CUQIpy 1.3.0__py3-none-any.whl → 1.4.0.post0.dev61__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cuqi/__init__.py +1 -0
- cuqi/_version.py +3 -3
- cuqi/density/_density.py +9 -1
- cuqi/distribution/__init__.py +1 -1
- cuqi/distribution/_beta.py +1 -1
- cuqi/distribution/_cauchy.py +2 -2
- cuqi/distribution/_distribution.py +24 -15
- cuqi/distribution/_joint_distribution.py +97 -12
- cuqi/distribution/_posterior.py +9 -0
- cuqi/distribution/_truncated_normal.py +3 -3
- cuqi/distribution/_uniform.py +36 -2
- cuqi/experimental/__init__.py +1 -1
- cuqi/experimental/_recommender.py +216 -0
- cuqi/experimental/geometry/_productgeometry.py +3 -3
- cuqi/geometry/_geometry.py +12 -1
- cuqi/implicitprior/__init__.py +1 -1
- cuqi/implicitprior/_regularizedGaussian.py +40 -4
- cuqi/implicitprior/_restorator.py +35 -1
- cuqi/legacy/__init__.py +2 -0
- cuqi/legacy/sampler/__init__.py +11 -0
- cuqi/legacy/sampler/_conjugate.py +55 -0
- cuqi/legacy/sampler/_conjugate_approx.py +52 -0
- cuqi/legacy/sampler/_cwmh.py +196 -0
- cuqi/legacy/sampler/_gibbs.py +231 -0
- cuqi/legacy/sampler/_hmc.py +335 -0
- cuqi/legacy/sampler/_langevin_algorithm.py +198 -0
- cuqi/legacy/sampler/_laplace_approximation.py +184 -0
- cuqi/legacy/sampler/_mh.py +190 -0
- cuqi/legacy/sampler/_pcn.py +244 -0
- cuqi/{experimental/mcmc → legacy/sampler}/_rto.py +134 -152
- cuqi/legacy/sampler/_sampler.py +182 -0
- cuqi/likelihood/_likelihood.py +1 -1
- cuqi/model/_model.py +1248 -357
- cuqi/pde/__init__.py +4 -0
- cuqi/pde/_observation_map.py +36 -0
- cuqi/pde/_pde.py +133 -32
- cuqi/problem/_problem.py +88 -82
- cuqi/sampler/__init__.py +120 -8
- cuqi/sampler/_conjugate.py +376 -35
- cuqi/sampler/_conjugate_approx.py +40 -16
- cuqi/sampler/_cwmh.py +132 -138
- cuqi/{experimental/mcmc → sampler}/_direct.py +1 -1
- cuqi/sampler/_gibbs.py +269 -130
- cuqi/sampler/_hmc.py +328 -201
- cuqi/sampler/_langevin_algorithm.py +282 -98
- cuqi/sampler/_laplace_approximation.py +87 -117
- cuqi/sampler/_mh.py +47 -157
- cuqi/sampler/_pcn.py +56 -211
- cuqi/sampler/_rto.py +206 -140
- cuqi/sampler/_sampler.py +540 -135
- cuqi/solver/_solver.py +6 -2
- cuqi/testproblem/_testproblem.py +2 -3
- cuqi/utilities/__init__.py +3 -1
- cuqi/utilities/_utilities.py +94 -12
- {CUQIpy-1.3.0.dist-info → cuqipy-1.4.0.post0.dev61.dist-info}/METADATA +6 -4
- cuqipy-1.4.0.post0.dev61.dist-info/RECORD +102 -0
- {CUQIpy-1.3.0.dist-info → cuqipy-1.4.0.post0.dev61.dist-info}/WHEEL +1 -1
- CUQIpy-1.3.0.dist-info/RECORD +0 -100
- cuqi/experimental/mcmc/__init__.py +0 -123
- cuqi/experimental/mcmc/_conjugate.py +0 -345
- cuqi/experimental/mcmc/_conjugate_approx.py +0 -76
- cuqi/experimental/mcmc/_cwmh.py +0 -193
- cuqi/experimental/mcmc/_gibbs.py +0 -318
- cuqi/experimental/mcmc/_hmc.py +0 -464
- cuqi/experimental/mcmc/_langevin_algorithm.py +0 -392
- cuqi/experimental/mcmc/_laplace_approximation.py +0 -156
- cuqi/experimental/mcmc/_mh.py +0 -80
- cuqi/experimental/mcmc/_pcn.py +0 -89
- cuqi/experimental/mcmc/_sampler.py +0 -566
- cuqi/experimental/mcmc/_utilities.py +0 -17
- {CUQIpy-1.3.0.dist-info → cuqipy-1.4.0.post0.dev61.dist-info/licenses}/LICENSE +0 -0
- {CUQIpy-1.3.0.dist-info → cuqipy-1.4.0.post0.dev61.dist-info}/top_level.txt +0 -0
cuqi/model/_model.py
CHANGED
|
@@ -5,48 +5,55 @@ from scipy.sparse import hstack
|
|
|
5
5
|
from scipy.linalg import solve
|
|
6
6
|
from cuqi.samples import Samples
|
|
7
7
|
from cuqi.array import CUQIarray
|
|
8
|
-
from cuqi.geometry import Geometry, _DefaultGeometry1D, _DefaultGeometry2D
|
|
8
|
+
from cuqi.geometry import Geometry, _DefaultGeometry1D, _DefaultGeometry2D,\
|
|
9
|
+
_get_identity_geometries
|
|
9
10
|
import cuqi
|
|
10
11
|
import matplotlib.pyplot as plt
|
|
11
12
|
from copy import copy
|
|
13
|
+
from functools import partial
|
|
14
|
+
from cuqi.utilities import force_ndarray
|
|
12
15
|
|
|
13
16
|
class Model(object):
|
|
14
17
|
"""Generic model defined by a forward operator.
|
|
15
18
|
|
|
16
19
|
Parameters
|
|
17
20
|
-----------
|
|
18
|
-
forward :
|
|
19
|
-
Forward operator.
|
|
21
|
+
forward : callable function
|
|
22
|
+
Forward operator of the model. It takes one or more inputs and returns the model output.
|
|
20
23
|
|
|
21
|
-
range_geometry : integer or cuqi.geometry.Geometry
|
|
22
|
-
If integer is given, a cuqi.geometry.
|
|
24
|
+
range_geometry : integer, a 1D or 2D tuple of integers, cuqi.geometry.Geometry
|
|
25
|
+
If integer or 1D tuple of integers is given, a cuqi.geometry._DefaultGeometry1D is created with dimension of the integer.
|
|
26
|
+
If 2D tuple of integers is given, a cuqi.geometry._DefaultGeometry2D is created with dimensions of the tuple.
|
|
27
|
+
If cuqi.geometry.Geometry object is given, it is used as the range geometry of the model.
|
|
23
28
|
|
|
24
|
-
domain_geometry : integer or cuqi.geometry.Geometry
|
|
25
|
-
If integer is given, a cuqi.geometry.
|
|
29
|
+
domain_geometry : integer, a 1D or 2D tuple of integers, cuqi.geometry.Geometry or a tuple with items of any of the listed types
|
|
30
|
+
If integer or 1D tuple of integers is given, a cuqi.geometry._DefaultGeometry1D is created with dimension of the integer.
|
|
31
|
+
If 2D tuple of integers is given (and the forward model has one input only), a cuqi.geometry._DefaultGeometry2D is created with dimensions of the tuple.
|
|
32
|
+
If cuqi.geometry.Geometry is given, it is used as the domain geometry.
|
|
33
|
+
If tuple of the above types is given, a cuqi.geometry._ProductGeometry is created based on the tuple entries. This is used for models with multiple inputs where each entry in the tuple represents the geometry of each input.
|
|
26
34
|
|
|
27
|
-
gradient : callable function, optional
|
|
28
|
-
The direction-Jacobian product of the forward
|
|
29
|
-
respect to the forward operator input, evaluated at a point (`wrt`).
|
|
30
|
-
The signature of the gradient function should be (`direction`, `wrt`),
|
|
31
|
-
where `direction` is the direction by which the Jacobian matrix is
|
|
32
|
-
multiplied and `wrt` is the point at which the Jacobian is computed.
|
|
35
|
+
gradient : callable function, a tuple of callable functions or None, optional
|
|
36
|
+
The direction-Jacobian product of the forward model Jacobian with respect to the model input, evaluated at the model input. For example, if the forward model inputs are `x` and `y`, the gradient callable signature should be (`direction`, `x`, `y`), in that order, where `direction` is the direction by which the Jacobian matrix is multiplied and `x` and `y` are the parameters at which the Jacobian is computed.
|
|
33
37
|
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
38
|
+
If the gradient function is a single callable function, it returns a 1D ndarray if the model has only one input. If the model has multiple inputs, this gradient function should return a tuple of 1D ndarrays, each representing the gradient with respect to each input.
|
|
39
|
+
|
|
40
|
+
If the gradient function is a tuple of callable functions, each callable function should return a 1D ndarray representing the gradient with respect to each input. The order of the callable functions in the tuple should match the order of the model inputs.
|
|
41
|
+
|
|
42
|
+
jacobian : callable function, a tuple of callable functions or None, optional
|
|
43
|
+
The Jacobian of the forward model with respect to the forward model input, evaluated at the model input. For example, if the forward model inputs are `x` and `y`, the jacobian signature should be (`x`, `y`), in that order, where `x` and `y` are the parameters at which the Jacobian is computed.
|
|
44
|
+
|
|
45
|
+
If the Jacobian function is a single callable function, it should return a 2D ndarray of shape (range_dim, domain_dim) if the model has only one input. If the model has multiple inputs, this Jacobian function should return a tuple of 2D ndarrays, each representing the Jacobian with respect to each input.
|
|
46
|
+
|
|
47
|
+
If the Jacobian function is a tuple of callable functions, each callable function should return a 2D ndarray representing the Jacobian with respect to each input. The order of the callable functions in the tuple should match the order of the model inputs.
|
|
48
|
+
|
|
49
|
+
The Jacobian function is used to specify the gradient function by computing the vector-Jacobian product (VJP), here we refer to the vector in the VJP as the `direction` since it is the direction at which the gradient is computed. Either the gradient or the Jacobian can be specified, but not both.
|
|
43
50
|
|
|
44
51
|
|
|
45
52
|
:ivar range_geometry: The geometry representing the range.
|
|
46
53
|
:ivar domain_geometry: The geometry representing the domain.
|
|
47
54
|
|
|
48
|
-
Example
|
|
49
|
-
|
|
55
|
+
Example 1
|
|
56
|
+
----------
|
|
50
57
|
|
|
51
58
|
Consider a forward model :math:`F: \mathbb{R}^2 \\rightarrow \mathbb{R}` defined by the following forward operator:
|
|
52
59
|
|
|
@@ -75,6 +82,9 @@ class Model(object):
|
|
|
75
82
|
|
|
76
83
|
model = Model(forward, range_geometry=1, domain_geometry=2, jacobian=jacobian)
|
|
77
84
|
|
|
85
|
+
print(model(np.array([1, 1])))
|
|
86
|
+
print(model.gradient(np.array([1]), np.array([1, 1])))
|
|
87
|
+
|
|
78
88
|
Alternatively, the gradient information in the forward model can be defined by direction-Jacobian product using the gradient keyword argument.
|
|
79
89
|
|
|
80
90
|
This may be more efficient if forming the Jacobian matrix is expensive.
|
|
@@ -87,64 +97,162 @@ class Model(object):
|
|
|
87
97
|
def forward(x):
|
|
88
98
|
return 10*x[1] - 10*x[0]**3 + 5*x[0]**2 + 6*x[0]
|
|
89
99
|
|
|
90
|
-
def gradient(direction,
|
|
91
|
-
# Direction-Jacobian product direction@jacobian(
|
|
92
|
-
return direction@np.array([[-30*
|
|
100
|
+
def gradient(direction, x):
|
|
101
|
+
# Direction-Jacobian product direction@jacobian(x)
|
|
102
|
+
return direction@np.array([[-30*x[0]**2 + 10*x[0] + 6, 10]])
|
|
93
103
|
|
|
94
104
|
model = Model(forward, range_geometry=1, domain_geometry=2, gradient=gradient)
|
|
95
105
|
|
|
106
|
+
print(model(np.array([1, 1])))
|
|
107
|
+
print(model.gradient(np.array([1]), np.array([1, 1])))
|
|
108
|
+
|
|
109
|
+
Example 2
|
|
110
|
+
----------
|
|
111
|
+
Alternatively, the example above can be defined as a model with multiple inputs: :math:`x` and :math:`y`:
|
|
112
|
+
|
|
113
|
+
.. code-block:: python
|
|
114
|
+
|
|
115
|
+
import numpy as np
|
|
116
|
+
from cuqi.model import Model
|
|
117
|
+
from cuqi.geometry import Discrete
|
|
118
|
+
|
|
119
|
+
def forward(x, y):
|
|
120
|
+
return 10 * y - 10 * x**3 + 5 * x**2 + 6 * x
|
|
121
|
+
|
|
122
|
+
def jacobian(x, y):
|
|
123
|
+
return (np.array([[-30 * x**2 + 10 * x + 6]]), np.array([[10]]))
|
|
124
|
+
|
|
125
|
+
model = Model(
|
|
126
|
+
forward,
|
|
127
|
+
range_geometry=1,
|
|
128
|
+
domain_geometry=(Discrete(1), Discrete(1)),
|
|
129
|
+
jacobian=jacobian,
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
print(model(1, 1))
|
|
133
|
+
print(model.gradient(np.array([1]), 1, 1))
|
|
96
134
|
"""
|
|
135
|
+
|
|
136
|
+
_supports_partial_eval = True
|
|
137
|
+
"""Flag indicating that partial evaluation of Model objects is supported, i.e., calling the model object with only some of the inputs specified returns a model that can be called with the remaining inputs."""
