CUQIpy 1.4.0.post0.dev13__py3-none-any.whl → 1.4.0.post0.dev41__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of CUQIpy might be problematic. Click here for more details.

Files changed (48) hide show
  1. cuqi/__init__.py +1 -0
  2. cuqi/_version.py +3 -3
  3. cuqi/experimental/__init__.py +1 -2
  4. cuqi/experimental/_recommender.py +4 -4
  5. cuqi/legacy/__init__.py +2 -0
  6. cuqi/legacy/sampler/__init__.py +11 -0
  7. cuqi/legacy/sampler/_conjugate.py +55 -0
  8. cuqi/legacy/sampler/_conjugate_approx.py +52 -0
  9. cuqi/legacy/sampler/_cwmh.py +196 -0
  10. cuqi/legacy/sampler/_gibbs.py +231 -0
  11. cuqi/legacy/sampler/_hmc.py +335 -0
  12. cuqi/legacy/sampler/_langevin_algorithm.py +198 -0
  13. cuqi/legacy/sampler/_laplace_approximation.py +184 -0
  14. cuqi/legacy/sampler/_mh.py +190 -0
  15. cuqi/legacy/sampler/_pcn.py +244 -0
  16. cuqi/legacy/sampler/_rto.py +284 -0
  17. cuqi/legacy/sampler/_sampler.py +182 -0
  18. cuqi/problem/_problem.py +87 -80
  19. cuqi/sampler/__init__.py +120 -8
  20. cuqi/sampler/_conjugate.py +376 -35
  21. cuqi/sampler/_conjugate_approx.py +40 -16
  22. cuqi/sampler/_cwmh.py +132 -138
  23. cuqi/{experimental/mcmc → sampler}/_direct.py +1 -1
  24. cuqi/sampler/_gibbs.py +269 -130
  25. cuqi/sampler/_hmc.py +328 -201
  26. cuqi/sampler/_langevin_algorithm.py +282 -98
  27. cuqi/sampler/_laplace_approximation.py +87 -117
  28. cuqi/sampler/_mh.py +47 -157
  29. cuqi/sampler/_pcn.py +56 -211
  30. cuqi/sampler/_rto.py +206 -140
  31. cuqi/sampler/_sampler.py +540 -135
  32. {cuqipy-1.4.0.post0.dev13.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/METADATA +1 -1
  33. {cuqipy-1.4.0.post0.dev13.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/RECORD +36 -35
  34. cuqi/experimental/mcmc/__init__.py +0 -122
  35. cuqi/experimental/mcmc/_conjugate.py +0 -396
  36. cuqi/experimental/mcmc/_conjugate_approx.py +0 -76
  37. cuqi/experimental/mcmc/_cwmh.py +0 -190
  38. cuqi/experimental/mcmc/_gibbs.py +0 -366
  39. cuqi/experimental/mcmc/_hmc.py +0 -462
  40. cuqi/experimental/mcmc/_langevin_algorithm.py +0 -382
  41. cuqi/experimental/mcmc/_laplace_approximation.py +0 -154
  42. cuqi/experimental/mcmc/_mh.py +0 -80
  43. cuqi/experimental/mcmc/_pcn.py +0 -89
  44. cuqi/experimental/mcmc/_rto.py +0 -350
  45. cuqi/experimental/mcmc/_sampler.py +0 -582
  46. {cuqipy-1.4.0.post0.dev13.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/WHEEL +0 -0
  47. {cuqipy-1.4.0.post0.dev13.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/licenses/LICENSE +0 -0
  48. {cuqipy-1.4.0.post0.dev13.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,184 @@
1
+ import scipy as sp
2
+ import numpy as np
3
+ import cuqi
4
+ from cuqi.distribution import Normal
5
+ from cuqi.solver import CGLS
6
+ from cuqi.legacy.sampler import Sampler
7
+
8
+
9
+ class UGLA(Sampler):
10
+ """ Unadjusted (Gaussian) Laplace Approximation sampler
11
+
12
+ Samples an approximate posterior where the prior is approximated
13
+ by a Gaussian distribution. The likelihood must be Gaussian.
14
+
15
+ Currently only works for LMRF priors.
16
+
17
+ The inner solver is Conjugate Gradient Least Squares (CGLS) solver.
