ChessAnalysisPipeline 0.0.4__py3-none-any.whl → 0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ChessAnalysisPipeline might be problematic. Click here for more details.

@@ -1,2 +0,0 @@
1
- from CHAP.common.models.map import MapConfig
2
- from CHAP.common.models.integration import IntegrationConfig
CHAP/common/processor.py CHANGED
@@ -127,8 +127,8 @@ class IntegrateMapProcessor(Processor):
127
127
  self.logger.debug('Getting configuration objects')
128
128
  t0 = time()
129
129
 
130
- from CHAP.common.models import MapConfig
131
- from CHAP.common.models import IntegrationConfig
130
+ from CHAP.common.models.map import MapConfig
131
+ from CHAP.common.models.integration import IntegrationConfig
132
132
 
133
133
  map_config = False
134
134
  integration_config = False
@@ -1,37 +0,0 @@
1
- from CHAP.common.utils.fit import (Fit,
2
- FitMap,
3
- FitMultipeak)
4
- from CHAP.common.utils.material import Material
5
-
6
- # def create_mask(data, bounds, exclude_bounds=True, current_mask=None):
7
- # '''Return a boolean array that masks out the values in `bounds` when applied
8
- # to `data`.
9
-
10
- # :param data: the array for which a mask will be constructed
11
- # :type data: Union[list, numpy.ndarray]
12
- # :param bounds: a range of values in `data` (min, max) that the mask will
13
- # exclude (or include if `exclude_bounds=False`).
14
- # :type bounds: tuple
15
- # :param exclude_bounds: should applying the mask to `data` exclude (`True`)
16
- # or include (`False`) the value ranges in `bounds`, defaults to `True`
17
- # :type exclude_bounds: True, optional
18
- # :param current_mask: an existing mask array for `data` that will be "or"-ed
19
- # with the mask constructed from `bounds` before returning, defaults to
20
- # None
21
- # :type current_mask: numpy.ndarray(dtype=numpy.bool_), optional
22
- # :return: a boolean mask array for `data`.
23
- # :rtype: numpy.ndarray(dtype=numpy.bool_)
24
- # '''
25
-
26
- # import numpy as np
27
-
28
- # min_, max_ = bounds
29
- # if exclude_bounds:
30
- # mask = np.logical_or(data < min_, data > max_)
31
- # else:
32
- # mask = np.logical_and(data > min_, data < max_)
33
-
34
- # if current_mask is not None:
35
- # mask = np.logical_or(mask, current_mask)
36
-
37
- # return(mask)
CHAP/edd/models.py CHANGED
@@ -154,13 +154,13 @@ class MCACeriaCalibrationConfig(BaseModel):
154
154
  return(interpolation_function)
155
155
 
156
156
  def material(self):
157
- '''Get CeO2 as a `CHAP.common.utils.Material` object.
157
+ '''Get CeO2 as a `CHAP.common.utils.material.Material` object.
158
158
 
159
159
  :return: CeO2 material
160
- :rtype: CHAP.common.utils.Material
160
+ :rtype: CHAP.common.utils.material.Material
161
161
  '''
162
162
 
163
- from CHAP.common.utils import Material
163
+ from CHAP.common.utils.material import Material
164
164
  material = Material(material_name=self.hexrd_h5_material_name,
165
165
  material_file=self.hexrd_h5_material_file,
166
166
  lattice_parameters_angstroms=self.lattice_parameter_angstrom)
CHAP/edd/processor.py CHANGED
@@ -83,7 +83,7 @@ class MCACeriaCalibrationProcessor(Processor):
83
83
  :rtype: float, float, float
84
84
  '''
85
85
 
86
- from CHAP.common.utils import Fit, FitMultipeak
86
+ from CHAP.common.utils.fit import Fit, FitMultipeak
87
87
  import numpy as np
88
88
  from scipy.constants import physical_constants
89
89
 
@@ -127,7 +127,8 @@ class MCACeriaCalibrationProcessor(Processor):
127
127
  fit_mca_intensities,
128
128
  fit_E0,
129
129
  x=fit_mca_energies,
130
- fit_type='uniform')
130
+ fit_type='uniform',
131
+ plot=False)
131
132
 
132
133
  # Extract values of interest from the best values for the uniform fit
133
134
  # parameters
@@ -149,7 +150,8 @@ class MCACeriaCalibrationProcessor(Processor):
149
150
  fit_mca_intensities,
150
151
  uniform_fit_centers,
151
152
  x=fit_mca_energies,
152
- fit_type='unconstrained')
153
+ fit_type='unconstrained',
154
+ plot=False)
153
155
 
154
156
  # Extract values of interest from the best values for the
155
157
  # unconstrained fit parameters
@@ -224,7 +226,7 @@ class MCADataProcessor(Processor):
224
226
  :rtype: tuple[MapConfig, MCACeriaCalibrationConfig]
225
227
  '''
226
228
 
