DFO-LS 1.2.1__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of DFO-LS might be problematic. Click here for more details.

@@ -1,42 +1,53 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DFO-LS
3
- Version: 1.2.1
3
+ Version: 1.5.0
4
4
  Summary: A flexible derivative-free solver for (bound constrained) nonlinear least-squares minimization
5
- Home-page: https://github.com/numericalalgorithmsgroup/dfols/
6
- Author: Lindon Roberts
7
- Author-email: lindon.roberts@manu.edu.au
8
- License: GNU GPL
9
- Download-URL: https://github.com/numericalalgorithmsgroup/dfols/archive/v1.2.1.tar.gz
10
- Keywords: mathematics derivative free optimization nonlinear least squares
11
- Platform: UNKNOWN
5
+ Author-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
6
+ Maintainer-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
7
+ License: GPL-3.0-or-later
8
+ Project-URL: Homepage, https://github.com/numericalalgorithmsgroup/dfols
9
+ Project-URL: Download, https://github.com/numericalalgorithmsgroup/dfols/releases/
10
+ Project-URL: Bug Tracker, https://github.com/numericalalgorithmsgroup/dfols/issues/
11
+ Project-URL: Documentation, https://numericalalgorithmsgroup.github.io/dfols/
12
+ Project-URL: Source Code, https://github.com/numericalalgorithmsgroup/dfols
13
+ Keywords: mathematics,optimization,least squares,derivative free optimization,nonlinear least squares
12
14
  Classifier: Development Status :: 5 - Production/Stable
13
15
  Classifier: Environment :: Console
14
16
  Classifier: Framework :: IPython
15
17
  Classifier: Framework :: Jupyter
16
- Classifier: Intended Audience :: Financial and Insurance Industry
17
18
  Classifier: Intended Audience :: Science/Research
18
- Classifier: License :: OSI Approved :: GNU General Public License (GPL)
19
+ Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
19
20
  Classifier: Operating System :: MacOS
20
21
  Classifier: Operating System :: Microsoft :: Windows
21
- Classifier: Operating System :: POSIX
22
22
  Classifier: Operating System :: Unix
23
23
  Classifier: Programming Language :: Python
24
- Classifier: Programming Language :: Python :: 2
25
24
  Classifier: Programming Language :: Python :: 3
25
+ Classifier: Programming Language :: Python :: 3.9
26
+ Classifier: Programming Language :: Python :: 3.10
27
+ Classifier: Programming Language :: Python :: 3.11
28
+ Classifier: Programming Language :: Python :: 3.12
26
29
  Classifier: Topic :: Scientific/Engineering
27
30
  Classifier: Topic :: Scientific/Engineering :: Mathematics
28
- Requires-Dist: numpy (>=1.11)
29
- Requires-Dist: scipy (>=0.18)
30
- Requires-Dist: pandas (>=0.17)
31
+ Requires-Python: >=3.9
32
+ Description-Content-Type: text/x-rst
33
+ License-File: LICENSE.txt
34
+ Requires-Dist: setuptools
35
+ Requires-Dist: numpy
36
+ Requires-Dist: scipy >=1.11
37
+ Requires-Dist: pandas
38
+ Provides-Extra: dev
39
+ Requires-Dist: pytest ; extra == 'dev'
40
+ Requires-Dist: Sphinx ; extra == 'dev'
41
+ Requires-Dist: sphinx-rtd-theme ; extra == 'dev'
31
42
  Provides-Extra: trustregion
32
- Requires-Dist: trustregion (>=1.1) ; extra == 'trustregion'
43
+ Requires-Dist: trustregion >=1.1 ; extra == 'trustregion'
33
44
 
34
45
  ===================================================
35
46
  DFO-LS: Derivative-Free Optimizer for Least-Squares
36
47
  ===================================================
37
48
 
38
- .. image:: https://travis-ci.org/numericalalgorithmsgroup/dfols.svg?branch=master
39
- :target: https://travis-ci.org/numericalalgorithmsgroup/dfols
49
+ .. image:: https://github.com/numericalalgorithmsgroup/dfols/actions/workflows/python_testing.yml/badge.svg
50
+ :target: https://github.com/numericalalgorithmsgroup/dfols/actions
40
51
  :alt: Build Status
41
52
 
42
53
  .. image:: https://img.shields.io/badge/License-GPL%20v3-blue.svg
@@ -50,10 +61,14 @@ DFO-LS: Derivative-Free Optimizer for Least-Squares
50
61
  .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2630426.svg
51
62
  :target: https://doi.org/10.5281/zenodo.2630426
52
63
  :alt: DOI:10.5281/zenodo.2630426
64
+
65
+ .. image:: https://static.pepy.tech/personalized-badge/dfo-ls?period=total&units=international_system&left_color=black&right_color=green&left_text=Downloads
66
+ :target: https://pepy.tech/project/dfo-ls
67
+ :alt: Total downloads
53
68
 