18
+
19
+ For more details see: Uribe, Felipe, et al. "A hybrid Gibbs sampler for edge-preserving
20
+ tomographic reconstruction with uncertain view angles." arXiv preprint arXiv:2104.06919 (2021).
21
+
22
+ Parameters
23
+ ----------
24
+ target : `cuqi.distribution.Posterior`
25
+ The target posterior distribution to sample.
26
+
27
+ x0 : ndarray
28
+ Initial parameters. *Optional*
29
+
30
+ maxit : int
31
+ Maximum number of inner iterations for solver when generating one sample.
32
+
33
+ tol : float
34
+ Tolerance for inner solver. Will stop before maxit if the inner solvers convergence check reaches tol.
35
+
36
+ beta : float
37
+ Smoothing parameter for the Gaussian approximation of the Laplace distribution. Larger beta is easier to sample but is a worse approximation.
38
+
39
+ rng : np.random.RandomState
40
+ Random number generator used for sampling. *Optional*
41
+
42
+ callback : callable, *Optional*
43
+ If set this function will be called after every sample.
44
+ The signature of the callback function is `callback(sample, sample_index)`,
45
+ where `sample` is the current sample and `sample_index` is the index of the sample.
46
+ An example is shown in demos/demo31_callback.py.
47
+
48
+ Returns
49
+ -------
50
+ cuqi.samples.Samples
51
+ Samples from the posterior distribution.
52
+
53
+ """
54
+
55
+ def __init__(self, target, x0=None, maxit=50, tol=1e-4, beta=1e-5, rng=None, **kwargs):
56
+
57
+ super().__init__(target, x0=x0, **kwargs)
58
+
59
+ # Check target type
60
+ if not isinstance(self.target, cuqi.distribution.Posterior):
61
+ raise ValueError(f"To initialize an object of type {self.__class__}, 'target' need to be of type 'cuqi.distribution.Posterior'.")
62
+
63
+ # Check Affine model
64
+ if not isinstance(self.target.likelihood.model, cuqi.model.AffineModel):
65
+ raise TypeError("Model needs to be affine or linear")
66
+
67
+ # Check Gaussian likelihood
68
+ if not hasattr(self.target.likelihood.distribution, "sqrtprec"):
69
+ raise TypeError("Distribution in Likelihood must contain a sqrtprec attribute")
70
+
71
+ # Check that prior is LMRF
72
+ if not isinstance(self.target.prior, cuqi.distribution.LMRF):
73
+ raise ValueError('Unadjusted Gaussian Laplace approximation (UGLA) requires LMRF prior')
74
+
75
+ # Modify initial guess since Sampler sets it to ones.
76
+ if x0 is not None:
77
+ self.x0 = x0
78
+ else:
79
+ self.x0 = np.zeros(self.target.prior.dim)
80
+
81
+ # Store internal parameters
82
+ self.maxit = maxit
83
+ self.tol = tol
84
+ self.beta = beta
85
+ self.rng = rng
86
+
87
+ def _sample_adapt(self, Ns, Nb):
88
+ return self._sample(Ns, Nb)
89
+
90
+ def _sample(self, Ns, Nb):
91
+ """ Sample from the approximate posterior.
92
+
93
+ Parameters
94
+ ----------
95
+ Ns : int
96
+ Number of samples to draw.
97
+
98
+ Nb : int
99
+ Number of burn-in samples to discard.
100
+
101
+ Returns
102
+ -------
103
+ samples : ndarray
104
+ Samples from the approximate posterior.
105
+
106
+ target_eval : ndarray
107
+ Log-likelihood of each sample.
108
+
109
+ acc : ndarray
110
+ Acceptance rate of each sample.