227
- from CHAP.common.models import MapConfig
229
+ from CHAP.common.models.map import MapConfig
228
230
  from CHAP.edd.models import MCACeriaCalibrationConfig
229
231
 
230
232
  map_config = False
CHAP/tomo/processor.py CHANGED
@@ -117,7 +117,7 @@ class TomoDataProcessor(Processor):
117
117
  :rtype: dict
118
118
  '''
119
119
  #:rtype: dict{'map': MapConfig, 'reduce': TomoReduceConfig} RV: Is there a way to denote optional items?
120
- from CHAP.common.models import MapConfig
120
+ from CHAP.common.models.map import MapConfig
121
121
  from CHAP.tomo.models import TomoSetupConfig, TomoReduceConfig, TomoFindCenterConfig, \
122
122
  TomoReconstructConfig, TomoCombineConfig
123
123
  from nexusformat.nexus import NXroot
@@ -550,8 +550,6 @@ class Tomo:
550
550
  nxentry = data[data.attrs['default']]
551
551
  else:
552
552
  raise ValueError(f'Invalid parameter data ({data})')
553
- if 'data' in nxentry:
554
- del nxentry['data']
555
553
 
556
554
  # Create an NXprocess to store data reduction (meta)data
557
555
  reduced_data = NXprocess()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ChessAnalysisPipeline
3
- Version: 0.0.4
3
+ Version: 0.0.5
4
4
  Summary: CHESS analysis pipeline framework
5
5
  Home-page: https://github.com/CHESSComputing/ChessAnalysisPipeline
6
6
  Author: Keara Soloway, Rolf Verberg, Valentin Kuznetsov
@@ -5,20 +5,20 @@ CHAP/reader.py,sha256=12Xn78J06KJ5wzGnCZKSiak8irCtOVX2wtxV7eH3Pb0,3577
5
5
  CHAP/runner.py,sha256=MA0Q3KTAnPnw25i1L7XPs4ZkszfRfByD_qBshsokL2A,2412
6
6
  CHAP/writer.py,sha256=tDeQIEgTm-p8zH0g8EmqFTiGBFRM_A_Q9PyBjE1vaac,2759
7
7
  CHAP/common/__init__.py,sha256=cnkVDvaf3NhnmBAzwuUFpotYv9VWxOVhKwqE0qZLbNQ,991
8
- CHAP/common/processor.py,sha256=sEiSFqXhskrKVV6BDwGFwWpbAJ0aV1JXz2BO1l3oql4,24425
8
+ CHAP/common/processor.py,sha256=nKut7GfBLZmp7QCg9NRIzVMBDbrIYOIPKQ182w-Dn28,24441
9
9
  CHAP/common/reader.py,sha256=DqKRLfG5PLf2aj039aV2FIN5ZmhR7XkZ6EyPDSLUZqY,3547
10
10
  CHAP/common/writer.py,sha256=HwMMCVldjQGb3HK9ysfdyfkUplnrdZjyqHnon0ne3DU,2910
11
- CHAP/common/models/__init__.py,sha256=wkCmQ08zciMzjbQVBjKZacSPUGICqTFcfJ3VaWYBtNY,106
11
+ CHAP/common/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
12
  CHAP/common/models/integration.py,sha256=q18QpPtI7iLd1Asj3NnKbHmB5YIlLm9crKPmtLT37c0,25169
13
13
  CHAP/common/models/map.py,sha256=OXtXhohGrKrPCgkvxrweSDxnYpJf39KXxvvYsE5JBTo,25035
14
- CHAP/common/utils/__init__.py,sha256=lDyThufb9FjaqtUnZ7vDEyaF0r9S5Wo5Ty4qkjYNZRY,1497
14
+ CHAP/common/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  CHAP/common/utils/fit.py,sha256=-nOPfd6yUnUDNyLjLGJVxOp0ET4fKD-Bwh5C_bLx8bY,127303
16
16
  CHAP/common/utils/general.py,sha256=VkGFECXdbB2NicOt9iGhpIJPdvGPc6eHdtiaiqzDM1A,48178
17
17
  CHAP/common/utils/material.py,sha256=KQfORTqLbp8p9pWeSYD6mYzzpYncIEfbHVPiZ5E1PrA,10472
18
18
  CHAP/common/utils/scanparsers.py,sha256=ZxFgMQrD98vTjXbkqPXpA_xjWhL7Gk0cIBD0mvf67GQ,34386