|
|
138
|
+
|
|
97
139
|
def __init__(self, forward, range_geometry, domain_geometry, gradient=None, jacobian=None):
|
|
98
140
|
|
|
99
|
-
#Check if input is callable
|
|
141
|
+
# Check if input is callable
|
|
100
142
|
if callable(forward) is not True:
|
|
101
143
|
raise TypeError("Forward needs to be callable function.")
|
|
102
|
-
|
|
144
|
+
|
|
145
|
+
# Store forward func
|
|
146
|
+
self._forward_func = forward
|
|
147
|
+
self._stored_non_default_args = None
|
|
148
|
+
|
|
149
|
+
# Store range_geometry
|
|
150
|
+
self.range_geometry = range_geometry
|
|
151
|
+
|
|
152
|
+
# Store domain_geometry
|
|
153
|
+
self.domain_geometry = domain_geometry
|
|
154
|
+
|
|
155
|
+
# Additional checks for the forward operator
|
|
156
|
+
self._check_domain_geometry_consistent_with_forward()
|
|
157
|
+
|
|
103
158
|
# Check if only one of gradient and jacobian is given
|
|
104
159
|
if (gradient is not None) and (jacobian is not None):
|
|
105
160
|
raise TypeError("Only one of gradient and jacobian should be specified")
|
|
106
|
-
|
|
107
|
-
#Check
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
#
|
|
161
|
+
|
|
162
|
+
# Check correct gradient form (check type, signature, etc.)
|
|
163
|
+
self._check_correct_gradient_jacobian_form(gradient, "gradient")
|
|
164
|
+
|
|
165
|
+
# Check correct jacobian form (check type, signature, etc.)
|
|
166
|
+
self._check_correct_gradient_jacobian_form(jacobian, "jacobian")
|
|
167
|
+
|
|
168
|
+
# If jacobian is provided, use it to specify gradient function
|
|
169
|
+
# (vector-Jacobian product)
|
|
115
170
|
if jacobian is not None:
|
|
116
|
-
gradient =
|
|
117
|
-
|
|
118
|
-
#Store forward func
|
|
119
|
-
self._forward_func = forward
|
|
171
|
+
gradient = self._use_jacobian_to_specify_gradient(jacobian)
|
|
172
|
+
|
|
120
173
|
self._gradient_func = gradient
|
|
121
|
-
|
|
122
|
-
#
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
174
|
+
|
|
175
|
+
# Set gradient output stacked flag to False
|
|
176
|
+
self._gradient_output_stacked = False
|
|
177
|
+
|
|
178
|
+
@property
|
|
179
|
+
def _non_default_args(self):
|
|
180
|
+
if self._stored_non_default_args is None:
|
|
181
|
+
# Store non_default_args of the forward operator for faster caching
|
|
182
|
+
# when checking for those arguments.
|
|
183
|
+
self._stored_non_default_args =\
|
|
184
|
+
cuqi.utilities.get_non_default_args(self._forward_func)
|
|
185
|
+
return self._stored_non_default_args
|
|
186
|
+
|
|
187
|
+
@property
|
|
188
|
+
def number_of_inputs(self):
|
|
189
|
+
""" The number of inputs of the model. """
|
|
190
|
+
return len(self._non_default_args)
|
|
191
|
+
|
|
192
|
+
@property
|
|
193
|
+
def range_geometry(self):
|
|
194
|
+
""" The geometry representing the range of the model. """
|
|
195
|
+
return self._range_geometry
|
|
196
|
+
|
|
197
|
+
@range_geometry.setter
|
|
198
|
+
def range_geometry(self, value):
|
|
199
|
+
""" Update the range geometry of the model. """
|
|
200
|
+
if isinstance(value, Geometry):
|
|
201
|
+
self._range_geometry = value
|
|
202
|
+
elif isinstance(value, int):
|
|
203
|
+
self._range_geometry = self._create_default_geometry(value)
|
|
204
|
+
elif isinstance(value, tuple):
|
|
205
|
+
self._range_geometry = self._create_default_geometry(value)
|
|
206
|
+
elif value is None:
|
|
207
|
+
raise AttributeError(
|
|
208
|
+
"The parameter 'range_geometry' is not specified by the user and it cannot be inferred from the attribute 'forward'."
|
|
209
|
+
)
|
|
143
210
|
else:
|
|
144
|
-
raise TypeError(
|
|
211
|
+
raise TypeError(
|
|
212
|
+
" The allowed types for 'range_geometry' are: 'cuqi.geometry.Geometry', int, 1D tuple of int, or 2D tuple of int."
|
|
213
|
+
)
|
|
145
214
|
|
|
146
|
-
|
|
147
|
-
|
|
215
|
+
@property
|
|
216
|
+
def domain_geometry(self):
|
|
217
|
+
""" The geometry representing the domain of the model. """
|
|
218
|
+
return self._domain_geometry
|
|
219
|
+
|
|
220
|
+
@domain_geometry.setter
|
|
221
|
+
def domain_geometry(self, value):
|
|
222
|
+
""" Update the domain geometry of the model. """
|
|
223
|
+
|
|
224
|
+
if isinstance(value, Geometry):
|
|
225
|
+
self._domain_geometry = value
|
|
226
|
+
elif isinstance(value, int):
|
|
227
|
+
self._domain_geometry = self._create_default_geometry(value)
|
|
228
|
+
elif isinstance(value, tuple) and self.number_of_inputs == 1:
|
|
229
|
+
self._domain_geometry = self._create_default_geometry(value)
|
|
230
|
+
elif isinstance(value, tuple) and self.number_of_inputs > 1:
|
|
231
|
+
geometries = [item if isinstance(item, Geometry) else self._create_default_geometry(item) for item in value]
|
|
232
|
+
self._domain_geometry = cuqi.experimental.geometry._ProductGeometry(*geometries)
|
|
233
|
+
elif value is None:
|
|
234
|
+
raise AttributeError(
|
|
235
|
+
"The parameter 'domain_geometry' is not specified by the user and it cannot be inferred from the attribute 'forward'."
|
|
236
|
+
)
|
|
237
|
+
else:
|
|
238
|
+
raise TypeError(
|
|
239
|
+
"For forward model with 1 input, the allowed types for 'domain_geometry' are: 'cuqi.geometry.Geometry', int, 1D tuple of int, or 2D tuple of int. For forward model with multiple inputs, the 'domain_geometry' should be a tuple with items of any of the above types."
|
|
240
|
+
)
|
|
241
|
+
|
|
242
|
+
def _create_default_geometry(self, value):
|
|
243
|
+
"""Private function that creates default geometries for the model."""
|
|
244
|
+
if isinstance(value, tuple) and len(value) == 1:
|
|
245
|
+
value = value[0]
|
|
246
|
+
if isinstance(value, Geometry):
|
|
247
|
+
return value
|
|
248
|
+
if isinstance(value, int):
|
|
249
|
+
return _DefaultGeometry1D(grid=value)
|
|
250
|
+
elif isinstance(value, tuple) and len(value) == 2:
|
|
251
|
+
return _DefaultGeometry2D(im_shape=value)
|
|
252
|
+
else:
|
|
253
|
+
raise ValueError(
|
|
254
|
+
"Default geometry creation can be specified by an integer or a 2D tuple of integers."
|
|
255
|
+
)
|
|
148
256
|
|
|
149
257
|
@property
|
|
150
258
|
def domain_dim(self):
|
|
@@ -160,341 +268,977 @@ class Model(object):
|
|
|
160
268
|
"""
|
|
161
269
|
return self.range_geometry.par_dim
|
|
162
270
|
|
|
163
|
-
def
|
|
164
|
-
"""
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
271
|
+
def _check_domain_geometry_consistent_with_forward(self):
|
|
272
|
+
"""Private function that checks if the domain geometry of the model is
|
|
273
|
+
consistent with the forward operator."""
|
|
274
|
+
if (
|
|
275
|
+
not isinstance(
|
|
276
|
+
self.domain_geometry, cuqi.experimental.geometry._ProductGeometry
|
|
277
|
+
)
|
|
278
|
+
and self.number_of_inputs > 1
|
|
279
|
+
):
|
|
280
|
+
raise ValueError(
|
|
281
|
+
"The forward operator input is specified by more than one argument. This is only supported for domain geometry of type tuple with items of type: cuqi.geometry.Geometry object, int, or 2D tuple of int."
|
|
282
|
+
)
|
|
283
|
+
|
|
284
|
+
def _check_correct_gradient_jacobian_form(self, func, func_type):
|
|
285
|
+
"""Private function that checks if the gradient/jacobian parameter is
|
|
286
|
+
in the correct form. That is, check if the gradient/jacobian has the
|
|
287
|
+
correct type, signature, etc."""
|
|
288
|
+
|
|
289
|
+
if func is None:
|
|
290
|
+
return
|
|
291
|
+
|
|
292
|
+
# gradient/jacobian should be callable (for single input and multiple input case)
|
|
293
|
+
# or a tuple of callables (for multiple inputs case)
|
|
294
|
+
if isinstance(func, tuple):
|
|
295
|
+
# tuple length should be same as the number of inputs
|
|
296
|
+
if len(func) != self.number_of_inputs:
|
|
297
|
+
raise ValueError(
|
|
298
|
+
f"The "
|
|
299
|
+
+ func_type.lower()
|
|
300
|
+
+ f" tuple length should be {self.number_of_inputs} for model with inputs {self._non_default_args}"
|
|
301
|
+
)
|
|
302
|
+
# tuple items should be callables or None
|
|
303
|
+
if not all([callable(func_i) or func_i is None for func_i in func]):
|
|
304
|
+
raise TypeError(
|
|
305
|
+
func_type.capitalize()
|
|
306
|
+
+ " tuple should contain callable functions or None."
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
elif callable(func):
|
|
310
|
+
# temporarily convert gradient/jacobian to tuple for checking only
|
|
311
|
+
func = (func,)
|
|
312
|
+
|
|
313
|
+
else:
|
|
314
|
+
raise TypeError(
|
|
315
|
+
"Gradient needs to be callable function or tuple of callable functions."
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
expected_func_non_default_args = (
|
|
319
|
+
self._non_default_args
|
|
320
|
+
if not hasattr(self, "_original_non_default_args")
|
|
321
|
+
else self._original_non_default_args
|
|
322
|
+
)
|
|
323
|
+
|
|
324
|
+
if func_type.lower() == "gradient":
|
|
325
|
+
# prepend 'direction' to the expected gradient non default args
|
|
326
|
+
expected_func_non_default_args = [
|
|
327
|
+
"direction"
|
|
328
|
+
] + expected_func_non_default_args
|
|
329
|
+
|
|
330
|
+
for func_i in func:
|
|
331
|
+
# make sure the signature of the gradient/jacobian function is correct
|
|
332
|
+
# that is, the same as the expected_func_non_default_args
|
|
333
|
+
if func_i is not None:
|
|
334
|
+
func_non_default_args = cuqi.utilities.get_non_default_args(func_i)
|
|
335
|
+
|
|
336
|
+
if list(func_non_default_args) != list(expected_func_non_default_args):
|
|
337
|
+
raise ValueError(
|
|
338
|
+
func_type.capitalize()
|
|
339
|
+
+ f" function signature should be {expected_func_non_default_args}"
|
|
340
|
+
)
|
|
341
|
+
|
|
342
|
+
def _use_jacobian_to_specify_gradient(self, jacobian):
|
|
343
|
+
"""Private function that uses the jacobian function to specify the
|
|
344
|
+
gradient function."""
|
|
345
|
+
# if jacobian is a single function and model has multiple inputs
|
|
346
|
+
if callable(jacobian) and self.number_of_inputs > 1:
|
|
347
|
+
gradient = self._create_gradient_lambda_function_from_jacobian_with_correct_signature(
|
|
348
|
+
jacobian, form='one_callable_multiple_inputs'
|
|
349
|
+
)
|
|
350
|
+
# Elif jacobian is a single function and model has only one input
|
|
351
|
+
elif callable(jacobian):
|
|
352
|
+
gradient = self._create_gradient_lambda_function_from_jacobian_with_correct_signature(
|
|
353
|
+
jacobian, form='one_callable_one_input'
|
|
354
|
+
)
|
|
355
|
+
# Else, jacobian is a tuple of jacobian functions
|
|
356
|
+
else:
|
|
357
|
+
gradient = []
|
|
358
|
+
for jac in jacobian:
|
|
359
|
+
if jac is not None:
|
|
360
|
+
gradient.append(
|
|
361
|
+
self._create_gradient_lambda_function_from_jacobian_with_correct_signature(
|
|
362
|
+
jac, form='tuple_of_callables'
|
|
363
|
+
)
|
|
364
|
+
)
|
|
365
|
+
else:
|
|
366
|
+
gradient.append(None)
|
|
367
|
+
return tuple(gradient) if isinstance(gradient, list) else gradient
|
|
368
|
+
|
|
369
|
+
def _create_gradient_lambda_function_from_jacobian_with_correct_signature(
|
|
370
|
+
self, jacobian, form
|
|
371
|
+
):
|
|
372
|
+
"""Private function that creates gradient lambda function from the
|
|
373
|
+
jacobian function, with the correct signature (based on the model
|
|
374
|
+
non_default_args).