111
+
112
+ """
113
+
114
+ # Extract diff_op from target prior
115
+ D = self.target.prior._diff_op
116
+ n = D.shape[0]
117
+
118
+ # Gaussian approximation of LMRF prior as function of x_k
119
+ def Lk_fun(x_k):
120
+ dd = 1/np.sqrt((D @ x_k)**2 + self.beta*np.ones(n))
121
+ W = sp.sparse.diags(dd)
122
+ return W.sqrt() @ D
123
+
124
+ # Now prepare "LinearRTO" type sampler. TODO: Use LinearRTO for this instead
125
+ self._shift = 0
126
+
127
+ # Pre-computations
128
+ self._model = self.target.likelihood.model
129
+ self._data = self.target.likelihood.data - self.target.model._shift
130
+ self._m = len(self._data)
131
+ self._L1 = self.target.likelihood.distribution.sqrtprec
132
+
133
+ # If prior location is scalar, repeat it to match dimensions
134
+ if len(self.target.prior.location) == 1:
135
+ self._priorloc = np.repeat(self.target.prior.location, self.dim)
136
+ else:
137
+ self._priorloc = self.target.prior.location
138
+
139
+ # Initial Laplace approx
140
+ self._L2 = Lk_fun(self.x0)
141
+ self._L2mu = self._L2@self._priorloc
142
+ self._b_tild = np.hstack([self._L1@self._data, self._L2mu])
143
+
144
+ #self.n = len(self.x0)
145
+
146
+ # Least squares form
147
+ def M(x, flag):
148
+ if flag == 1:
149
+ out1 = self._L1 @ self._model._forward_func_no_shift(x) # Use forward function which excludes shift
150
+ out2 = np.sqrt(1/self.target.prior.scale)*(self._L2 @ x)
151
+ out = np.hstack([out1, out2])
152
+ elif flag == 2:
153
+ idx = int(self._m)
154
+ out1 = self._model._adjoint_func_no_shift(self._L1.T@x[:idx])
155
+ out2 = np.sqrt(1/self.target.prior.scale)*(self._L2.T @ x[idx:])
156
+ out = out1 + out2
157
+ return out
158
+
159
+ # Initialize samples
160
+ N = Ns+Nb # number of simulations
161
+ samples = np.empty((self.target.dim, N))
162
+
163
+ # initial state
164
+ samples[:, 0] = self.x0
165
+ for s in range(N-1):
166
+
167
+ # Update Laplace approximation
168
+ self._L2 = Lk_fun(samples[:, s])
169
+ self._L2mu = self._L2@self._priorloc
170
+ self._b_tild = np.hstack([self._L1@self._data, self._L2mu])
171
+
172
+ # Sample from approximate posterior
173
+ e = Normal(mean=np.zeros(len(self._b_tild)), std=1).sample(rng=self.rng)
174
+ y = self._b_tild + e # Perturb data
175
+ sim = CGLS(M, y, samples[:, s], self.maxit, self.tol, self._shift)
176
+ samples[:, s+1], _ = sim.solve()
177
+
178
+ self._print_progress(s+2,N) #s+2 is the sample number, s+1 is index assuming x0 is the first sample
179
+ self._call_callback(samples[:, s+1], s+1)
180
+
181
+ # remove burn-in
182
+ samples = samples[:, Nb:]
183
+
184
+ return samples, None, None
@@ -0,0 +1,190 @@
1
+ import numpy as np
2
+ import cuqi
3
+ from cuqi.legacy.sampler import ProposalBasedSampler
4
+
5
+
6
+ class MH(ProposalBasedSampler):
7
+ """Metropolis Hastings sampler.
8
+
9
+ Allows sampling of a target distribution by random-walk sampling of a proposal distribution along with an accept/reject step.
10
+
11
+ Parameters
12
+ ----------
13
+
14
+ target : `cuqi.distribution.Distribution` or lambda function
15
+ The target distribution to sample. Custom logpdfs are supported by using a :class:`cuqi.distribution.UserDefinedDistribution`.
16
+
17
+ proposal : `cuqi.distribution.Distribution` or callable method
18
+ The proposal to sample from. If a callable method it should provide a single independent sample from proposal distribution. Defaults to a Gaussian proposal. *Optional*.
19
+
20
+ scale : float
21
+ Scale parameter used to define correlation between previous and proposed sample in random-walk. *Optional*.
22
+
23
+ x0 : ndarray
24
+ Initial parameters. *Optional*
25
+
26
+ dim : int
27
+ Dimension of parameter space. Required if target and proposal are callable functions. *Optional*.
28
+
29
+ callback : callable, *Optional*
30
+ If set this function will be called after every sample.
31
+ The signature of the callback function is `callback(sample, sample_index)`,
32
+ where `sample` is the current sample and `sample_index` is the index of the sample.
33
+ An example is shown in demos/demo31_callback.py.