54
69
  DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_.
55
70
 
56
- This is an implementation of the algorithm from our paper: C. Cartis, J. Fiala, B. Marteau and L. Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint <https://arxiv.org/abs/1804.00154>`_]. For reproducibility of all figures in this paper, please feel free to contact the authors.
71
+ The main algorithm is described in our paper [1] below.
57
72
 
58
73
  If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS.
59
74
 
@@ -63,51 +78,51 @@ See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_.
63
78
 
64
79
  Citation
65
80
  --------
66
- If you use DFO-LS in a paper, please cite:
81
+ The development of DFO-LS is outlined over several publications:
67
82
 
68
- Cartis, C., Fiala, J., Marteau, B. and Roberts, L., `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41.
83
+ 1. C Cartis, J Fiala, B Marteau and L Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint arXiv 1804.00154 <https://arxiv.org/abs/1804.00154>`_] .
84
+ 2. M Hough and L Roberts, `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://doi.org/10.1137/21M1460971>`_, *SIAM Journal on Optimization*, 21:4 (2022), pp. 2552-2579 [`preprint arXiv 2111.05443 <https://arxiv.org/abs/2111.05443>`_].
85
+ 3. Y Liu, K H Lam and L Roberts, `Black-box Optimization Algorithms for Regularized Least-squares Problems <http://arxiv.org/abs/2407.14915>`_, *arXiv preprint arXiv:arXiv:2407.14915*, 2024.
86
+
87
+ If you use DFO-LS in a paper, please cite [1].
88
+ If your problem has constraints, including bound constraints, please cite [1,2].
89
+ If your problem includes a regularizer, please cite [1,3].
69
90
 
70
91
  Requirements
71
92
  ------------
72
93
  DFO-LS requires the following software to be installed:
73
94
 
74
- * Python 2.7 or Python 3 (http://www.python.org/)
95
+ * Python 3.9 or higher (http://www.python.org/)
75
96
 
76
97
  Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_):
77
98
 
78
- * NumPy 1.11 or higher (http://www.numpy.org/)
79
- * SciPy 0.18 or higher (http://www.scipy.org/)
80
- * Pandas 0.17 or higher (http://pandas.pydata.org/)
99
+ * NumPy (http://www.numpy.org/)
100
+ * SciPy version 1.11 or higher (http://www.scipy.org/)
101
+ * Pandas (http://pandas.pydata.org/)
81
102
 
82
103
  **Optional package:** DFO-LS versions 1.2 and higher also support the `trustregion <https://github.com/lindonroberts/trust-region>`_ package for fast trust-region subproblem solutions. To install this, make sure you have a Fortran compiler (e.g. `gfortran <https://gcc.gnu.org/wiki/GFortran>`_) and NumPy installed, then run :code:`pip install trustregion`. You do not have to have trustregion installed for DFO-LS to work, and it is not installed by default.
83
104
 
84
- Installation using pip
85
- ----------------------
86
- For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
87
-
88
- .. code-block:: bash
105
+ Installation using conda
106
+ ------------------------
107
+ DFO-LS can be directly installed in Anaconda environments using `conda-forge <https://anaconda.org/conda-forge/dfo-ls>`_:
89
108
 
90
- $ [sudo] pip install DFO-LS
109
+ .. code-block:: bash
91
110
 
92
- or alternatively *easy_install*:
111
+ $ conda install -c conda-forge dfo-ls
93
112
 
94
- .. code-block:: bash
95
-
96
- $ [sudo] easy_install DFO-LS
97
-
98
- If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
99
-
100
- .. code-block:: bash
113
+ Installation using pip
114
+ ----------------------
115
+ For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
101
116
 
102
- $ pip install --user DFO-LS
117
+ .. code-block:: bash
103
118
 
104
- which will install DFO-LS in your home directory.
119
+ $ pip install DFO-LS
105
120
 
106
121
  Note that if an older install of DFO-LS is present on your system you can use:
107
122
 
108
- .. code-block:: bash
123
+ .. code-block:: bash
109
124
 
110
- $ [sudo] pip install --upgrade DFO-LS
125
+ $ pip install --upgrade DFO-LS
111
126
 
112
127
  to upgrade DFO-LS to the latest version.
113
128
 
@@ -124,30 +139,23 @@ DFO-LS is written in pure Python and requires no compilation. It can be installe
124
139
 
125
140
  .. code-block:: bash
126
141
 
127
- $ [sudo] pip install .
142
+ $ pip install .
128
143
 
129
- If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
130
-
131
- .. code-block:: bash
132
-
133
- $ pip install --user .
134
-
135
- instead.
136
-
137
- To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`setup.py`) and rerun the installation using :code:`pip`, as above:
144
+ To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`pyproject.toml`) and rerun the installation using :code:`pip`, as above:
138
145
 