|
|
375
|
+
"""
|
|
376
|
+
# create the string representation of the lambda function
|
|
377
|
+
# for different forms of jacobian
|
|
378
|
+
if form=='one_callable_multiple_inputs':
|
|
379
|
+
grad_fun_str = (
|
|
380
|
+
"lambda direction, "
|
|
381
|
+
+ ", ".join(self._non_default_args)
|
|
382
|
+
+ ", jacobian: tuple([direction@jacobian("
|
|
383
|
+
+ ", ".join(self._non_default_args)
|
|
384
|
+
+ ")[i] for i in range("+str(self.number_of_inputs)+")])"
|
|
385
|
+
)
|
|
386
|
+
elif form=='tuple_of_callables' or form=='one_callable_one_input':
|
|
387
|
+
grad_fun_str = (
|
|
388
|
+
"lambda direction, "
|
|
389
|
+
+ ", ".join(self._non_default_args)
|
|
390
|
+
+ ", jacobian: direction@jacobian("
|
|
391
|
+
+ ", ".join(self._non_default_args)
|
|
392
|
+
+ ")"
|
|
393
|
+
)
|
|
394
|
+
else:
|
|
395
|
+
raise ValueError("form should be either 'one_callable' or 'tuple_of_callables'.")
|
|
396
|
+
|
|
397
|
+
# create the lambda function from the string
|
|
398
|
+
grad_func = eval(grad_fun_str)
|
|
399
|
+
|
|
400
|
+
# create partial function from the lambda function with jacobian as a
|
|
401
|
+
# fixed argument
|
|
402
|
+
grad_func = partial(grad_func, jacobian=jacobian)
|
|
403
|
+
|
|
404
|
+
return grad_func
|
|
405
|
+
|
|
406
|
+
def _2fun(self, geometry=None, is_par=True, **kwargs):
|
|
407
|
+
""" Converts `kwargs` to function values (if needed) using the geometry. For example, `kwargs` can be the model input which need to be converted to function value before being passed to :class:`~cuqi.model.Model` operators (e.g. _forward_func, _adjoint_func, _gradient_func).
|
|
169
408
|
|
|
170
409
|
Parameters
|
|
171
410
|
----------
|
|
172
|
-
x : ndarray or cuqi.array.CUQIarray
|
|
173
|
-
The value to be converted.
|
|
174
|
-
|
|
175
411
|
geometry : cuqi.geometry.Geometry
|
|
176
|
-
The geometry representing `
|
|
412
|
+
The geometry representing the values in `kwargs`.
|
|
177
413
|
|
|
178
|
-
is_par : bool
|
|
179
|
-
If True, `
|
|
180
|
-
If False, `
|
|
414
|
+
is_par : bool or a tuple of bools
|
|
415
|
+
If `is_par` is True, the values in `kwargs` are assumed to be parameters.
|
|
416
|
+
If `is_par` is False, the values in `kwargs` are assumed to be function values.
|
|
417
|
+
If `is_par` is a tuple of bools, the values in `kwargs` are assumed to be parameters or function values based on the corresponding boolean value in the tuple.
|
|
418
|
+
|
|
419
|
+
**kwargs : keyword arguments to be converted to function values.
|
|
181
420
|
|
|
182
421
|
Returns
|
|
183
422
|
-------
|
|
184
|
-
|
|
185
|
-
|
|
423
|
+
dict of the converted values
|
|
424
|
+
"""
|
|
425
|
+
# Check kwargs and geometry are consistent and set up geometries list and
|
|
426
|
+
# is_par tuple
|
|
427
|
+
geometries, is_par = self._helper_pre_conversion_checks_and_processing(geometry, is_par, **kwargs)
|
|
428
|
+
|
|
429
|
+
# Convert to function values
|
|
430
|
+
for i, (k, v) in enumerate(kwargs.items()):
|
|
431
|
+
# Use CUQIarray funvals if geometry is consistent
|
|
432
|
+
if isinstance(v, CUQIarray) and v.geometry == geometries[i]:
|
|
433
|
+
kwargs[k] = v.funvals
|
|
434
|
+
# Else, if we still need to convert to function value (is_par[i] is True)
|
|
435
|
+
# we use the geometry par2fun method
|
|
436
|
+
elif is_par[i] and v is not None:
|
|
437
|
+
kwargs[k] = geometries[i].par2fun(v)
|
|
438
|
+
else:
|
|
439
|
+
# No need to convert
|
|
440
|
+
pass
|
|
441
|
+
|
|
442
|
+
return kwargs
|
|
443
|
+
|
|
444
|
+
def _helper_pre_conversion_checks_and_processing(self, geometry=None, is_par=True, **kwargs):
|
|
445
|
+
""" Helper function that checks if kwargs and geometry are consistent
|
|
446
|
+
and sets up geometries list and is_par tuple.
|
|
186
447
|
"""
|
|
187
|
-
#
|
|
188
|
-
#
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
448
|
+
# If len of kwargs is larger than 1, the geometry needs to be of type
|
|
449
|
+
# _ProductGeometry
|
|
450
|
+
if (
|
|
451
|
+
not isinstance(geometry, cuqi.experimental.geometry._ProductGeometry)
|
|
452
|
+
and len(kwargs) > 1
|
|
453
|
+
):
|
|
454
|
+
raise ValueError(
|
|
455
|
+
"The input is specified by more than one argument. This is only "
|
|
456
|
+
+ "supported for domain geometry of type "
|
|
457
|
+
+ f"{cuqi.experimental.geometry._ProductGeometry.__name__}."
|
|
458
|
+
)
|
|
459
|
+
|
|
460
|
+
# If is_par is bool, make it a tuple of bools of the same length as
|
|
461
|
+
# kwargs
|
|
462
|
+
is_par = (is_par,) * len(kwargs) if isinstance(is_par, bool) else is_par
|
|
463
|
+
|
|
464
|
+
# Set up geometries list
|
|
465
|
+
geometries = (
|
|
466
|
+
geometry.geometries
|
|
467
|
+
if isinstance(geometry, cuqi.experimental.geometry._ProductGeometry)
|
|
468
|
+
else [geometry]
|
|
469
|
+
)
|
|
470
|
+
|
|
471
|
+
return geometries, is_par
|
|
472
|
+
|
|
473
|
+
def _2par(self, geometry=None, to_CUQIarray=False, is_par=False, **kwargs):
|
|
474
|
+
""" Converts `kwargs` to parameters using the geometry. For example, `kwargs` can be the output of :class:`~cuqi.model.Model` operators (e.g. _forward_func, _adjoint_func, _gradient_func) which need to be converted to parameters before being returned.
|
|
202
475
|
|
|
203
476
|
Parameters
|
|
204
477
|
----------
|
|
205
|
-
val : ndarray or cuqi.array.CUQIarray
|
|
206
|
-
The value to be converted to parameters.
|
|
207
|
-
|
|
208
478
|
geometry : cuqi.geometry.Geometry
|
|
209
|
-
The geometry representing the
|
|
479
|
+
The geometry representing the values in `kwargs`.
|
|
210
480
|
|
|
211
|
-
to_CUQIarray : bool
|
|
212
|
-
If True, the
|
|
481
|
+
to_CUQIarray : bool or a tuple of bools
|
|
482
|
+
If `to_CUQIarray` is True, the values in `kwargs` will be wrapped in `CUQIarray`.
|
|
483
|
+
If `to_CUQIarray` is False, the values in `kwargs` will not be wrapped in `CUQIarray`.
|
|
484
|
+
If `to_CUQIarray` is a tuple of bools, the values in `kwargs` will be wrapped in `CUQIarray` or not based on the corresponding boolean value in the tuple.
|
|
213
485
|
|
|
214
|
-
is_par : bool
|
|
215
|
-
If True, `
|
|
216
|
-
|
|
486
|
+
is_par : bool or a tuple of bools
|
|
487
|
+
If `is_par` is True, the values in `kwargs` are assumed to be parameters.
|
|
488
|
+
If `is_par` is False, the values in `kwargs` are assumed to be function values.
|
|
489
|
+
If `is_par` is a tuple of bools, the values in `kwargs` are assumed to be parameters or function values based on the corresponding boolean value in the tuple.
|
|
217
490
|
|
|
218
491
|
Returns
|
|
219
492
|
-------
|
|
220
|
-
|
|
221
|
-
The value `val` represented as parameters.
|
|
493
|
+
dict of the converted values
|
|
222
494
|
"""
|
|
495
|
+
# Check kwargs and geometry are consistent and set up geometries list and
|
|
496
|
+
# is_par tuple
|
|
497
|
+
geometries, is_par = self._helper_pre_conversion_checks_and_processing(geometry, is_par, **kwargs)
|
|
498
|
+
|
|
499
|
+
# if to_CUQIarray is bool, make it a tuple of bools of the same length
|
|
500
|
+
# as kwargs
|
|
501
|
+
to_CUQIarray = (to_CUQIarray,) * len(kwargs) if isinstance(to_CUQIarray, bool) else to_CUQIarray
|
|
502
|
+
|
|
223
503
|
# Convert to parameters
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
504
|
+
for i , (k, v) in enumerate(kwargs.items()):
|
|
505
|
+
# Use CUQIarray parameters if geometry is consistent
|
|
506
|
+
if isinstance(v, CUQIarray) and v.geometry == geometries[i]:
|
|
507
|
+
v = v.parameters
|
|
508
|
+
# Else, if we still need to convert to parameter value (is_par[i] is False)
|
|
509
|
+
# we use the geometry fun2par method
|
|
510
|
+
elif not is_par[i] and v is not None:
|
|
511
|
+
v = geometries[i].fun2par(v)
|
|
512
|
+
else:
|
|
513
|
+
# No need to convert
|
|
514
|
+
pass
|
|
515
|
+
|
|
516
|
+
# Wrap the value v in CUQIarray if requested
|
|
517
|
+
if to_CUQIarray[i] and v is not None:
|
|
518
|
+
v = CUQIarray(v, is_par=True, geometry=geometries[i])
|
|
519
|
+
|
|
520
|
+
kwargs[k] = v
|
|
239
521
|
|
|
240
|
-
|
|
241
|
-
""" Private function that applies the given function `func` to the input value `x`. It converts the input to function values (if needed) using the given `func_domain_geometry` and converts the output function values to parameters using the given `func_range_geometry`. It additionally handles the case of applying the function `func` to the cuqi.samples.Samples object.
|
|
522
|
+
return kwargs
|
|
242
523
|
|
|
243
|
-
|
|
524
|
+
def _apply_func(self, func=None, fwd=True, is_par=True, **kwargs):
|
|
525
|
+
""" Private function that applies the given function `func` to the input `kwargs`. It converts the input to function values (if needed) and converts the output to parameter values. It additionally handles the case of applying the function `func` to cuqi.samples.Samples objects.
|
|
244
526
|
|
|
245
527
|
Parameters
|
|
246
528
|
----------
|
|
247
529
|
func: function handler
|
|
248
530
|
The function to be applied.
|
|
249
531
|
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
The geometry representing the function `func` domain.
|
|
255
|
-
|
|
256
|
-
x : ndarray or cuqi.array.CUQIarray
|
|
257
|
-
The input value to the operator.
|
|
532
|
+
fwd : bool
|
|
533
|
+
Flag indicating the direction of the operator to determine the range and domain geometries of the function.
|
|
534
|
+
If True the function is a forward operator.
|
|
535
|
+
If False the function is an adjoint operator.
|
|
258
536
|
|
|
259
|
-
is_par : bool
|
|
260
|
-
If True the
|
|
261
|
-
If False the input
|
|
537
|
+
is_par : bool or list of bool
|
|
538
|
+
If True, the inputs in `kwargs` are assumed to be parameters.
|
|
539
|
+
If False, the input in `kwargs` are assumed to be function values.
|
|
540
|
+
If `is_par` is a list of bools, the inputs are assumed to be parameters or function values based on the corresponding boolean value in the list.
|
|
262
541
|
|
|
263
542
|
Returns
|
|
264
543
|
-------
|
|
265
|
-
ndarray or cuqi.array.CUQIarray
|
|
266
|
-
The output of the function
|
|
544
|
+
ndarray or cuqi.array.CUQIarray or cuqi.samples.Samples object
|
|
545
|
+
The output of the function.