19
19
  CHAP/edd/__init__.py,sha256=0POOQcuL72QQJghdN9LfYHNZCHdAOjYaLYg2ebr_URo,262
20
- CHAP/edd/models.py,sha256=E3gUBI0bgnR_GoLJE5XkY8bOWs7z44dcK0QaqqP0vXU,8448
21
- CHAP/edd/processor.py,sha256=AjI9CZyzBDgBNzKb72n1sc_dkH60LY0h5SyXTkTPbUo,13557
20
+ CHAP/edd/models.py,sha256=EmJnaHMes3JXGoYqItMB0-cMmLma_GfhBCpRlj5fLmw,8475
21
+ CHAP/edd/processor.py,sha256=ltbgBmegBOV_RrSi30bhufUKfaeZDAYp1SO8iR5i1sw,13629
22
22
  CHAP/edd/reader.py,sha256=md3gt82kjNOR3mMjcsCfqbmWLuPhl6JA6Qk1ek9tItA,96
23
23
  CHAP/edd/writer.py,sha256=jQGikOjYx7-MURPqMkDqYw8sig2HauGulUlH1nf-jvY,96
24
24
  CHAP/inference/__init__.py,sha256=huci54T9WyoORENtAO-Wq7qdKfQvh8ocaRwOAoov2fo,129
@@ -35,16 +35,16 @@ CHAP/sin2psi/reader.py,sha256=md3gt82kjNOR3mMjcsCfqbmWLuPhl6JA6Qk1ek9tItA,96
35
35
  CHAP/sin2psi/writer.py,sha256=jQGikOjYx7-MURPqMkDqYw8sig2HauGulUlH1nf-jvY,96
36
36
  CHAP/tomo/__init__.py,sha256=cFq3uemguYhC3y2hKAO60Omoll5p8mWBHdCrCjBWfCA,150
37
37
  CHAP/tomo/models.py,sha256=8-sFRVfbMyy-R0p3HdNaJXH1K9YKDgb4JEXehPYuRns,4857
38
- CHAP/tomo/processor.py,sha256=_TILlIyM4-dy18CTmqJ0xF-MR0x3RKwppW1mt_dcqV0,97527
38
+ CHAP/tomo/processor.py,sha256=PdmZ30YrGz3pOI0Twp-F4xoaqK6ZKwxKdF74AWWvQ5c,97469
39
39
  CHAP/tomo/reader.py,sha256=md3gt82kjNOR3mMjcsCfqbmWLuPhl6JA6Qk1ek9tItA,96
40
40
  CHAP/tomo/writer.py,sha256=jQGikOjYx7-MURPqMkDqYw8sig2HauGulUlH1nf-jvY,96
41
41
  MLaaS/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
42
  MLaaS/ktrain.py,sha256=SPDUOQgjBDSx7sI8vZNXog9orvSyKmzpe6TdGHol9qM,7467
43
43
  MLaaS/mnist_img.py,sha256=ppDtlo6yrNQy0oIhFZVOnLvHJrR3ZPZ3PjZTtJY8l0E,2738
44
44
  MLaaS/tfaas_client.py,sha256=zpZ201wwcQBW1XkzDakD9Kl_NRSESAUdbnN6k6Ey15A,14889
45
- ChessAnalysisPipeline-0.0.4.dist-info/LICENSE,sha256=GrJL25aZivxje_x-zBbeWASvdmgztxv8kBMhIP4XSMo,1075
46
- ChessAnalysisPipeline-0.0.4.dist-info/METADATA,sha256=KzNtqjPNZkHL92ukFXnF96tA2wv8xvEL5XDKdp-XafM,1219
47
- ChessAnalysisPipeline-0.0.4.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
48
- ChessAnalysisPipeline-0.0.4.dist-info/entry_points.txt,sha256=w-KIKdUjmj5GCobrFC4_jexCsFB4yMXYjrsMWrhI6Co,42
49
- ChessAnalysisPipeline-0.0.4.dist-info/top_level.txt,sha256=BKhggOWLb9dD6oQm1RXrkJPnXm-zJxVzQef1iXYtt2k,11
50
- ChessAnalysisPipeline-0.0.4.dist-info/RECORD,,
45
+ ChessAnalysisPipeline-0.0.5.dist-info/LICENSE,sha256=GrJL25aZivxje_x-zBbeWASvdmgztxv8kBMhIP4XSMo,1075
46
+ ChessAnalysisPipeline-0.0.5.dist-info/METADATA,sha256=wC6KLzGsoNAxz7UZEH19pHCowdOjg3Ezt_k86RZTFa8,1219
47
+ ChessAnalysisPipeline-0.0.5.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
48
+ ChessAnalysisPipeline-0.0.5.dist-info/entry_points.txt,sha256=w-KIKdUjmj5GCobrFC4_jexCsFB4yMXYjrsMWrhI6Co,42
49
+ ChessAnalysisPipeline-0.0.5.dist-info/top_level.txt,sha256=BKhggOWLb9dD6oQm1RXrkJPnXm-zJxVzQef1iXYtt2k,11
50
+ ChessAnalysisPipeline-0.0.5.dist-info/RECORD,,