34
+
35
+ Example
36
+ -------
37
+ .. code-block:: python
38
+
39
+ # Parameters
40
+ dim = 5 # Dimension of distribution
41
+ mu = np.arange(dim) # Mean of Gaussian
42
+ std = 1 # standard deviation of Gaussian
43
+
44
+ # Logpdf function
45
+ logpdf_func = lambda x: -1/(std**2)*np.sum((x-mu)**2)
46
+
47
+ # Define distribution from logpdf as UserDefinedDistribution (sample and gradients also supported)
48
+ target = cuqi.distribution.UserDefinedDistribution(dim=dim, logpdf_func=logpdf_func)
49
+
50
+ # Set up sampler
51
+ sampler = cuqi.legacy.sampler.MH(target, scale=1)
52
+
53
+ # Sample
54
+ samples = sampler.sample(2000)
55
+
56
+ """
57
+ #target, proposal=None, scale=1, x0=None, dim=None
58
+ # super().__init__(target, proposal=proposal, scale=scale, x0=x0, dim=dim)
59
+ def __init__(self, target, proposal=None, scale=None, x0=None, dim=None, **kwargs):
60
+ """ Metropolis-Hastings (MH) sampler. Default (if proposal is None) is random walk MH with proposal that is Gaussian with identity covariance"""
61
+ super().__init__(target, proposal=proposal, scale=scale, x0=x0, dim=dim, **kwargs)
62
+
63
+
64
+ @ProposalBasedSampler.proposal.setter
65
+ def proposal(self, value):
66
+ fail_msg = "Proposal should be either None, symmetric cuqi.distribution.Distribution or a lambda function."
67
+
68
+ if value is None:
69
+ self._proposal = cuqi.distribution.Gaussian(np.zeros(self.dim), 1)
70
+ elif not isinstance(value, cuqi.distribution.Distribution) and callable(value):
71
+ raise NotImplementedError(fail_msg)
72
+ elif isinstance(value, cuqi.distribution.Distribution) and value.is_symmetric:
73
+ self._proposal = value
74
+ else:
75
+ raise ValueError(fail_msg)
76
+ self._proposal.geometry = self.target.geometry
77
+
78
+ def _sample(self, N, Nb):
79
+ if self.scale is None:
80
+ raise ValueError("Scale must be set to sample without adaptation. Consider using sample_adapt instead.")
81
+
82
+ Ns = N+Nb # number of simulations
83
+
84
+ # allocation
85
+ samples = np.empty((self.dim, Ns))
86
+ target_eval = np.empty(Ns)
87
+ acc = np.zeros(Ns, dtype=int)
88
+
89
+ # initial state
90
+ samples[:, 0] = self.x0
91
+ target_eval[0] = self.target.logd(self.x0)
92
+ acc[0] = 1
93
+
94
+ # run MCMC
95
+ for s in range(Ns-1):
96
+ # run component by component
97
+ samples[:, s+1], target_eval[s+1], acc[s+1] = self.single_update(samples[:, s], target_eval[s])
98
+ self._print_progress(s+2,Ns) #s+2 is the sample number, s+1 is index assuming x0 is the first sample
99
+ self._call_callback(samples[:, s+1], s+1)
100
+
101
+ # remove burn-in
102
+ samples = samples[:, Nb:]
103
+ target_eval = target_eval[Nb:]
104
+ accave = acc[Nb:].mean()
105
+ print('\nAverage acceptance rate:', accave, '\n')
106
+ #
107
+ return samples, target_eval, accave
108
+
109
+ def _sample_adapt(self, N, Nb):
110
+ # Set intial scale if not set
111
+ if self.scale is None:
112
+ self.scale = 0.1
113
+
114
+ Ns = N+Nb # number of simulations
115
+
116
+ # allocation
117
+ samples = np.empty((self.dim, Ns))
118
+ target_eval = np.empty(Ns)
119
+ acc = np.zeros(Ns)
120
+
121
+ # initial state
122
+ samples[:, 0] = self.x0
123
+ target_eval[0] = self.target.logd(self.x0)
124
+ acc[0] = 1
125
+
126
+ # initial adaptation params
127
+ Na = int(0.1*N) # iterations to adapt
128
+ hat_acc = np.empty(int(np.floor(Ns/Na))) # average acceptance rate of the chains
129
+ lambd = self.scale
130
+ star_acc = 0.234 # target acceptance rate RW
131
+ i, idx = 0, 0
132
+
133
+ # run MCMC
134
+ for s in range(Ns-1):
135
+ # run component by component
136
+ samples[:, s+1], target_eval[s+1], acc[s+1] = self.single_update(samples[:, s], target_eval[s])