|
|
267
546
|
"""
|
|
547
|
+
# Specify the range and domain geometries of the function
|
|
548
|
+
# If forward operator, range geometry is the model range geometry and
|
|
549
|
+
# domain geometry is the model domain geometry
|
|
550
|
+
if fwd:
|
|
551
|
+
func_range_geometry = self.range_geometry
|
|
552
|
+
func_domain_geometry = self.domain_geometry
|
|
553
|
+
# If adjoint operator, range geometry is the model domain geometry and
|
|
554
|
+
# domain geometry is the model range geometry
|
|
555
|
+
else:
|
|
556
|
+
func_range_geometry = self.domain_geometry
|
|
557
|
+
func_domain_geometry = self.range_geometry
|
|
558
|
+
|
|
268
559
|
# If input x is Samples we apply func for each sample
|
|
269
560
|
# TODO: Check if this can be done all-at-once for computational speed-up
|
|
270
|
-
if isinstance(x,Samples):
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
func_range_geometry,
|
|
276
|
-
func_domain_geometry,
|
|
277
|
-
item, is_par=True,
|
|
278
|
-
**kwargs)
|
|
279
|
-
return Samples(out, geometry=func_range_geometry)
|
|
280
|
-
|
|
281
|
-
# store if input x is CUQIarray
|
|
282
|
-
is_CUQIarray = type(x) is CUQIarray
|
|
561
|
+
if any(isinstance(x, Samples) for x in kwargs.values()):
|
|
562
|
+
return self._handle_case_when_model_input_is_samples(func, fwd, **kwargs)
|
|
563
|
+
|
|
564
|
+
# store if any input x is CUQIarray
|
|
565
|
+
is_CUQIarray = any(isinstance(x, CUQIarray) for x in kwargs.values())
|
|
283
566
|
|
|
284
|
-
|
|
285
|
-
|
|
567
|
+
# Convert input to function values
|
|
568
|
+
kwargs = self._2fun(geometry=func_domain_geometry, is_par=is_par, **kwargs)
|
|
286
569
|
|
|
287
|
-
#
|
|
288
|
-
|
|
289
|
-
return self._2par(out, func_range_geometry,
|
|
290
|
-
to_CUQIarray=is_CUQIarray)
|
|
570
|
+
# Apply the function
|
|
571
|
+
out = func(**kwargs)
|
|
291
572
|
|
|
292
|
-
|
|
293
|
-
|
|
573
|
+
# Return output as parameters
|
|
574
|
+
# (wrapped in CUQIarray if any input was CUQIarray)
|
|
575
|
+
return self._2par(
|
|
576
|
+
geometry=func_range_geometry, to_CUQIarray=is_CUQIarray, **{"out": out}
|
|
577
|
+
)["out"]
|
|
294
578
|
|
|
579
|
+
def _handle_case_when_model_input_is_samples(self, func=None, fwd=True, **kwargs):
|
|
580
|
+
"""Private function that calls apply_func for samples in the
|
|
581
|
+
Samples object(s).
|
|
582
|
+
"""
|
|
583
|
+
# All kwargs should be Samples objects
|
|
584
|
+
if not all(isinstance(x, Samples) for x in kwargs.values()):
|
|
585
|
+
raise TypeError(
|
|
586
|
+
"If applying the function to Samples, all inputs should be Samples."
|
|
587
|
+
)
|
|
588
|
+
|
|
589
|
+
# All Samples objects should have the same number of samples
|
|
590
|
+
Ns = list(kwargs.values())[0].Ns
|
|
591
|
+
if not all(x.Ns == Ns for x in kwargs.values()):
|
|
592
|
+
raise ValueError(
|
|
593
|
+
"If applying the function to Samples, all inputs should have the same number of samples."
|
|
594
|
+
)
|
|
595
|
+
|
|
596
|
+
# Specify the range dimension of the function
|
|
597
|
+
range_dim = self.range_dim if fwd else self.domain_dim
|
|
598
|
+
|
|
599
|
+
# Create empty array to store the output
|
|
600
|
+
out = np.zeros((range_dim, Ns))
|
|
601
|
+
|
|
602
|
+
# Recursively apply func to each sample
|
|
603
|
+
for i in range(Ns):
|
|
604
|
+
kwargs_i = {
|
|
605
|
+
k: CUQIarray(v.samples[..., i], is_par=v.is_par, geometry=v.geometry)
|
|
606
|
+
for k, v in kwargs.items()
|
|
607
|
+
}
|
|
608
|
+
out[:, i] = self._apply_func(func=func, fwd=fwd, **kwargs_i)
|
|
609
|
+
# Specify the range geometries of the function
|
|
610
|
+
func_range_geometry = self.range_geometry if fwd else self.domain_geometry
|
|
611
|
+
return Samples(out, geometry=func_range_geometry)
|
|
612
|
+
|
|
613
|
+
def _parse_args_add_to_kwargs(
|
|
614
|
+
self, *args, is_par=True, non_default_args=None, map_name="model", **kwargs
|
|
615
|
+
):
|
|
616
|
+
""" Private function that parses the input arguments and adds them as
|
|
617
|
+
keyword arguments matching (the order of) the non default arguments of
|
|
618
|
+
the forward function or other specified non_default_args list.
|
|
619
|
+
"""
|
|
620
|
+
# If non_default_args is not specified, use the non_default_args of the
|
|
621
|
+
# model
|
|
622
|
+
if non_default_args is None:
|
|
623
|
+
non_default_args = self._non_default_args
|
|
624
|
+
|
|
625
|
+
# Either args or kwargs can be provided but not both
|
|
626
|
+
if len(args) > 0 and len(kwargs) > 0:
|
|
627
|
+
raise ValueError(
|
|
628
|
+
"The "
|
|
629
|
+
+ map_name.lower()
|
|
630
|
+
+ " input is specified both as positional and keyword arguments. This is not supported."
|
|
631
|
+
)
|
|
632
|
+
|
|
633
|
+
len_input = len(args) + len(kwargs)
|
|
634
|
+
|
|
635
|
+
# If partial evaluation, make sure input is not of type Samples
|
|
636
|
+
if len_input < len(non_default_args):
|
|
637
|
+
# If the argument is a Sample object, splitting or partial
|
|
638
|
+
# evaluation of the model is not supported
|
|
639
|
+
temp_args = args if len(args) > 0 else list(kwargs.values())
|
|
640
|
+
if any(isinstance(arg, Samples) for arg in temp_args):
|
|
641
|
+
raise ValueError(("When using Samples objects as input, the"
|
|
642
|
+
+" user should provide a Samples object for"
|
|
643
|
+
+f" each non_default_args {non_default_args}"
|
|
644
|
+
+" of the model. That is, partial evaluation"
|
|
645
|
+
+" or splitting is not supported for input"
|
|
646
|
+
+" of type Samples."))
|
|
647
|
+
|
|
648
|
+
# If args are given, add them to kwargs
|
|
295
649
|
if len(args) > 0:
|
|
296
650
|
|
|
297
|
-
if
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
651
|
+
# Check if the input is for multiple input case and is stacked,
|
|
652
|
+
# then split it
|
|
653
|
+
if len(args) < len(non_default_args):
|
|
654
|
+
args = self._split_in_case_of_stacked_args(*args, is_par=is_par)
|
|
655
|
+
|
|
303
656
|
# Add args to kwargs following the order of non_default_args
|
|
304
657
|
for idx, arg in enumerate(args):
|
|
305
|
-
kwargs[
|
|
658
|
+
kwargs[non_default_args[idx]] = arg
|
|
659
|
+
|
|
660
|
+
# Check kwargs matches non_default_args
|
|
661
|
+
if not (set(list(kwargs.keys())) <= set(non_default_args)):
|
|
662
|
+
if map_name == "gradient":
|
|
663
|
+
error_msg = f"The gradient input is specified by a direction and keywords arguments {list(kwargs.keys())} that does not match the non_default_args of the model {non_default_args}."
|
|
664
|
+
else:
|
|
665
|
+
error_msg = (
|
|
666
|
+
"The "
|
|
667
|
+
+ map_name.lower()
|
|
668
|
+
+ f" input is specified by keywords arguments {list(kwargs.keys())} that does not match the non_default_args of the "
|
|
669
|
+
+ map_name
|
|
670
|
+
+ f" {non_default_args}."
|
|
671
|
+
)
|
|
672
|
+
|
|
673
|
+
raise ValueError(error_msg)
|
|
674
|
+
|
|
675
|
+
# Make sure order of kwargs is the same as non_default_args
|
|
676
|
+
kwargs = {k: kwargs[k] for k in non_default_args if k in kwargs}
|
|
306
677
|
|
|
307
678
|
return kwargs
|
|
308
|
-
|
|
679
|
+
|
|
680
|
+
def _split_in_case_of_stacked_args(self, *args, is_par=True):
|
|
681
|
+
"""Private function that checks if the input args is a stacked
|
|
682
|
+
CUQIarray or numpy array and splits it into multiple arguments based on
|
|
683
|
+
the domain geometry of the model. Otherwise, it returns the input args
|
|
684
|
+
unchanged."""
|
|
685
|
+
|
|
686
|
+
# Check conditions for splitting and split if all conditions are met
|
|
687
|
+
is_CUQIarray = isinstance(args[0], CUQIarray)
|
|
688
|
+
is_numpy_array = isinstance(args[0], np.ndarray)
|
|
689
|
+
|
|
690
|
+
if ((is_CUQIarray or is_numpy_array) and
|
|
691
|
+
is_par and
|
|
692
|
+
len(args) == 1 and
|
|
693
|
+
args[0].shape == (self.domain_dim,) and
|
|
694
|
+
isinstance(self.domain_geometry, cuqi.experimental.geometry._ProductGeometry)):
|
|
695
|
+
# Split the stacked input
|
|
696
|
+
split_args = np.split(args[0], self.domain_geometry.stacked_par_split_indices)
|
|
697
|
+
# Convert split args to CUQIarray if input is CUQIarray
|
|
698
|
+
if is_CUQIarray:
|
|
699
|
+
split_args = [
|
|
700
|
+
CUQIarray(arg, is_par=True, geometry=self.domain_geometry.geometries[i])
|
|
701
|
+
for i, arg in enumerate(split_args)
|
|
702
|
+
]
|
|
703
|
+
return split_args
|
|
704
|
+
|
|
705
|
+
else:
|
|
706
|
+
return args
|
|
707
|
+
|
|
309
708
|
def forward(self, *args, is_par=True, **kwargs):
|
|
310
709
|
""" Forward function of the model.
|
|
311
|
-
|
|
312
|
-
Forward converts the input to function values (if needed) using the domain geometry of the model.
|
|
313
|
-
Forward converts the output function values to parameters using the range geometry of the model.
|
|
710
|
+
|
|
711
|
+
Forward converts the input to function values (if needed) using the domain geometry of the model. Then it applies the forward operator to the function values and converts the output to parameters using the range geometry of the model.
|
|
314
712
|
|
|
315
713
|
Parameters
|
|
316
714
|
----------
|
|
317
|
-
*args :
|
|
318
|
-
The
|
|
715
|
+
*args : ndarrays or cuqi.array.CUQIarray objects or cuqi.samples.Samples objects
|
|
716
|
+
Positional arguments for the forward operator. The forward operator input can be specified as either positional arguments or keyword arguments but not both.
|
|
319
717
|
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
718
|
+
If the input is specified as positional arguments, the order of the arguments should match the non_default_args of the model.
|
|
719
|
+
|
|
720
|
+
is_par : bool or a tuple of bools
|
|
721
|
+
If True, the inputs in `args` or `kwargs` are assumed to be parameters.
|
|
722
|
+
If False, the inputs in `args` or `kwargs` are assumed to be function values.
|
|
723
|
+
If `is_par` is a tuple of bools, the inputs are assumed to be parameters or function values based on the corresponding boolean value in the tuple.
|
|
724
|
+
|
|
725
|
+
**kwargs : keyword arguments
|
|
726
|
+
keyword arguments for the forward operator. The forward operator input can be specified as either positional arguments or keyword arguments but not both.
|
|
727
|
+
|
|
728
|
+
If the input is specified as keyword arguments, the keys should match the non_default_args of the model.
|
|
326
729
|
|
|
327
730
|
Returns
|
|
328
731
|
-------
|
|
329
|
-
ndarray or cuqi.array.CUQIarray
|
|
732
|
+
ndarray or cuqi.array.CUQIarray or cuqi.samples.Samples object
|
|
330
733
|
The model output. Always returned as parameters.
|
|
331
734
|
"""
|
|
332
735
|
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
# If input is a distribution, we simply change the parameter name of
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
736
|
+
# Add args to kwargs and ensure the order of the arguments matches the
|
|
737
|
+
# non_default_args of the forward function
|
|
738
|
+
kwargs = self._parse_args_add_to_kwargs(
|
|
739
|
+
*args, **kwargs, is_par=is_par, map_name="model"
|
|
740
|
+
)
|
|
741
|
+
# Extract args from kwargs
|
|
742
|
+
args = list(kwargs.values())
|
|
743
|
+
|
|
744
|
+
if len(kwargs) == 0:
|
|
745
|
+
return self
|
|
746
|
+
|
|
747
|
+
partial_arguments = len(kwargs) < len(self._non_default_args)
|
|
748
|
+
|
|
749
|
+
# If input is a distribution, we simply change the parameter name of
|
|
750
|
+
# model to match the distribution name
|
|
751
|
+
if all(isinstance(x, cuqi.distribution.Distribution)
|
|
752
|
+
for x in kwargs.values()):
|
|
753
|
+
if partial_arguments:
|
|
754
|
+
raise ValueError(
|
|
755
|
+
"Partial evaluation of the model is not supported for distributions."
