CUQIpy 1.3.0.post0.dev401__py3-none-any.whl → 1.4.0.post0.dev41__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of CUQIpy might be problematic. Click here for more details.
- cuqi/__init__.py +1 -0
- cuqi/_version.py +3 -3
- cuqi/density/_density.py +9 -1
- cuqi/distribution/_joint_distribution.py +96 -11
- cuqi/experimental/__init__.py +1 -2
- cuqi/experimental/_recommender.py +4 -4
- cuqi/legacy/__init__.py +2 -0
- cuqi/legacy/sampler/__init__.py +11 -0
- cuqi/legacy/sampler/_conjugate.py +55 -0
- cuqi/legacy/sampler/_conjugate_approx.py +52 -0
- cuqi/legacy/sampler/_cwmh.py +196 -0
- cuqi/legacy/sampler/_gibbs.py +231 -0
- cuqi/legacy/sampler/_hmc.py +335 -0
- cuqi/legacy/sampler/_langevin_algorithm.py +198 -0
- cuqi/legacy/sampler/_laplace_approximation.py +184 -0
- cuqi/legacy/sampler/_mh.py +190 -0
- cuqi/legacy/sampler/_pcn.py +244 -0
- cuqi/legacy/sampler/_rto.py +284 -0
- cuqi/legacy/sampler/_sampler.py +182 -0
- cuqi/problem/_problem.py +87 -80
- cuqi/sampler/__init__.py +120 -8
- cuqi/sampler/_conjugate.py +376 -35
- cuqi/sampler/_conjugate_approx.py +40 -16
- cuqi/sampler/_cwmh.py +132 -138
- cuqi/{experimental/mcmc → sampler}/_direct.py +1 -1
- cuqi/sampler/_gibbs.py +269 -130
- cuqi/sampler/_hmc.py +328 -201
- cuqi/sampler/_langevin_algorithm.py +282 -98
- cuqi/sampler/_laplace_approximation.py +87 -117
- cuqi/sampler/_mh.py +47 -157
- cuqi/sampler/_pcn.py +56 -211
- cuqi/sampler/_rto.py +206 -140
- cuqi/sampler/_sampler.py +540 -135
- {cuqipy-1.3.0.post0.dev401.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/METADATA +1 -1
- {cuqipy-1.3.0.post0.dev401.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/RECORD +38 -37
- cuqi/experimental/mcmc/__init__.py +0 -122
- cuqi/experimental/mcmc/_conjugate.py +0 -396
- cuqi/experimental/mcmc/_conjugate_approx.py +0 -76
- cuqi/experimental/mcmc/_cwmh.py +0 -190
- cuqi/experimental/mcmc/_gibbs.py +0 -366
- cuqi/experimental/mcmc/_hmc.py +0 -462
- cuqi/experimental/mcmc/_langevin_algorithm.py +0 -382
- cuqi/experimental/mcmc/_laplace_approximation.py +0 -154
- cuqi/experimental/mcmc/_mh.py +0 -80
- cuqi/experimental/mcmc/_pcn.py +0 -89
- cuqi/experimental/mcmc/_rto.py +0 -350
- cuqi/experimental/mcmc/_sampler.py +0 -582
- {cuqipy-1.3.0.post0.dev401.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/WHEEL +0 -0
- {cuqipy-1.3.0.post0.dev401.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/licenses/LICENSE +0 -0
- {cuqipy-1.3.0.post0.dev401.dist-info → cuqipy-1.4.0.post0.dev41.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,244 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import cuqi
|
|
3
|
+
from cuqi.legacy.sampler import Sampler
|
|
4
|
+
|
|
5
|
+
class pCN(Sampler):
|
|
6
|
+
#Samples target*proposal
|
|
7
|
+
#TODO. Check proposal, needs to be Gaussian and zero mean.
|
|
8
|
+
"""Preconditioned Crank-Nicolson sampler
|
|
9
|
+
|
|
10
|
+
Parameters
|
|
11
|
+
----------
|
|
12
|
+
target : `cuqi.distribution.Posterior` or tuple of likelihood and prior objects
|
|
13
|
+
If target is of type cuqi.distribution.Posterior, it represents the posterior distribution.
|
|
14
|
+
If target is a tuple of (cuqi.likelihood.Likelihood, cuqi.distribution.Distribution) objects,
|
|
15
|
+
the first element is considered the likelihood and the second is considered the prior.
|
|
16
|
+
|
|
17
|
+
scale : int
|
|
18
|
+
|
|
19
|
+
x0 : `np.ndarray`
|
|
20
|
+
Initial point for the sampler
|
|
21
|
+
|
|
22
|
+
callback : callable, *Optional*
|
|
23
|
+
If set this function will be called after every sample.
|
|
24
|
+
The signature of the callback function is `callback(sample, sample_index)`,
|
|
25
|
+
where `sample` is the current sample and `sample_index` is the index of the sample.
