Highrho_polyfit_data.pkl,sha256=7t6uXxI-HdfsvreAWORzMa9dXxUsnXqKBSo1O3EgiBw,1213
6
+ DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl,sha256=B7nX560JpBBBssSgr50oDDG-UKsNxAjp235eytquVaI,1213
5
7
  DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl,sha256=0_eZVQ3Byh9u5xW9TnvlUJg_-bTDSjG3EpVhCutZZkk,1213
6
8
  DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl,sha256=eQw3HIsZ7xRr9QKBKsxuZKyRdlMbnaFxtxlM72jcRjU,1213
9
+ DiadFit/Highrho_polyfit_data_CCMR.pkl,sha256=8hgi0kFoEn6aWAHl0hX34ez3EDAndPXWX3wlBvqPQdA,909
7
10
  DiadFit/Highrho_polyfit_data_CMASS.pkl,sha256=g592Rk7HwM93_Ws8lg1RSun5GkqBZmdENQGf3rZv1Ig,829
8
11
  DiadFit/Lowrho_polyfit_data.pkl,sha256=LFg0C3D3FXzhp_LdwZ3xzdxDZzrA70xvFACCBwLmpF0,751
12
+ DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl,sha256=FttCfGvf9dKOXvFHeYLP3w1_N93N8_X4jwx9o5U_JOA,751
9
13
  DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl,sha256=y_53yUG4lv_OIYVWs7BTJjqVh3w55EJ_7pkk8NWodOc,751
10
14
  DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl,sha256=UNpo1WPgbqTApazne0DYbflrRr1kGbWXWA97XjNRQlg,751
15
+ DiadFit/Lowrho_polyfit_data_CCMR.pkl,sha256=G58_l4TpdBmVdsR1z6FWTQ9qDsemNeZOJvbCl-36zKs,1141
11
16
  DiadFit/Lowrho_polyfit_data_CMASS.pkl,sha256=meT16KSMUAlxb0XC1T-vTa-X3ooJ2JjdWFJetHHCQfQ,997
12
17
  DiadFit/Mediumrho_polyfit_data.pkl,sha256=zfl3MuTE-Oyz0T9tsYS0uU43tL9zSqrdss9sGHldRb0,1301
18
+ DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl,sha256=oGlsChnHyH4rWOg-HBsrW_oQKGoqe6-2zRodpHH9MSA,1301
13
19
  DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl,sha256=Qxj74-mcCFj8LmwgqdChqNlw4XMXlOuuL03SZNZz5R8,1301
14
20
  DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl,sha256=zdo1t0F8X6S8ovPldH9Hu2kYQGHU18w67TK48isp4NI,1301
21
+ DiadFit/Mediumrho_polyfit_data_CCMR.pkl,sha256=U6ODSdurqS0-lynm1MG1zktg8NuhYRbrYCsx8KI4SQ4,1221
15
22
  DiadFit/Mediumrho_polyfit_data_CMASS.pkl,sha256=SBy1pIdqCAF9UtB9FLNTuD0-tFyD7swwJppdE2U_FsY,1557
16
23
  DiadFit/Psensor.py,sha256=C2xSlgxhUJIKIBDvUp02QaYRs5QsIqjGGRMP25ZLRZ0,10435
17
- DiadFit/__init__.py,sha256=OePOoHHzXy3CbBtS7jHZWk9v91k0Hzc8yN_0TBfWaXU,1147
18
- DiadFit/_version.py,sha256=7PgzBnqkJyuXANSUrsXiuQCQ8oIU81lzmmbIMyDTwPI,296
24
+ DiadFit/__init__.py,sha256=wXZHfLvkI9ye1TFrdykATP8Kn7I-UdNFBTmHZI1V9EQ,1181
25
+ DiadFit/_version.py,sha256=SazyQZ1u3ZbLcm4V_X0Afuz2vYszLoDthUrzhh_eAB4,296
19
26
  DiadFit/argon_lines.py,sha256=vtzsuDdEgrAmEF9xwpejpFqKV9hKPS1JUYhIl4AfXZ0,7675
20
- DiadFit/cosmicray_filter.py,sha256=PvcI4jB58yZ9m-jrjt9BRjtANZzILA9gPgVq-Z5jQ50,23438
27
+ DiadFit/cosmicray_filter.py,sha256=SqowmxChJG4Is6_K5E5OqJ1WaSWSaGKg-hSDBOJIVA0,23626
21
28
  DiadFit/densimeter_fitting.py,sha256=Uel9a4qUVz6r-my09uuHFRjD9oPFF-kd5ZBPYfYfOQM,8086
22
- DiadFit/densimeters.py,sha256=KKUEUcqqkIxdjPbpPjb99SdTU-MxgbjY7ZWmCoQa7Fo,45490
29
+ DiadFit/densimeters.py,sha256=hcgcymwPf0POP5xT29mADM4L80arqW6ZKJ3Yq3EYJIE,48086
23
30
  DiadFit/density_depth_crustal_profiles.py,sha256=XPauKf62hMp-iw701XfphaVe3o6LRJSwuQXAcSDXv6s,16983
24
- DiadFit/diads.py,sha256=4nE-Y5y9i2gGbl_CjAjoCeL-Mfdk7gy0Bo6sfF0ip_g,169011
25
- DiadFit/error_propagation.py,sha256=G0RJ3zAiwdrWXC0rPk82NdSm8HQ_tuG5EACDnE6bT_A,34162
26
- DiadFit/importing_data_files.py,sha256=Gd9r8xvQxX3zr8aXCuSLdexKdz25sV0PgDvv0vd6K3A,37659
31
+ DiadFit/diads.py,sha256=61B5qFSsTO81k6T9Qy3wLFOv7oR5tubIySrtXUmdCWM,173053
32
+ DiadFit/error_propagation.py,sha256=_x82UIXz46-Qjvvz2tDAblyDkOe_51JI27wvSDkSOms,35080
33
+ DiadFit/importing_data_files.py,sha256=zghBVGWLLQaG9dWKSIa7KaDmqUBmyhm7ZgBmV5f4SuI,38926
27
34
  DiadFit/molar_gas_proportions.py,sha256=_oEZn_vndHGDaXAjZ6UU8ycujBx_qB2KGCGqZSzotQU,3389
28
- DiadFit/ne_lines.py,sha256=EtNbaf1eqMWpnUd_Zk6o5DxqZZ_ZnToVEFOkC0tyHpw,65288
35
+ DiadFit/ne_lines.py,sha256=-Xv62LJ2OOGSCeKsQjmXZ7yD3g2ZOG1okxvVp8PYzXM,67144
29
36
  DiadFit/relaxifi.py,sha256=hHzRsJPQIVohYi3liy9IQJpaomgsa2zbLQmhqkpdfrI,31549
30
- DiadFit-0.0.78.dist-info/METADATA,sha256=vtSJtJj12WiFBof6PitQi6gfsZIzzEeW-b8cOWLdQtc,1159
31
- DiadFit-0.0.78.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
32
- DiadFit-0.0.78.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
33
- DiadFit-0.0.78.dist-info/RECORD,,
37
+ DiadFit-0.0.80.dist-info/METADATA,sha256=EWYJK6FLJ5O1UaUS66QjXOPadAJQiJ41C1I8ZTR5riQ,1159
38
+ DiadFit-0.0.80.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
39
+ DiadFit-0.0.80.dist-info/top_level.txt,sha256=yZC6OFLVznaFA5kcPlFPkvhKotcVd-YO4bKxZZw3LQE,8
40
+ DiadFit-0.0.80.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: bdist_wheel (0.42.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5