|
|
756
|
+
)
|
|
757
|
+
return self._handle_case_when_model_input_is_distributions(kwargs)
|
|
353
758
|
|
|
354
759
|
# If input is a random variable, we handle it separately
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
760
|
+
elif all(isinstance(x, cuqi.experimental.algebra.RandomVariable)
|
|
761
|
+
for x in kwargs.values()):
|
|
762
|
+
if partial_arguments:
|
|
763
|
+
raise ValueError(
|
|
764
|
+
"Partial evaluation of the model is not supported for random variables."
|
|
765
|
+
)
|
|
766
|
+
return self._handle_case_when_model_input_is_random_variables(kwargs)
|
|
767
|
+
|
|
358
768
|
# If input is a Node from internal abstract syntax tree, we let the Node handle the operation
|
|
359
769
|
# We use NotImplemented to indicate that the operation is not supported from the Model class
|
|
360
770
|
# in case of operations such as "@" that can be interpreted as both __matmul__ and __rmatmul__
|
|
361
771
|
# the operation may be delegated to the Node class.
|
|
362
|
-
|
|
772
|
+
elif any(isinstance(args_i, cuqi.experimental.algebra.Node) for args_i in args):
|
|
363
773
|
return NotImplemented
|
|
364
774
|
|
|
775
|
+
# if input is partial, we create a new model with the partial input
|
|
776
|
+
if partial_arguments:
|
|
777
|
+
# Create is_par_partial from the is_par to contain only the relevant parts
|
|
778
|
+
if isinstance(is_par, (list, tuple)):
|
|
779
|
+
is_par_partial = tuple(
|
|
780
|
+
is_par[i]
|
|
781
|
+
for i in range(self.number_of_inputs)
|
|
782
|
+
if self._non_default_args[i] in kwargs.keys()
|
|
783
|
+
)
|
|
784
|
+
else:
|
|
785
|
+
is_par_partial = is_par
|
|
786
|
+
# Build a partial model with the given kwargs
|
|
787
|
+
partial_model = self._build_partial_model(kwargs, is_par_partial)
|
|
788
|
+
return partial_model
|
|
789
|
+
|
|
365
790
|
# Else we apply the forward operator
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
791
|
+
# if model has _original_non_default_args, we use it to replace the
|
|
792
|
+
# kwargs keys so that it matches self._forward_func signature
|
|
793
|
+
if hasattr(self, '_original_non_default_args'):
|
|
794
|
+
kwargs = {k:v for k,v in zip(self._original_non_default_args, args)}
|
|
795
|
+
return self._apply_func(func=self._forward_func,
|
|
796
|
+
fwd=True,
|
|
797
|
+
is_par=is_par,
|
|
798
|
+
**kwargs)
|
|
799
|
+
|
|
800
|
+
def _correct_distribution_dimension(self, distributions):
|
|
801
|
+
"""Private function that checks if the dimension of the
|
|
802
|
+
distributions matches the domain dimension of the model."""
|
|
803
|
+
if len(distributions) == 1:
|
|
804
|
+
return list(distributions)[0].dim == self.domain_dim
|
|
805
|
+
elif len(distributions) > 1 and isinstance(
|
|
806
|
+
self.domain_geometry, cuqi.experimental.geometry._ProductGeometry
|
|
807
|
+
):
|
|
808
|
+
return all(
|
|
809
|
+
d.dim == self.domain_geometry.par_dim_list[i]
|
|
810
|
+
for i, d in enumerate(distributions)
|
|
811
|
+
)
|
|
812
|
+
else:
|
|
813
|
+
return False
|
|
814
|
+
|
|
815
|
+
def _build_partial_model(self, kwargs, is_par):
|
|
816
|
+
"""Private function that builds a partial model substituting the given
|
|
817
|
+
keyword arguments with their values. The created partial model will have
|
|
818
|
+
as inputs the non-default arguments that are not in the kwargs."""
|
|
819
|
+
|
|
820
|
+
# Extract args from kwargs
|
|
821
|
+
args = list(kwargs.values())
|
|
822
|
+
|
|
823
|
+
# Define original_non_default_args which represents the complete list of
|
|
824
|
+
# non-default arguments of the forward function.
|
|
825
|
+
original_non_default_args = (
|
|
826
|
+
self._original_non_default_args
|
|
827
|
+
if hasattr(self, "_original_non_default_args")
|
|
828
|
+
else self._non_default_args
|
|
829
|
+
)
|
|
830
|
+
|
|
831
|
+
if hasattr(self, "_original_non_default_args"):
|
|
832
|
+
# Split the _original_non_default_args into two lists:
|
|
833
|
+
# 1. reduced_original_non_default_args: the _original_non_default_args
|
|
834
|
+
# corresponding to the _non_default_args that are not in kwargs
|
|
835
|
+
# 2. substituted_non_default_args: the _original_non_default_args
|
|
836
|
+
# corresponding to the _non_default_args that are in kwargs
|
|
837
|
+
reduced_original_non_default_args = [
|
|
838
|
+
original_non_default_args[i]
|
|
839
|
+
for i in range(self.number_of_inputs)
|
|
840
|
+
if self._non_default_args[i] not in kwargs.keys()
|
|
841
|
+
]
|
|
842
|
+
substituted_non_default_args = [
|
|
843
|
+
original_non_default_args[i]
|
|
844
|
+
for i in range(self.number_of_inputs)
|
|
845
|
+
if self._non_default_args[i] in kwargs.keys()
|
|
846
|
+
]
|
|
847
|
+
# Replace the keys in kwargs with the substituted_non_default_args
|
|
848
|
+
# so that the kwargs match the signature of the _forward_func
|
|
849
|
+
kwargs = {k: v for k, v in zip(substituted_non_default_args, args)}
|
|
850
|
+
|
|
851
|
+
# Create a partial domain geometry with the geometries corresponding
|
|
852
|
+
# to the non-default arguments that are not in kwargs (remaining
|
|
853
|
+
# unspecified inputs)
|
|
854
|
+
partial_domain_geometry = cuqi.experimental.geometry._ProductGeometry(
|
|
855
|
+
*[
|
|
856
|
+
self.domain_geometry.geometries[i]
|
|
857
|
+
for i in range(self.number_of_inputs)
|
|
858
|
+
if original_non_default_args[i] not in kwargs.keys()
|
|
859
|
+
]
|
|
860
|
+
)
|
|
861
|
+
|
|
862
|
+
if len(partial_domain_geometry.geometries) == 1:
|
|
863
|
+
partial_domain_geometry = partial_domain_geometry.geometries[0]
|
|
864
|
+
|
|
865
|
+
# Create a domain geometry with the geometries corresponding to the
|
|
866
|
+
# non-default arguments that are specified
|
|
867
|
+
substituted_domain_geometry = cuqi.experimental.geometry._ProductGeometry(
|
|
868
|
+
*[
|
|
869
|
+
self.domain_geometry.geometries[i]
|
|
870
|
+
for i in range(self.number_of_inputs)
|
|
871
|
+
if original_non_default_args[i] in kwargs.keys()
|
|
872
|
+
]
|
|
873
|
+
)
|
|
874
|
+
|
|
875
|
+
if len(substituted_domain_geometry.geometries) == 1:
|
|
876
|
+
substituted_domain_geometry = substituted_domain_geometry.geometries[0]
|
|
877
|
+
|
|
878
|
+
# Create new model with partial input
|
|
879
|
+
# First, we convert the input to function values
|
|
880
|
+
kwargs = self._2fun(geometry=substituted_domain_geometry, is_par=is_par, **kwargs)
|
|
881
|
+
|
|
882
|
+
# Second, we create a partial function for the forward operator
|
|
883
|
+
partial_forward = partial(self._forward_func, **kwargs)
|
|
884
|
+
|
|
885
|
+
# Third, if applicable, we create a partial function for the gradient
|
|
886
|
+
if isinstance(self._gradient_func, tuple):
|
|
887
|
+
# If gradient is a tuple, we create a partial function for each
|
|
888
|
+
# gradient function in the tuple
|
|
889
|
+
partial_gradient = tuple(
|
|
890
|
+
(
|
|
891
|
+
partial(self._gradient_func[i], **kwargs)
|
|
892
|
+
if self._gradient_func[i] is not None
|
|
893
|
+
else None
|
|
894
|
+
)
|
|
895
|
+
for i in range(self.number_of_inputs)
|
|
896
|
+
if original_non_default_args[i] not in kwargs.keys()
|
|
897
|
+
)
|
|
898
|
+
if len(partial_gradient) == 1:
|
|
899
|
+
partial_gradient = partial_gradient[0]
|
|
900
|
+
|
|
901
|
+
elif callable(self._gradient_func):
|
|
902
|
+
raise NotImplementedError(
|
|
903
|
+
"Partial forward model is only supported for gradient/jacobian functions that are tuples of callable functions."
|
|
904
|
+
)
|
|
370
905
|
|
|
371
|
-
|
|
372
|
-
|
|
906
|
+
else:
|
|
907
|
+
partial_gradient = None
|
|
908
|
+
|
|
909
|
+
# Lastly, we create the partial model with the partial forward
|
|
910
|
+
# operator (we set the gradient function later)
|
|
911
|
+
partial_model = Model(
|
|
912
|
+
forward=partial_forward,
|
|
913
|
+
range_geometry=self.range_geometry,
|
|
914
|
+
domain_geometry=partial_domain_geometry,
|
|
915
|
+
)
|
|
916
|
+
|
|
917
|
+
# Set the _original_non_default_args (if applicable) and
|
|
918
|
+
# _stored_non_default_args of the partial model
|
|
919
|
+
if hasattr(self, "_original_non_default_args"):
|
|
920
|
+
partial_model._original_non_default_args = reduced_original_non_default_args
|
|
921
|
+
partial_model._stored_non_default_args = [
|
|
922
|
+
self._non_default_args[i]
|
|
923
|
+
for i in range(self.number_of_inputs)
|
|
924
|
+
if original_non_default_args[i] not in kwargs.keys()
|
|
925
|
+
]
|
|
926
|
+
|
|
927
|
+
# Set the gradient function of the partial model
|
|
928
|
+
partial_model._check_correct_gradient_jacobian_form(
|
|
929
|
+
partial_gradient, "gradient"
|
|
930
|
+
)
|
|
931
|
+
partial_model._gradient_func = partial_gradient
|
|
932
|
+
|
|
933
|
+
return partial_model
|
|
934
|
+
|
|
935
|
+
def _handle_case_when_model_input_is_distributions(self, kwargs):
|
|
936
|
+
"""Private function that handles the case of the input being a
|
|
937
|
+
distribution or multiple distributions."""
|
|
938
|
+
|
|
939
|
+
if not self._correct_distribution_dimension(kwargs.values()):
|
|
940
|
+
raise ValueError(
|
|
941
|
+
"Attempting to match parameter name of Model with given distribution(s), but distribution(s) dimension(s) does not match model input dimension(s)."
|
|
942
|
+
)
|
|
943
|
+
new_model = copy(self)
|
|
944
|
+
|
|
945
|
+
# Store the original non_default_args of the model
|
|
946
|
+
new_model._original_non_default_args = (
|
|
947
|
+
self._original_non_default_args
|
|
948
|
+
if hasattr(self, "_original_non_default_args")
|
|
949
|
+
else self._non_default_args
|
|
950
|
+
)
|
|
951
|
+
|
|
952
|
+
# Update the non_default_args of the model to match the distribution
|
|
953
|
+
# names. Defaults to x in the case of only one distribution that has no
|
|
954
|
+
# name
|
|
955
|
+
new_model._stored_non_default_args = [x.name for x in kwargs.values()]
|
|
956
|
+
|
|
957
|
+
# If there is a repeated name, raise an error
|
|
958
|
+
if len(set(new_model._stored_non_default_args)) != len(
|
|
959
|
+
new_model._stored_non_default_args
|
|
960
|
+
):
|
|
961
|
+
raise ValueError(
|
|
962
|
+
"Attempting to match parameter name of Model with given distributions, but distribution names are not unique. Please provide unique names for the distributions."
|
|
963
|
+
)
|
|
964
|
+
|
|
965
|
+
return new_model
|
|
966
|
+
|
|
967
|
+
def _handle_case_when_model_input_is_random_variables(self, kwargs):
|
|
968
|
+
""" Private function that handles the case of the input being a random variable. """
|
|
969
|
+
# If random variable is not a leaf-type node (e.g. internal node) we return NotImplemented
|
|
970
|
+
if any(not isinstance(x.tree, cuqi.experimental.algebra.VariableNode) for x in kwargs.values()):
|
|
971
|
+
return NotImplemented
|
|
972
|
+
|
|
973
|
+
# Extract the random variable distributions and check dimensions consistency with domain geometry
|
|
974
|
+
distributions = [value.distribution for value in kwargs.values()]
|
|
975
|
+
if not self._correct_distribution_dimension(distributions):
|
|
976
|
+
raise ValueError("Attempting to match parameter name of Model with given random variable(s), but random variable dimension(s) does not match model input dimension(s).")
|
|
977
|
+
|
|
978
|
+
new_model = copy(self)
|
|
373
979
|
|
|
374
|
-
|
|
375
|
-
|
|
980
|
+
# Store the original non_default_args of the model
|
|
981
|
+
new_model._original_non_default_args = self._non_default_args
|
|
376
982
|
|
|
377
|
-
|
|
378
|
-
|
|
983
|
+
# Update the non_default_args of the model to match the random variable
|
|
984
|
+
# names. Defaults to x in the case of only one random variable that has
|
|
985
|
+
# no name
|
|
986
|
+
new_model._stored_non_default_args = [x.name for x in distributions]
|
|
987
|
+
|
|
988
|
+
# If there is a repeated name, raise an error
|
|
989
|
+
if len(set(new_model._stored_non_default_args)) != len(
|
|
990
|
+
new_model._stored_non_default_args
|
|
991
|
+
):
|
|
992
|
+
raise ValueError(
|
|
993
|
+
"Attempting to match parameter name of Model with given random variables, but random variables names are not unique. Please provide unique names for the random variables."