137
+
138
+ # adapt prop spread using acc of past samples
139
+ if ((s+1) % Na == 0):
140
+ # evaluate average acceptance rate
141
+ hat_acc[i] = np.mean(acc[idx:idx+Na])
142
+
143
+ # d. compute new scaling parameter
144
+ zeta = 1/np.sqrt(i+1) # ensures that the variation of lambda(i) vanishes
145
+ lambd = np.exp(np.log(lambd) + zeta*(hat_acc[i]-star_acc))
146
+
147
+ # update parameters
148
+ self.scale = min(lambd, 1)
149
+
150
+ # update counters
151
+ i += 1
152
+ idx += Na
153
+
154
+ # display iterations
155
+ self._print_progress(s+2,Ns) #s+2 is the sample number, s+1 is index assuming x0 is the first sample
156
+
157
+
158
+ # remove burn-in
159
+ samples = samples[:, Nb:]
160
+ target_eval = target_eval[Nb:]
161
+ accave = acc[Nb:].mean()
162
+ print('\nAverage acceptance rate:', accave, 'MCMC scale:', self.scale, '\n')
163
+
164
+ return samples, target_eval, accave
165
+
166
+
167
+ def single_update(self, x_t, target_eval_t):
168
+ # propose state
169
+ xi = self.proposal.sample(1) # sample from the proposal
170
+ x_star = x_t + self.scale*xi.flatten() # MH proposal
171
+
172
+ # evaluate target
173
+ target_eval_star = self.target.logd(x_star)
174
+
175
+ # ratio and acceptance probability
176
+ ratio = target_eval_star - target_eval_t # proposal is symmetric
177
+ alpha = min(0, ratio)
178
+
179
+ # accept/reject
180
+ u_theta = np.log(np.random.rand())
181
+ if (u_theta <= alpha):
182
+ x_next = x_star
183
+ target_eval_next = target_eval_star
184
+ acc = 1
185
+ else:
186
+ x_next = x_t
187
+ target_eval_next = target_eval_t
188
+ acc = 0
189
+
190
+ return x_next, target_eval_next, acc
@@ -0,0 +1,244 @@
1
+ import numpy as np
2
+ import cuqi
3
+ from cuqi.legacy.sampler import Sampler
4
+
5
+ class pCN(Sampler):
6
+ #Samples target*proposal
7
+ #TODO. Check proposal, needs to be Gaussian and zero mean.
8
+ """Preconditioned Crank-Nicolson sampler
9
+
10
+ Parameters
11
+ ----------
12
+ target : `cuqi.distribution.Posterior` or tuple of likelihood and prior objects
13
+ If target is of type cuqi.distribution.Posterior, it represents the posterior distribution.
14
+ If target is a tuple of (cuqi.likelihood.Likelihood, cuqi.distribution.Distribution) objects,
15
+ the first element is considered the likelihood and the second is considered the prior.
16
+
17
+ scale : int
18
+
19
+ x0 : `np.ndarray`
20
+ Initial point for the sampler
21
+
22
+ callback : callable, *Optional*
23
+ If set this function will be called after every sample.
24
+ The signature of the callback function is `callback(sample, sample_index)`,
25
+ where `sample` is the current sample and `sample_index` is the index of the sample.
26
+ An example is shown in demos/demo31_callback.py.
27
+
28
+ Example
29
+ -------
30
+
31
+ This uses a custom logpdf and sample function.
32
+
33
+ .. code-block:: python
34
+
35
+ # Parameters
36
+ dim = 5 # Dimension of distribution
37
+ mu = np.arange(dim) # Mean of Gaussian
38
+ std = 1 # standard deviation of Gaussian
39
+
40
+ # Logpdf function of likelihood
41
+ logpdf_func = lambda x: -1/(std**2)*np.sum((x-mu)**2)
42
+
43
+ # sample function of prior N(0,I)
44
+ sample_func = lambda : 0 + 1*np.random.randn(dim,1)
45
+
46
+ # Define as UserDefinedDistributions
47
+ likelihood = cuqi.likelihood.UserDefinedLikelihood(dim=dim, logpdf_func=logpdf_func)
48
+ prior = cuqi.distribution.UserDefinedDistribution(dim=dim, sample_func=sample_func)
49
+
50
+ # Set up sampler
51
+ sampler = cuqi.legacy.sampler.pCN((likelihood,prior), scale = 0.1)
52
+
53
+ # Sample
54
+ samples = sampler.sample(5000)
55
+
56
+ Example
57
+ -------
58
+
59
+ This uses CUQIpy distributions.