139
146
  .. code-block:: bash
140
147
 
141
148
  $ git pull
142
- $ [sudo] pip install . # with admin privileges
149
+ $ pip install .
143
150
 
144
151
  Testing
145
152
  -------
146
- If you installed DFO-LS manually, you can test your installation by running:
153
+ If you installed DFO-LS manually, you can test your installation using the pytest package:
147
154
 
148
155
  .. code-block:: bash
149
156
 
150
- $ python setup.py test
157
+ $ pip install pytest
158
+ $ python -m pytest --pyargs dfols
151
159
 
152
160
  Alternatively, the HTML documentation provides some simple examples of how to run DFO-LS.
153
161
 
@@ -161,16 +169,14 @@ If DFO-LS was installed using *pip* you can uninstall as follows:
161
169
 
162
170
  .. code-block:: bash
163
171
 
164
- $ [sudo] pip uninstall DFO-LS
172
+ $ pip uninstall DFO-LS
165
173
 
166
174
  If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory).
167
175
 
168
176
  Bugs
169
177
  ----
170
- Please report any bugs using GitHub's issue tracker.
178
+ Please report any bugs using `GitHub's issue tracker <https://github.com/numericalalgorithmsgroup/dfols/issues>`_.
171
179
 
172
180
  License
173
181
  -------
174
182
  This algorithm is released under the GNU GPL license. Please `contact NAG <http://www.nag.com/content/worldwide-contact-information>`_ for alternative licensing.
175
-
176
-
@@ -0,0 +1,14 @@
1
+ dfols/__init__.py,sha256=nMJ4G3JcmjQ82lYXV2ywxjHWQqd9nq7Ak6GIlrN70Tw,1605
2
+ dfols/controller.py,sha256=gz4yGpk8KyfsWxrAkI8y69K5ckSHZ3Xdq0fEVFtIcPk,49925
3
+ dfols/diagnostic_info.py,sha256=2kEUkL-MS4eDENUf1r2hOWsntP8OxMDKi_kyHmrC9V4,6081
4
+ dfols/hessian.py,sha256=sExx4J4KoGwHItbthX2odosB2ONbQFvLdlcod7PIh4k,4262
5
+ dfols/model.py,sha256=i-TcGNFAeYt4uu3R_-THTk2rOCDvgU_mcZQQXfE1ODA,19786
6
+ dfols/params.py,sha256=GzJGO0TByH1X3B0NbLOCOqmYG8dRiKPKjjX7or_fOqI,18342
7
+ dfols/solver.py,sha256=QUF84UYnSitvlpVssKLdcMF9e_zdA9qlZlg5e8IegeQ,63173
8
+ dfols/trust_region.py,sha256=JbHLBDw7H88a3cIMuialh7kpMNGjL3Lp9JsjrBNpDWQ,28231
9
+ dfols/util.py,sha256=efGVAKPb7YrHya1IOgyzacwa_h0u2jHHs5FhuxUlYDg,10282
10
+ DFO_LS-1.5.0.dist-info/LICENSE.txt,sha256=jOtLnuWt7d5Hsx6XXB2QxzrSe2sWWh3NgMfFRetluQM,35147
11
+ DFO_LS-1.5.0.dist-info/METADATA,sha256=JIQNs15kBtVr5_cA7JnXDbT-uQ06pqTd3RD_MRYmB7w,8069
12
+ DFO_LS-1.5.0.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
13
+ DFO_LS-1.5.0.dist-info/top_level.txt,sha256=UfxRhaDN8HQx2_l17KbrDrERJ90OCN7VKkDMpYYbRLU,6
14
+ DFO_LS-1.5.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.34.2)
2
+ Generator: setuptools (74.1.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
dfols/__init__.py CHANGED
@@ -7,8 +7,7 @@ nonlinear least-squares solver which only requires function values.
7
7
 
8
8
  It solves the nonlinear least-squares problem:
9
9
  min_{x} f(x) = r1(x)**2 + ... + rm(x)**2,
10
- subject to the (optional) bounds
11
- lb <= x <= ub,
10
+ (optionally) subject to finitely many convex constraints,
12
11
  where each function ri(x) is differentiable, possibly nonconvex.
13
12
  Since the derivatives of ri(x) are never required or approximated,
14
13
  the solver works when the evaluation of ri(x) is noisy.
@@ -39,10 +38,10 @@ alternative licensing.
39
38
  # Ensure compatibility with Python 2
40
39
  from __future__ import absolute_import, division, print_function, unicode_literals
41
40
 
42
- from .version import __version__
43
- __all__ = ['__version__']
41
+ # DFO-LS version
42
+ __version__ = '1.5.0'
44
43
 
45
44
  # Main solver & exit flags
46
45
  from .solver import *
47
- __all__ += ['solve']
46
+ __all__ = ['solve']
48
47