|
|
994
|
+
)
|
|
995
|
+
|
|
996
|
+
return new_model
|
|
997
|
+
|
|
998
|
+
def gradient(
|
|
999
|
+
self, direction, *args, is_direction_par=True, is_var_par=True, **kwargs
|
|
1000
|
+
):
|
|
1001
|
+
"""Gradient of the forward operator (Direction-Jacobian product)
|
|
1002
|
+
|
|
1003
|
+
The gradient computes the Vector-Jacobian product (VJP) of the forward operator evaluated at the given model input and the given vector (direction).
|
|
379
1004
|
|
|
380
1005
|
Parameters
|
|
381
1006
|
----------
|
|
382
|
-
direction : ndarray
|
|
383
|
-
The direction to compute the gradient.
|
|
1007
|
+
direction : ndarray or cuqi.array.CUQIarray
|
|
1008
|
+
The direction at which to compute the gradient.
|
|
1009
|
+
|
|
1010
|
+
*args : ndarrays or cuqi.array.CUQIarray objects
|
|
1011
|
+
Positional arguments for the values at which to compute the gradient. The gradient operator input can be specified as either positional arguments or keyword arguments but not both.
|
|
384
1012
|
|
|
385
|
-
|
|
386
|
-
The point to compute the Jacobian at. This is only used for non-linear models.
|
|
1013
|
+
If the input is specified as positional arguments, the order of the arguments should match the non_default_args of the model.
|
|
387
1014
|
|
|
388
1015
|
is_direction_par : bool
|
|
389
1016
|
If True, `direction` is assumed to be parameters.
|
|
390
1017
|
If False, `direction` is assumed to be function values.
|
|
391
1018
|
|
|
392
|
-
|
|
393
|
-
If True, `
|
|
394
|
-
If False, `
|
|
395
|
-
|
|
1019
|
+
is_var_par : bool or a tuple of bools
|
|
1020
|
+
If True, the inputs in `args` or `kwargs` are assumed to be parameters.
|
|
1021
|
+
If False, the inputs in `args` or `kwargs` are assumed to be function values.
|
|
1022
|
+
If `is_var_par` is a tuple of bools, the inputs in `args` or `kwargs` are assumed to be parameters or function values based on the corresponding boolean value in the tuple.
|
|
396
1023
|
"""
|
|
397
|
-
#
|
|
398
|
-
#
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
1024
|
+
# Add args to kwargs and ensure the order of the arguments matches the
|
|
1025
|
+
# non_default_args of the forward function
|
|
1026
|
+
kwargs = self._parse_args_add_to_kwargs(
|
|
1027
|
+
*args, **kwargs, is_par=is_var_par, map_name="gradient"
|
|
1028
|
+
)
|
|
1029
|
+
|
|
1030
|
+
# Obtain the parameters representation of the variables and raise an
|
|
1031
|
+
# error if it cannot be obtained
|
|
1032
|
+
error_message = (
|
|
1033
|
+
"For the gradient to be computed, is_var_par needs to be True and the variables in kwargs needs to be parameter value, not function value. Alternatively, the model domain_geometry:"
|
|
1034
|
+
+ f" {self.domain_geometry} "
|
|
1035
|
+
+ "should have an implementation of the method fun2par"
|
|
1036
|
+
)
|
|
405
1037
|
try:
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
1038
|
+
kwargs_par = self._2par(
|
|
1039
|
+
geometry=self.domain_geometry,
|
|
1040
|
+
is_par=is_var_par,
|
|
1041
|
+
to_CUQIarray=False,
|
|
1042
|
+
**kwargs,
|
|
1043
|
+
)
|
|
411
1044
|
# NotImplementedError will be raised if fun2par of the geometry is not
|
|
412
1045
|
# implemented and ValueError will be raised when imap is not set in
|
|
413
1046
|
# MappedGeometry
|
|
414
1047
|
except ValueError as e:
|
|
415
|
-
raise ValueError(
|
|
416
|
-
|
|
417
|
-
|
|
1048
|
+
raise ValueError(
|
|
1049
|
+
error_message
|
|
1050
|
+
+ " ,including an implementation of imap for MappedGeometry"
|
|
1051
|
+
)
|
|
418
1052
|
except NotImplementedError as e:
|
|
419
1053
|
raise NotImplementedError(error_message)
|
|
420
|
-
|
|
421
|
-
# Check for other errors that may prevent computing the gradient
|
|
422
|
-
self._check_gradient_can_be_computed(direction, wrt)
|
|
423
|
-
|
|
424
|
-
wrt = self._2fun(wrt, self.domain_geometry, is_par=is_wrt_par)
|
|
425
|
-
|
|
426
|
-
# Store if the input direction is CUQIarray
|
|
427
|
-
is_direction_CUQIarray = type(direction) is CUQIarray
|
|
428
|
-
|
|
429
|
-
direction = self._2fun(direction,
|
|
430
|
-
self.range_geometry,
|
|
431
|
-
is_par=is_direction_par)
|
|
432
1054
|
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
#
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
1055
|
+
# Check for other errors that may prevent computing the gradient
|
|
1056
|
+
self._check_gradient_can_be_computed(direction, kwargs)
|
|
1057
|
+
|
|
1058
|
+
# Also obtain the function values representation of the variables
|
|
1059
|
+
kwargs_fun = self._2fun(
|
|
1060
|
+
geometry=self.domain_geometry, is_par=is_var_par, **kwargs
|
|
1061
|
+
)
|
|
1062
|
+
|
|
1063
|
+
# Store if any of the inputs is a CUQIarray
|
|
1064
|
+
to_CUQIarray = isinstance(direction, CUQIarray) or any(
|
|
1065
|
+
isinstance(x, CUQIarray) for x in kwargs_fun.values()
|
|
1066
|
+
)
|
|
1067
|
+
|
|
1068
|
+
# Turn to_CUQIarray to a tuple of bools of the same length as kwargs_fun
|
|
1069
|
+
to_CUQIarray = tuple([to_CUQIarray] * len(kwargs_fun))
|
|
1070
|
+
|
|
1071
|
+
# Convert direction to function value
|
|
1072
|
+
direction_fun = self._2fun(
|
|
1073
|
+
direction=direction, geometry=self.range_geometry, is_par=is_direction_par
|
|
1074
|
+
)
|
|
1075
|
+
|
|
1076
|
+
# If model has _original_non_default_args, we use it to replace the
|
|
1077
|
+
# kwargs keys so that it matches self._gradient_func signature
|
|
1078
|
+
if hasattr(self, '_original_non_default_args'):
|
|
1079
|
+
args_fun = list(kwargs_fun.values())
|
|
1080
|
+
kwargs_fun = {
|
|
1081
|
+
k: v for k, v in zip(self._original_non_default_args, args_fun)
|
|
1082
|
+
}
|
|
1083
|
+
# Append the direction to the kwargs_fun as first input
|
|
1084
|
+
kwargs_fun_grad_input = {**direction_fun, **kwargs_fun}
|
|
1085
|
+
|
|
1086
|
+
# Form 1 of gradient (callable)
|
|
1087
|
+
if callable(self._gradient_func):
|
|
1088
|
+
grad = self._gradient_func(**kwargs_fun_grad_input)
|
|
1089
|
+
grad_is_par = False # Assume gradient is function value
|
|
1090
|
+
|
|
1091
|
+
# Form 2 of gradient (tuple of callables)
|
|
1092
|
+
elif isinstance(self._gradient_func, tuple):
|
|
1093
|
+
grad = []
|
|
1094
|
+
for i, grad_func in enumerate(self._gradient_func):
|
|
1095
|
+
if grad_func is not None:
|
|
1096
|
+
grad.append(grad_func(**kwargs_fun_grad_input))
|
|
1097
|
+
else:
|
|
1098
|
+
grad.append(None)
|
|
1099
|
+
# set the ith item of to_CUQIarray tuple to False
|
|
1100
|
+
# because the ith gradient is None
|
|
1101
|
+
to_CUQIarray = to_CUQIarray[:i] + (False,) + to_CUQIarray[i + 1 :]
|
|
1102
|
+
grad_is_par = False # Assume gradient is function value
|
|
1103
|
+
|
|
1104
|
+
grad = self._apply_chain_rule_to_account_for_domain_geometry_gradient(
|
|
1105
|
+
kwargs_par, grad, grad_is_par, to_CUQIarray
|
|
1106
|
+
)
|
|
1107
|
+
|
|
1108
|
+
if len(grad) == 1:
|
|
1109
|
+
return list(grad.values())[0]
|
|
1110
|
+
elif self._gradient_output_stacked:
|
|
1111
|
+
return np.hstack(
|
|
1112
|
+
[
|
|
1113
|
+
(
|
|
1114
|
+
v.to_numpy()
|
|
1115
|
+
if isinstance(v, CUQIarray)
|
|
1116
|
+
else force_ndarray(v, flatten=True)
|
|
1117
|
+
)
|
|
1118
|
+
for v in list(grad.values())
|
|
1119
|
+
]
|
|
1120
|
+
)
|
|
448
1121
|
|
|
449
1122
|
return grad
|
|
450
|
-
|
|
451
|
-
def _check_gradient_can_be_computed(self, direction,
|
|
452
|
-
"""
|
|
1123
|
+
|
|
1124
|
+
def _check_gradient_can_be_computed(self, direction, kwargs_dict):
|
|
1125
|
+
"""Private function that checks if the gradient can be computed. By
|
|
453
1126
|
raising an error for the cases where the gradient cannot be computed."""
|
|
454
1127
|
|
|
455
1128
|
# Raise an error if _gradient_func function is not set
|
|
456
1129
|
if self._gradient_func is None:
|
|
457
1130
|
raise NotImplementedError("Gradient is not implemented for this model.")
|
|
458
|
-
|
|
459
|
-
# Raise error if either the direction or
|
|
460
|
-
if isinstance(direction, Samples) or
|
|
461
|
-
|
|
462
|
-
|
|
1131
|
+
|
|
1132
|
+
# Raise an error if either the direction or kwargs are Samples objects
|
|
1133
|
+
if isinstance(direction, Samples) or any(
|
|
1134
|
+
isinstance(x, Samples) for x in kwargs_dict.values()
|
|
1135
|
+
):
|
|
1136
|
+
raise NotImplementedError(
|
|
1137
|
+
"Gradient is not implemented for input of type Samples."
|
|
1138
|
+
)
|
|
1139
|
+
|
|
463
1140
|
# Raise an error if range_geometry is not in the list returned by
|
|
464
|
-
# `_get_identity_geometries()`. i.e. The Jacobian of its
|
|
465
|
-
# par2fun map is not identity.
|
|
466
|
-
#TODO: Add range geometry gradient to the chain rule
|
|
1141
|
+
# `_get_identity_geometries()`. i.e. The Jacobian of its
|
|
1142
|
+
# par2fun map is not identity.
|
|
1143
|
+
# TODO: Add range geometry gradient to the chain rule
|
|
467
1144
|
if not type(self.range_geometry) in _get_identity_geometries():
|
|
468
|
-
raise NotImplementedError(
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
#
|
|
480
|
-
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
|
|
484
|
-
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
1145
|
+
raise NotImplementedError(
|
|
1146
|
+
"Gradient is not implemented for model {} with range geometry {}. You can use one of the geometries in the list {}.".format(
|
|
1147
|
+
self,
|
|
1148
|
+
self.range_geometry,
|
|
1149
|
+
[i_g.__name__ for i_g in _get_identity_geometries()],
|
|
1150
|
+
)
|
|
1151
|
+
)
|
|
1152
|
+
|
|
1153
|
+
# Raise an error if domain_geometry (or its components in case of
|
|
1154
|
+
# _ProductGeometry) does not have gradient attribute and is not in the
|
|
1155
|
+
# list returned by `_get_identity_geometries()`. i.e. The Jacobian of its
|
|
1156
|
+
# par2fun map is not identity.
|
|
1157
|
+
domain_geometries = (
|
|
1158
|
+
self.domain_geometry.geometries
|
|
1159
|
+
if isinstance(
|
|
1160
|
+
self.domain_geometry, cuqi.experimental.geometry._ProductGeometry
|
|
1161
|
+
)
|
|
1162
|
+
else [self.domain_geometry]
|
|
1163
|
+
)
|
|
1164
|
+
for domain_geometry in domain_geometries:
|
|
1165
|
+
if (
|
|
1166
|
+
not hasattr(domain_geometry, "gradient")
|
|
1167
|
+
and not type(domain_geometry) in _get_identity_geometries()
|
|
1168
|
+
):
|
|
1169
|
+
raise NotImplementedError(
|
|
1170
|
+
"Gradient is not implemented for model \n{}\nwith domain geometry (or domain geometry component) {}. The domain geometries should have gradient method or be from the geometries in the list {}.".format(
|
|
1171
|
+
self,
|
|
1172
|
+
domain_geometry,
|
|
1173
|
+
[i_g.__name__ for i_g in _get_identity_geometries()],
|
|
1174
|
+
)
|
|
1175
|
+
)
|
|
1176
|
+
|
|
1177
|
+
def _apply_chain_rule_to_account_for_domain_geometry_gradient(self,
|
|
1178
|
+
kwargs_par,
|
|
1179
|
+
grad,
|
|
1180
|
+
grad_is_par,
|
|
1181
|
+
to_CUQIarray):
|
|
1182
|
+
""" Private function that applies the chain rule to account for the
|
|
1183
|
+
gradient of the domain geometry. That is, it computes the gradient of
|
|
1184
|
+
the function values with respect to the parameters values."""