60
+
61
+ .. code-block:: python
62
+
63
+ # Parameters
64
+ dim = 5 # Dimension of distribution
65
+ mu = np.arange(dim) # Mean of Gaussian
66
+ std = 1 # standard deviation of Gaussian
67
+
68
+ # Define as UserDefinedDistributions
69
+ model = cuqi.model.Model(lambda x: x, range_geometry=dim, domain_geometry=dim)
70
+ likelihood = cuqi.distribution.Gaussian(mean=model, cov=np.ones(dim)).to_likelihood(mu)
71
+ prior = cuqi.distribution.Gaussian(mean=np.zeros(dim), cov=1)
72
+
73
+ target = cuqi.distribution.Posterior(likelihood, prior)
74
+
75
+ # Set up sampler
76
+ sampler = cuqi.legacy.sampler.pCN(target, scale = 0.1)
77
+
78
+ # Sample
79
+ samples = sampler.sample(5000)
80
+
81
+ """
82
+ def __init__(self, target, scale=None, x0=None, **kwargs):
83
+ super().__init__(target, x0=x0, dim=None, **kwargs)
84
+ self.scale = scale
85
+
86
+ @property
87
+ def prior(self):
88
+ if isinstance(self.target, cuqi.distribution.Posterior):
89
+ return self.target.prior
90
+ elif isinstance(self.target,tuple) and len(self.target)==2:
91
+ return self.target[1]
92
+
93
+ @property
94
+ def likelihood(self):
95
+ if isinstance(self.target, cuqi.distribution.Posterior):
96
+ return self.target.likelihood
97
+ elif isinstance(self.target,tuple) and len(self.target)==2:
98
+ return self.target[0]
99
+
100
+
101
+ @Sampler.target.setter
102
+ def target(self, value):
103
+ if isinstance(value, cuqi.distribution.Posterior):
104
+ self._target = value
105
+ self._loglikelihood = lambda x : self.likelihood.logd(x)
106
+ elif isinstance(value,tuple) and len(value)==2 and \
107
+ (isinstance(value[0], cuqi.likelihood.Likelihood) or isinstance(value[0], cuqi.likelihood.UserDefinedLikelihood)) and \
108
+ isinstance(value[1], cuqi.distribution.Distribution):
109
+ self._target = value
110
+ self._loglikelihood = lambda x : self.likelihood.logd(x)
111
+ else:
112
+ raise ValueError(f"To initialize an object of type {self.__class__}, 'target' need to be of type 'cuqi.distribution.Posterior'.")
113
+
114
+ #TODO:
115
+ #if not isinstance(self.prior,(cuqi.distribution.Gaussian, cuqi.distribution.Normal)):
116
+ # raise ValueError("The prior distribution of the target need to be Gaussian")
117
+
118
+ @property
119
+ def dim(self):
120
+ if hasattr(self,'target') and hasattr(self.target,'dim'):
121
+ self._dim = self.target.dim
122
+ elif hasattr(self,'target') and isinstance(self.target,tuple) and len(self.target)==2:
123
+ self._dim = self.target[0].dim
124
+ return self._dim
125
+
126
+ def _sample(self, N, Nb):
127
+ if self.scale is None:
128
+ raise ValueError("Scale must be set to sample without adaptation. Consider using sample_adapt instead.")