|
|
26
|
+
An example is shown in demos/demo31_callback.py.
|
|
27
|
+
|
|
28
|
+
Example
|
|
29
|
+
-------
|
|
30
|
+
|
|
31
|
+
This uses a custom logpdf and sample function.
|
|
32
|
+
|
|
33
|
+
.. code-block:: python
|
|
34
|
+
|
|
35
|
+
# Parameters
|
|
36
|
+
dim = 5 # Dimension of distribution
|
|
37
|
+
mu = np.arange(dim) # Mean of Gaussian
|
|
38
|
+
std = 1 # standard deviation of Gaussian
|
|
39
|
+
|
|
40
|
+
# Logpdf function of likelihood
|
|
41
|
+
logpdf_func = lambda x: -1/(std**2)*np.sum((x-mu)**2)
|
|
42
|
+
|
|
43
|
+
# sample function of prior N(0,I)
|
|
44
|
+
sample_func = lambda : 0 + 1*np.random.randn(dim,1)
|
|
45
|
+
|
|
46
|
+
# Define as UserDefinedDistributions
|
|
47
|
+
likelihood = cuqi.likelihood.UserDefinedLikelihood(dim=dim, logpdf_func=logpdf_func)
|
|
48
|
+
prior = cuqi.distribution.UserDefinedDistribution(dim=dim, sample_func=sample_func)
|
|
49
|
+
|
|
50
|
+
# Set up sampler
|
|
51
|
+
sampler = cuqi.legacy.sampler.pCN((likelihood,prior), scale = 0.1)
|
|
52
|
+
|
|
53
|
+
# Sample
|
|
54
|
+
samples = sampler.sample(5000)
|
|
55
|
+
|
|
56
|
+
Example
|
|
57
|
+
-------
|
|
58
|
+
|
|
59
|
+
This uses CUQIpy distributions.
|
|
60
|
+
|
|
61
|
+
.. code-block:: python
|
|
62
|
+
|
|
63
|
+
# Parameters
|
|
64
|
+
dim = 5 # Dimension of distribution
|
|
65
|
+
mu = np.arange(dim) # Mean of Gaussian
|
|
66
|
+
std = 1 # standard deviation of Gaussian
|
|
67
|
+
|
|
68
|
+
# Define as UserDefinedDistributions
|
|
69
|
+
model = cuqi.model.Model(lambda x: x, range_geometry=dim, domain_geometry=dim)
|
|
70
|
+
likelihood = cuqi.distribution.Gaussian(mean=model, cov=np.ones(dim)).to_likelihood(mu)
|
|
71
|
+
prior = cuqi.distribution.Gaussian(mean=np.zeros(dim), cov=1)
|
|
72
|
+
|
|
73
|
+
target = cuqi.distribution.Posterior(likelihood, prior)
|
|
74
|
+
|
|
75
|
+
# Set up sampler
|
|
76
|
+
sampler = cuqi.legacy.sampler.pCN(target, scale = 0.1)
|
|
77
|
+
|
|
78
|
+
# Sample
|
|
79
|
+
samples = sampler.sample(5000)
|
|
80
|
+
|
|
81
|
+
"""
|
|
82
|
+
def __init__(self, target, scale=None, x0=None, **kwargs):
|
|
83
|
+
super().__init__(target, x0=x0, dim=None, **kwargs)
|
|
84
|
+
self.scale = scale
|
|
85
|
+
|
|
86
|
+
@property
|
|
87
|
+
def prior(self):
|
|
88
|
+
if isinstance(self.target, cuqi.distribution.Posterior):
|
|
89
|
+
return self.target.prior
|
|
90
|
+
elif isinstance(self.target,tuple) and len(self.target)==2:
|
|
91
|
+
return self.target[1]
|
|
92
|
+
|
|
93
|
+
@property
|
|
94
|
+
def likelihood(self):
|
|
95
|
+
if isinstance(self.target, cuqi.distribution.Posterior):
|
|
96
|
+
return self.target.likelihood
|
|
97
|
+
elif isinstance(self.target,tuple) and len(self.target)==2:
|
|
98
|
+
return self.target[0]
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
@Sampler.target.setter
|
|
102
|
+
def target(self, value):
|
|
103
|
+
if isinstance(value, cuqi.distribution.Posterior):
|
|
104
|
+
self._target = value
|
|
105
|
+
self._loglikelihood = lambda x : self.likelihood.logd(x)
|
|
106
|
+
elif isinstance(value,tuple) and len(value)==2 and \
|
|
107
|
+
(isinstance(value[0], cuqi.likelihood.Likelihood) or isinstance(value[0], cuqi.likelihood.UserDefinedLikelihood)) and \
|
|
108
|
+
isinstance(value[1], cuqi.distribution.Distribution):
|
|
109
|
+
self._target = value
|
|
110
|
+
self._loglikelihood = lambda x : self.likelihood.logd(x)
|
|
111
|
+
else:
|
|
112
|
+
raise ValueError(f"To initialize an object of type {self.__class__}, 'target' need to be of type 'cuqi.distribution.Posterior'.")