|
|
1185
|
+
# Create list of domain geometries
|
|
1186
|
+
geometries = (
|
|
1187
|
+
self.domain_geometry.geometries
|
|
1188
|
+
if isinstance(self.domain_geometry, cuqi.experimental.geometry._ProductGeometry)
|
|
1189
|
+
else [self.domain_geometry]
|
|
1190
|
+
)
|
|
1191
|
+
|
|
1192
|
+
# turn grad_is_par to a tuple of bools if it is not already
|
|
1193
|
+
if isinstance(grad_is_par, bool):
|
|
1194
|
+
grad_is_par = tuple([grad_is_par]*self.number_of_inputs)
|
|
1195
|
+
|
|
1196
|
+
# If the domain geometry is a _ProductGeometry and the gradient is
|
|
1197
|
+
# stacked, split it
|
|
1198
|
+
if (
|
|
1199
|
+
isinstance(
|
|
1200
|
+
self.domain_geometry, cuqi.experimental.geometry._ProductGeometry
|
|
1201
|
+
)
|
|
1202
|
+
and not isinstance(grad, (list, tuple))
|
|
1203
|
+
and isinstance(grad, np.ndarray)
|
|
1204
|
+
):
|
|
1205
|
+
grad = np.split(grad, self.domain_geometry.stacked_par_split_indices)
|
|
1206
|
+
|
|
1207
|
+
# If the domain geometry is not a _ProductGeometry, turn grad into a
|
|
1208
|
+
# list of length 1, so that we can iterate over it
|
|
1209
|
+
if not isinstance(self.domain_geometry, cuqi.experimental.geometry._ProductGeometry):
|
|
1210
|
+
grad = [grad]
|
|
1211
|
+
|
|
1212
|
+
# apply the gradient of each geometry component
|
|
1213
|
+
grad_kwargs = {}
|
|
1214
|
+
for i, (k, v_par) in enumerate(kwargs_par.items()):
|
|
1215
|
+
if hasattr(geometries[i], 'gradient') and grad[i] is not None:
|
|
1216
|
+
grad_kwargs[k] = geometries[i].gradient(grad[i], v_par)
|
|
1217
|
+
# update the ith component of grad_is_par to True
|
|
1218
|
+
grad_is_par = grad_is_par[:i] + (True,) + grad_is_par[i+1:]
|
|
1219
|
+
else:
|
|
1220
|
+
grad_kwargs[k] = grad[i]
|
|
1221
|
+
|
|
1222
|
+
# convert the computed gradient to parameters
|
|
1223
|
+
grad = self._2par(geometry=self.domain_geometry,
|
|
1224
|
+
to_CUQIarray=to_CUQIarray,
|
|
1225
|
+
is_par=grad_is_par,
|
|
1226
|
+
**grad_kwargs)
|
|
1227
|
+
|
|
1228
|
+
return grad
|
|
1229
|
+
|
|
1230
|
+
def __call__(self, *args, **kwargs):
|
|
1231
|
+
return self.forward(*args, **kwargs)
|
|
491
1232
|
|
|
492
1233
|
def __len__(self):
|
|
493
1234
|
return self.range_dim
|
|
494
1235
|
|
|
495
1236
|
def __repr__(self) -> str:
|
|
496
|
-
|
|
497
|
-
|
|
1237
|
+
kwargs = {}
|
|
1238
|
+
if self.number_of_inputs > 1:
|
|
1239
|
+
pad = " " * len("CUQI {}: ".format(self.__class__.__name__))
|
|
1240
|
+
kwargs["pad"]=pad
|
|
1241
|
+
return "CUQI {}: {} -> {}.\n Forward parameters: {}.".format(self.__class__.__name__,self.domain_geometry.__repr__(**kwargs),self.range_geometry,self._non_default_args)
|
|
498
1242
|
|
|
499
1243
|
class AffineModel(Model):
|
|
500
1244
|
""" Model class representing an affine model, i.e. a linear operator with a fixed shift. For linear models, represented by a linear operator only, see :class:`~cuqi.model.LinearModel`.
|
|
@@ -533,7 +1277,7 @@ class AffineModel(Model):
|
|
|
533
1277
|
if hasattr(linear_operator, '__matmul__') and hasattr(linear_operator, 'T'):
|
|
534
1278
|
if linear_operator_adjoint is not None:
|
|
535
1279
|
raise ValueError("Adjoint of linear operator should not be provided when linear operator is a matrix. If you want to provide an adjoint, use a callable function for the linear operator.")
|
|
536
|
-
|
|
1280
|
+
|
|
537
1281
|
matrix = linear_operator
|
|
538
1282
|
|
|
539
1283
|
linear_operator = lambda x: matrix@x
|
|
@@ -559,11 +1303,50 @@ class AffineModel(Model):
|
|
|
559
1303
|
if linear_operator_adjoint is not None and not callable(linear_operator_adjoint):
|
|
560
1304
|
raise TypeError("Linear operator adjoint must be defined as a callable function of some kind")
|
|
561
1305
|
|
|
1306
|
+
# If linear operator is of type Model, it needs to be a LinearModel
|
|
1307
|
+
if isinstance(linear_operator, Model) and not isinstance(
|
|
1308
|
+
linear_operator, LinearModel
|
|
1309
|
+
):
|
|
1310
|
+
raise TypeError(
|
|
1311
|
+
"The linear operator should be a LinearModel object, a callable function or a matrix."
|
|
1312
|
+
)
|
|
1313
|
+
|
|
1314
|
+
# If the adjoint operator is of type Model, it needs to be a LinearModel
|
|
1315
|
+
if isinstance(linear_operator_adjoint, Model) and not isinstance(
|
|
1316
|
+
linear_operator_adjoint, LinearModel
|
|
1317
|
+
):
|
|
1318
|
+
raise TypeError(
|
|
1319
|
+
"The adjoint linear operator should be a LinearModel object, a callable function or a matrix."
|
|
1320
|
+
)
|
|
1321
|
+
|
|
1322
|
+
# Additional checks if the linear_operator is not a LinearModel:
|
|
1323
|
+
if not isinstance(linear_operator, LinearModel):
|
|
1324
|
+
# Ensure the linear operator has exactly one input argument
|
|
1325
|
+
if len(cuqi.utilities.get_non_default_args(linear_operator)) != 1:
|
|
1326
|
+
raise ValueError(
|
|
1327
|
+
"The linear operator should have exactly one input argument."
|
|
1328
|
+
)
|
|
1329
|
+
# Ensure the adjoint linear operator has exactly one input argument
|
|
1330
|
+
if (
|
|
1331
|
+
linear_operator_adjoint is not None
|
|
1332
|
+
and len(cuqi.utilities.get_non_default_args(linear_operator_adjoint))
|
|
1333
|
+
!= 1
|
|
1334
|
+
):
|
|
1335
|
+
raise ValueError(
|
|
1336
|
+
"The adjoint linear operator should have exactly one input argument."
|
|
1337
|
+
)
|
|
1338
|
+
|
|
562
1339
|
# Check size of shift and match against range_geometry
|
|
563
1340
|
if not np.isscalar(shift):
|
|
564
1341
|
if len(shift) != range_geometry.par_dim:
|
|
565
1342
|
raise ValueError("The shift should have the same dimension as the range geometry.")
|
|
566
1343
|
|
|
1344
|
+
# Store linear operator privately
|
|
1345
|
+
# Note: we need to set the _linear_operator before calling the
|
|
1346
|
+
# super().__init__() because it is needed when calling the property
|
|
1347
|
+
# _non_default_args within the super().__init__()
|
|
1348
|
+
self._linear_operator = linear_operator
|
|
1349
|
+
|
|
567
1350
|
# Initialize Model class
|
|
568
1351
|
super().__init__(linear_operator, range_geometry, domain_geometry)
|
|
569
1352
|
|
|
@@ -573,20 +1356,27 @@ class AffineModel(Model):
|
|
|
573
1356
|
# Store shift as private attribute
|
|
574
1357
|
self._shift = shift
|
|
575
1358
|
|
|
576
|
-
# Store linear operator privately
|
|
577
|
-
self._linear_operator = linear_operator
|
|
578
1359
|
|
|
579
1360
|
# Store adjoint function
|
|
580
1361
|
self._linear_operator_adjoint = linear_operator_adjoint
|
|
581
1362
|
|
|
582
1363
|
# Define gradient
|
|
583
|
-
self._gradient_func = lambda direction,
|
|
1364
|
+
self._gradient_func = lambda direction, *args, **kwargs: linear_operator_adjoint(direction)
|
|
584
1365
|
|
|
585
1366
|
# Update forward function to include shift (overwriting the one from Model class)
|
|
586
1367
|
self._forward_func = lambda *args, **kwargs: linear_operator(*args, **kwargs) + shift
|
|
587
1368
|
|
|
588
|
-
#
|
|
589
|
-
self.
|
|
1369
|
+
# Set stored_non_default_args to None
|
|
1370
|
+
self._stored_non_default_args = None
|
|
1371
|
+
|
|
1372
|
+
@property
|
|
1373
|
+
def _non_default_args(self):
|
|
1374
|
+
if self._stored_non_default_args is None:
|
|
1375
|
+
# Use arguments from user's callable linear operator
|
|
1376
|
+
self._stored_non_default_args = cuqi.utilities.get_non_default_args(
|
|
1377
|
+
self._linear_operator
|
|
1378
|
+
)
|
|
1379
|
+
return self._stored_non_default_args
|
|
590
1380
|
|
|
591
1381
|
@property
|
|
592
1382
|
def shift(self):
|
|
@@ -599,19 +1389,35 @@ class AffineModel(Model):
|
|
|
599
1389
|
self._shift = value
|
|
600
1390
|
self._forward_func = lambda *args, **kwargs: self._linear_operator(*args, **kwargs) + value
|
|
601
1391
|
|
|
602
|
-
def _forward_func_no_shift(self,
|
|
603
|
-
"""
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
|
|
1392
|
+
def _forward_func_no_shift(self, *args, is_par=True, **kwargs):
|
|
1393
|
+
"""Helper function for computing the forward operator without the shift."""
|
|
1394
|
+
# convert args to kwargs
|
|
1395
|
+
kwargs = self._parse_args_add_to_kwargs(
|
|
1396
|
+
*args, **kwargs, map_name="model", is_par=is_par
|
|
1397
|
+
)
|
|
1398
|
+
args = list(kwargs.values())
|
|
1399
|
+
# if model has _original_non_default_args, we use it to replace the
|
|
1400
|
+
# kwargs keys so that it matches self._linear_operator signature
|
|
1401
|
+
if hasattr(self, '_original_non_default_args'):
|
|
1402
|
+
kwargs = {k:v for k,v in zip(self._original_non_default_args, args)}
|
|
1403
|
+
return self._apply_func(self._linear_operator, **kwargs, is_par=is_par)
|
|
1404
|
+
|
|
1405
|
+
def _adjoint_func_no_shift(self, *args, is_par=True, **kwargs):
|
|
1406
|
+
"""Helper function for computing the adjoint operator without the shift."""
|
|
1407
|
+
# convert args to kwargs
|
|
1408
|
+
kwargs = self._parse_args_add_to_kwargs(
|
|
1409
|
+
*args,
|
|
1410
|
+
**kwargs,
|
|
1411
|
+
map_name='adjoint',
|
|
1412
|
+
is_par=is_par,
|
|
1413
|
+
non_default_args=cuqi.utilities.get_non_default_args(
|
|
1414
|
+
self._linear_operator_adjoint
|
|
1415
|
+
),
|
|
1416
|
+
)
|
|
1417
|
+
return self._apply_func(
|
|
1418
|
+
self._linear_operator_adjoint, **kwargs, is_par=is_par, fwd=False
|
|
1419
|
+
)
|
|
608
1420
|
|
|
609
|
-
def _adjoint_func_no_shift(self, y, is_par=True):
|
|
610
|
-
""" Helper function for computing the adjoint operator without the shift. """
|
|
611
|
-
return self._apply_func(self._linear_operator_adjoint,
|
|
612
|
-
self.domain_geometry,
|
|
613
|
-
self.range_geometry,
|
|
614
|
-
y, is_par)
|
|
615
1421
|
|
|
616
1422
|
class LinearModel(AffineModel):
|
|
617
1423
|
"""Model based on a Linear forward operator.
|
|
@@ -677,50 +1483,67 @@ class LinearModel(AffineModel):
|
|
|
677
1483
|
Note that you would need to specify the range and domain geometries in this
|
|
678
1484
|
case as they cannot be inferred from the forward and adjoint functions.