129
+
130
+ Ns = N+Nb # number of simulations
131
+
132
+ # allocation
133
+ samples = np.empty((self.dim, Ns))
134
+ loglike_eval = np.empty(Ns)
135
+ acc = np.zeros(Ns, dtype=int)
136
+
137
+ # initial state
138
+ samples[:, 0] = self.x0
139
+ loglike_eval[0] = self._loglikelihood(self.x0)
140
+ acc[0] = 1
141
+
142
+ # run MCMC
143
+ for s in range(Ns-1):
144
+ # run component by component
145
+ samples[:, s+1], loglike_eval[s+1], acc[s+1] = self.single_update(samples[:, s], loglike_eval[s])
146
+
147
+ self._print_progress(s+2,Ns) #s+2 is the sample number, s+1 is index assuming x0 is the first sample
148
+ self._call_callback(samples[:, s+1], s+1)
149
+
150
+ # remove burn-in
151
+ samples = samples[:, Nb:]
152
+ loglike_eval = loglike_eval[Nb:]
153
+ accave = acc[Nb:].mean()
154
+ print('\nAverage acceptance rate:', accave, '\n')
155
+ #
156
+ return samples, loglike_eval, accave
157
+
158
+ def _sample_adapt(self, N, Nb):
159
+ # Set intial scale if not set
160
+ if self.scale is None:
161
+ self.scale = 0.1
162
+
163
+ Ns = N+Nb # number of simulations
164
+
165
+ # allocation
166
+ samples = np.empty((self.dim, Ns))
167
+ loglike_eval = np.empty(Ns)
168
+ acc = np.zeros(Ns)
169
+
170
+ # initial state
171
+ samples[:, 0] = self.x0
172
+ loglike_eval[0] = self._loglikelihood(self.x0)
173
+ acc[0] = 1
174
+
175
+ # initial adaptation params
176
+ Na = int(0.1*N) # iterations to adapt
177
+ hat_acc = np.empty(int(np.floor(Ns/Na))) # average acceptance rate of the chains
178
+ lambd = self.scale
179
+ star_acc = 0.44 # target acceptance rate RW
180
+ i, idx = 0, 0
181
+
182
+ # run MCMC
183
+ for s in range(Ns-1):
184
+ # run component by component
185
+ samples[:, s+1], loglike_eval[s+1], acc[s+1] = self.single_update(samples[:, s], loglike_eval[s])
186
+
187
+ # adapt prop spread using acc of past samples
188
+ if ((s+1) % Na == 0):
189
+ # evaluate average acceptance rate
190
+ hat_acc[i] = np.mean(acc[idx:idx+Na])
191
+
192
+ # d. compute new scaling parameter
193
+ zeta = 1/np.sqrt(i+1) # ensures that the variation of lambda(i) vanishes
194
+ lambd = np.exp(np.log(lambd) + zeta*(hat_acc[i]-star_acc))
195
+
196
+ # update parameters
197
+ self.scale = min(lambd, 1)
198
+
199
+ # update counters
200
+ i += 1
201
+ idx += Na
202
+
203
+ # display iterations
204
+ if ((s+1) % (max(Ns//100,1))) == 0 or (s+1) == Ns-1:
205
+ print("\r",'Sample', s+1, '/', Ns, end="")
206
+
207
+ self._call_callback(samples[:, s+1], s+1)
208
+
209
+ print("\r",'Sample', s+2, '/', Ns)
210
+
211
+ # remove burn-in
212
+ samples = samples[:, Nb:]
213
+ loglike_eval = loglike_eval[Nb:]
214
+ accave = acc[Nb:].mean()
215
+ print('\nAverage acceptance rate:', accave, 'MCMC scale:', self.scale, '\n')
216
+
217
+ return samples, loglike_eval, accave
218
+
219
+ def single_update(self, x_t, loglike_eval_t):
220
+ # propose state
221
+ xi = self.prior.sample(1).flatten() # sample from the prior
222
+ x_star = np.sqrt(1-self.scale**2)*x_t + self.scale*xi # pCN proposal
223
+
224
+ # evaluate target
225
+ loglike_eval_star = self._loglikelihood(x_star)
226
+
227
+ # ratio and acceptance probability
228
+ ratio = loglike_eval_star - loglike_eval_t # proposal is symmetric
229
+ alpha = min(0, ratio)
230
+
231
+ # accept/reject
232
+ u_theta = np.log(np.random.rand())
233
+ if (u_theta <= alpha):
234
+ x_next = x_star
235
+ loglike_eval_next = loglike_eval_star
236
+ acc = 1
237
+ else:
238
+ x_next = x_t
239
+ loglike_eval_next = loglike_eval_t
240
+ acc = 0
241
+
242
+ return x_next, loglike_eval_next, acc
243
+
244
+