|
|
679
1485
|
"""
|
|
680
|
-
|
|
1486
|
+
|
|
681
1487
|
def __init__(self, forward, adjoint=None, range_geometry=None, domain_geometry=None):
|
|
682
1488
|
|
|
683
|
-
#Initialize as AffineModel with shift=0
|
|
1489
|
+
# Initialize as AffineModel with shift=0
|
|
684
1490
|
super().__init__(forward, 0, adjoint, range_geometry, domain_geometry)
|
|
685
1491
|
|
|
686
|
-
def adjoint(self,
|
|
1492
|
+
def adjoint(self, *args, is_par=True, **kwargs):
|
|
687
1493
|
""" Adjoint of the model.
|
|
688
1494
|
|
|
689
|
-
Adjoint converts the input to function values (if needed) using the range geometry of the model.
|
|
690
|
-
Adjoint converts the output function values to parameters using the range geometry of the model.
|
|
1495
|
+
Adjoint converts the input to function values (if needed) using the range geometry of the model then applies the adjoint operator to the function values and converts the output function values to parameters using the domain geometry of the model.
|
|
691
1496
|
|
|
692
1497
|
Parameters
|
|
693
1498
|
----------
|
|
694
|
-
|
|
695
|
-
The adjoint
|
|
1499
|
+
*args : ndarrays or cuqi.array.CUQIarray object
|
|
1500
|
+
Positional arguments for the adjoint operator ( maximum one argument). The adjoint operator input can be specified as either positional arguments or keyword arguments but not both.
|
|
1501
|
+
|
|
1502
|
+
**kwargs : keyword arguments
|
|
1503
|
+
keyword arguments for the adjoint operator (maximum one argument). The adjoint operator input can be specified as either positional arguments or keyword arguments but not both.
|
|
1504
|
+
|
|
1505
|
+
If the input is specified as keyword arguments, the keys should match the non_default_args of the model.
|
|
696
1506
|
|
|
697
1507
|
Returns
|
|
698
1508
|
-------
|
|
699
1509
|
ndarray or cuqi.array.CUQIarray
|
|
700
1510
|
The adjoint model output. Always returned as parameters.
|
|
701
1511
|
"""
|
|
1512
|
+
kwargs = self._parse_args_add_to_kwargs(
|
|
1513
|
+
*args,
|
|
1514
|
+
**kwargs,
|
|
1515
|
+
map_name='adjoint',
|
|
1516
|
+
is_par=is_par,
|
|
1517
|
+
non_default_args=cuqi.utilities.get_non_default_args(
|
|
1518
|
+
self._linear_operator_adjoint
|
|
1519
|
+
),
|
|
1520
|
+
)
|
|
1521
|
+
|
|
1522
|
+
# length of kwargs should be 1
|
|
1523
|
+
if len(kwargs) > 1:
|
|
1524
|
+
raise ValueError(
|
|
1525
|
+
"The adjoint operator input is specified by more than one argument. This is not supported."
|
|
1526
|
+
)
|
|
702
1527
|
if self._linear_operator_adjoint is None:
|
|
703
1528
|
raise ValueError("No adjoint operator was provided for this model.")
|
|
704
|
-
return self._apply_func(
|
|
705
|
-
|
|
706
|
-
|
|
707
|
-
|
|
1529
|
+
return self._apply_func(
|
|
1530
|
+
self._linear_operator_adjoint, **kwargs, is_par=is_par, fwd=False
|
|
1531
|
+
)
|
|
1532
|
+
|
|
1533
|
+
def __matmul__(self, *args, **kwargs):
|
|
1534
|
+
return self.forward(*args, **kwargs)
|
|
708
1535
|
|
|
709
|
-
def __matmul__(self, x):
|
|
710
|
-
return self.forward(x)
|
|
711
|
-
|
|
712
1536
|
def get_matrix(self):
|
|
713
1537
|
"""
|
|
714
1538
|
Returns an ndarray with the matrix representing the forward operator.
|
|
715
1539
|
"""
|
|
716
|
-
|
|
717
1540
|
if self._matrix is not None: #Matrix exists so return it
|
|
718
1541
|
return self._matrix
|
|
719
1542
|
else:
|
|
720
|
-
#TODO: Can we compute this faster while still in sparse format?
|
|
1543
|
+
# TODO: Can we compute this faster while still in sparse format?
|
|
721
1544
|
mat = csc_matrix((self.range_dim,0)) #Sparse (m x 1 matrix)
|
|
722
1545
|
e = np.zeros(self.domain_dim)
|
|
723
|
-
|
|
1546
|
+
|
|
724
1547
|
# Stacks sparse matrices on csc matrix
|
|
725
1548
|
for i in range(self.domain_dim):
|
|
726
1549
|
e[i] = 1
|
|
@@ -728,7 +1551,7 @@ class LinearModel(AffineModel):
|
|
|
728
1551
|
mat = hstack((mat,col_vec[:,None])) #mat[:,i] = self.forward(e)
|
|
729
1552
|
e[i] = 0
|
|
730
1553
|
|
|
731
|
-
#Store matrix for future use
|
|
1554
|
+
# Store matrix for future use
|
|
732
1555
|
self._matrix = mat
|
|
733
1556
|
|
|
734
1557
|
return self._matrix
|
|
@@ -736,61 +1559,129 @@ class LinearModel(AffineModel):
|
|
|
736
1559
|
@property
|
|
737
1560
|
def T(self):
|
|
738
1561
|
"""Transpose of linear model. Returns a new linear model acting as the transpose."""
|
|
739
|
-
transpose = LinearModel(
|
|
1562
|
+
transpose = LinearModel(
|
|
1563
|
+
self._linear_operator_adjoint,
|
|
1564
|
+
self._linear_operator,
|
|
1565
|
+
self.domain_geometry,
|
|
1566
|
+
self.range_geometry,
|
|
1567
|
+
)
|
|
740
1568
|
if self._matrix is not None:
|
|
741
1569
|
transpose._matrix = self._matrix.T
|
|
742
1570
|
return transpose
|
|
743
|
-
|
|
1571
|
+
|
|
744
1572
|
|
|
745
1573
|
class PDEModel(Model):
|
|
746
1574
|
"""
|
|
747
1575
|
Model based on an underlying cuqi.pde.PDE.
|
|
748
|
-
In the forward
|
|
1576
|
+
In the forward method the PDE is assembled, solved and observed.
|
|
749
1577
|
|
|
750
1578
|
Parameters
|
|
751
1579
|
-----------
|
|
752
|
-
|
|
753
|
-
|
|
1580
|
+
PDE : cuqi.pde.PDE
|
|
1581
|
+
The PDE that specifies the forward operator.
|
|
754
1582
|
|
|
755
|
-
range_geometry : integer or cuqi.geometry.Geometry
|
|
1583
|
+
range_geometry : integer or cuqi.geometry.Geometry, optional
|
|
756
1584
|
If integer is given, a cuqi.geometry._DefaultGeometry is created with dimension of the integer.
|
|
757
1585
|
|
|
758
|
-
domain_geometry : integer or cuqi.geometry.Geometry
|
|
1586
|
+
domain_geometry : integer or cuqi.geometry.Geometry, optional
|
|
759
1587
|
If integer is given, a cuqi.geometry._DefaultGeometry is created with dimension of the integer.
|
|
760
1588
|
|
|
761
1589
|
|
|
762
1590
|
:ivar range_geometry: The geometry representing the range.
|
|
763
1591
|
:ivar domain_geometry: The geometry representing the domain.
|
|
764
1592
|
"""
|
|
765
|
-
def __init__(self, PDE: cuqi.pde.PDE, range_geometry, domain_geometry):
|
|
1593
|
+
def __init__(self, PDE: cuqi.pde.PDE, range_geometry, domain_geometry, **kwargs):
|
|
766
1594
|
|
|
767
1595
|
if not isinstance(PDE, cuqi.pde.PDE):
|
|
768
1596
|
raise ValueError("PDE needs to be a cuqi PDE.")
|
|
1597
|
+
# PDE needs to be set before calling super().__init__
|
|
1598
|
+
# for the property _non_default_args to work
|
|
1599
|
+
self.pde = PDE
|
|
1600
|
+
self._stored_non_default_args = None
|
|
1601
|
+
|
|
1602
|
+
# If gradient or jacobian is not provided, we create it from the PDE
|
|
1603
|
+
if not np.any([k in kwargs.keys() for k in ["gradient", "jacobian"]]):
|
|
1604
|
+
# Create gradient or jacobian function to pass to the Model based on
|
|
1605
|
+
# the PDE object. The dictionary derivative_kwarg contains the
|
|
1606
|
+
# created function along with the function type (either "gradient"
|
|
1607
|
+
# or "jacobian")
|
|
1608
|
+
derivative_kwarg = self._create_derivative_function()
|
|
1609
|
+
# append derivative_kwarg to kwargs
|
|
1610
|
+
kwargs.update(derivative_kwarg)
|
|
1611
|
+
|
|
1612
|
+
super().__init__(forward=self._forward_func_pde,
|
|
1613
|
+
range_geometry=range_geometry,
|
|
1614
|
+
domain_geometry=domain_geometry,
|
|
1615
|
+
**kwargs)
|
|
1616
|
+
|
|
1617
|
+
@property
|
|
1618
|
+
def _non_default_args(self):
|
|
1619
|
+
if self._stored_non_default_args is None:
|
|
1620
|
+
# extract the non-default arguments of the PDE
|
|
1621
|
+
self._stored_non_default_args = self.pde._non_default_args
|
|
769
1622
|
|
|
770
|
-
|
|
1623
|
+
return self._stored_non_default_args
|
|
771
1624
|
|
|
772
|
-
|
|
1625
|
+
def _forward_func_pde(self, **kwargs):
|
|
773
1626
|
|
|
774
|
-
|
|
775
|
-
|
|
776
|
-
self.pde.assemble(parameter=x)
|
|
1627
|
+
self.pde.assemble(**kwargs)
|
|
777
1628
|
|
|
778
1629
|
sol, info = self.pde.solve()
|
|
779
1630
|
|
|
780
1631
|
obs = self.pde.observe(sol)
|
|
781
1632
|
|
|
782
1633
|
return obs
|
|
783
|
-
|
|
784
|
-
def
|
|
785
|
-
"""
|
|
1634
|
+
|
|
1635
|
+
def _create_derivative_function(self):
|
|
1636
|
+
"""Private function that creates the derivative function (gradient or
|
|
1637
|
+
jacobian) based on the PDE object. The derivative function is created as
|
|
1638
|
+
a lambda function that takes the direction and the parameters as input
|
|
1639
|
+
and returns the gradient or jacobian of the PDE. This private function
|
|
1640
|
+
returns a dictionary with the created function and the function type
|
|
1641
|
+
(either "gradient" or "jacobian")."""
|
|
1642
|
+
|
|
786
1643
|
if hasattr(self.pde, "gradient_wrt_parameter"):
|
|
787
|
-
|
|
1644
|
+
# Build the string that will be used to create the lambda function
|
|
1645
|
+
function_str = (
|
|
1646
|
+
"lambda direction, "
|
|
1647
|
+
+ ", ".join(self._non_default_args)
|
|
1648
|
+
+ ", pde_func: pde_func(direction, "
|
|
1649
|
+
+ ", ".join(self._non_default_args)
|
|
1650
|
+
+ ")"
|
|
1651
|
+
)
|
|
1652
|
+
|
|
1653
|
+
# create the lambda function from the string
|
|
1654
|
+
function = eval(function_str)
|
|
1655
|
+
|
|
1656
|
+
# create partial function from the lambda function with gradient_wrt_parameter
|
|
1657
|
+
# as the first argument
|
|
1658
|
+
grad_func = partial(function, pde_func=self.pde.gradient_wrt_parameter)
|
|
1659
|
+
|
|
1660
|
+
# Return the gradient function
|
|
1661
|
+
return {"gradient": grad_func}
|
|
1662
|
+
|
|
788
1663
|
elif hasattr(self.pde, "jacobian_wrt_parameter"):
|
|
789
|
-
|
|
1664
|
+
# Build the string that will be used to create the lambda function
|
|
1665
|
+
function_str = (
|
|
1666
|
+
"lambda "
|
|
1667
|
+
+ ", ".join(self._non_default_args)
|
|
1668
|
+
+ ", pde_func: pde_func( "
|
|
1669
|
+
+ ", ".join(self._non_default_args)
|
|
1670
|
+
+ ")"
|
|
1671
|
+
)
|
|
1672
|
+
|
|
1673
|
+
# create the lambda function from the string
|
|
1674
|
+
function = eval(function_str)
|
|
1675
|
+
|
|
1676
|
+
# create partial function from the lambda function with jacobian_wrt_parameter
|
|
1677
|
+
# as the first argument
|
|
1678
|
+
jacobian_func = partial(function, pde_func=self.pde.jacobian_wrt_parameter)
|
|
1679
|
+
|
|
1680
|
+
# Return the jacobian function
|
|
1681
|
+
return {"jacobian": jacobian_func}
|
|
790
1682
|
else:
|
|
791
|
-
|
|
1683
|
+
return {} # empty dictionary if no gradient or jacobian is found
|
|
792
1684
|
|
|
793
1685
|
# Add the underlying PDE class name to the repr.
|
|
794
1686
|
def __repr__(self) -> str:
|
|
795
1687
|
return super().__repr__()+"\n PDE: {}.".format(self.pde.__class__.__name__)
|
|
796
|
-
|