|
|
113
|
+
|
|
114
|
+
#TODO:
|
|
115
|
+
#if not isinstance(self.prior,(cuqi.distribution.Gaussian, cuqi.distribution.Normal)):
|
|
116
|
+
# raise ValueError("The prior distribution of the target need to be Gaussian")
|
|
117
|
+
|
|
118
|
+
@property
|
|
119
|
+
def dim(self):
|
|
120
|
+
if hasattr(self,'target') and hasattr(self.target,'dim'):
|
|
121
|
+
self._dim = self.target.dim
|
|
122
|
+
elif hasattr(self,'target') and isinstance(self.target,tuple) and len(self.target)==2:
|
|
123
|
+
self._dim = self.target[0].dim
|
|
124
|
+
return self._dim
|
|
125
|
+
|
|
126
|
+
def _sample(self, N, Nb):
|
|
127
|
+
if self.scale is None:
|
|
128
|
+
raise ValueError("Scale must be set to sample without adaptation. Consider using sample_adapt instead.")
|
|
129
|
+
|
|
130
|
+
Ns = N+Nb # number of simulations
|
|
131
|
+
|
|
132
|
+
# allocation
|
|
133
|
+
samples = np.empty((self.dim, Ns))
|
|
134
|
+
loglike_eval = np.empty(Ns)
|
|
135
|
+
acc = np.zeros(Ns, dtype=int)
|
|
136
|
+
|
|
137
|
+
# initial state
|
|
138
|
+
samples[:, 0] = self.x0
|
|
139
|
+
loglike_eval[0] = self._loglikelihood(self.x0)
|
|
140
|
+
acc[0] = 1
|
|
141
|
+
|
|
142
|
+
# run MCMC
|
|
143
|
+
for s in range(Ns-1):
|
|
144
|
+
# run component by component
|
|
145
|
+
samples[:, s+1], loglike_eval[s+1], acc[s+1] = self.single_update(samples[:, s], loglike_eval[s])
|
|
146
|
+
|
|
147
|
+
self._print_progress(s+2,Ns) #s+2 is the sample number, s+1 is index assuming x0 is the first sample
|
|
148
|
+
self._call_callback(samples[:, s+1], s+1)
|
|
149
|
+
|
|
150
|
+
# remove burn-in
|
|
151
|
+
samples = samples[:, Nb:]
|
|
152
|
+
loglike_eval = loglike_eval[Nb:]
|
|
153
|
+
accave = acc[Nb:].mean()
|
|
154
|
+
print('\nAverage acceptance rate:', accave, '\n')
|
|
155
|
+
#
|
|
156
|
+
return samples, loglike_eval, accave
|
|
157
|
+
|
|
158
|
+
def _sample_adapt(self, N, Nb):
|
|
159
|
+
# Set intial scale if not set
|
|
160
|
+
if self.scale is None:
|
|
161
|
+
self.scale = 0.1
|
|
162
|
+
|
|
163
|
+
Ns = N+Nb # number of simulations
|
|
164
|
+
|
|
165
|
+
# allocation
|
|
166
|
+
samples = np.empty((self.dim, Ns))
|
|
167
|
+
loglike_eval = np.empty(Ns)
|
|
168
|
+
acc = np.zeros(Ns)
|
|
169
|
+
|
|
170
|
+
# initial state
|
|
171
|
+
samples[:, 0] = self.x0
|
|
172
|
+
loglike_eval[0] = self._loglikelihood(self.x0)
|
|
173
|
+
acc[0] = 1
|
|
174
|
+
|
|
175
|
+
# initial adaptation params
|
|
176
|
+
Na = int(0.1*N) # iterations to adapt
|
|
177
|
+
hat_acc = np.empty(int(np.floor(Ns/Na))) # average acceptance rate of the chains
|
|
178
|
+
lambd = self.scale
|
|
179
|
+
star_acc = 0.44 # target acceptance rate RW
|
|
180
|
+
i, idx = 0, 0
|
|
181
|
+
|
|
182
|
+
# run MCMC
|
|
183
|
+
for s in range(Ns-1):
|
|
184
|
+
# run component by component
|
|
185
|
+
samples[:, s+1], loglike_eval[s+1], acc[s+1] = self.single_update(samples[:, s], loglike_eval[s])
|
|
186
|
+
|
|
187
|
+
# adapt prop spread using acc of past samples
|
|
188
|
+
if ((s+1) % Na == 0):
|
|
189
|
+
# evaluate average acceptance rate
|
|
190
|
+
hat_acc[i] = np.mean(acc[idx:idx+Na])
|
|
191
|
+
|
|
192
|
+
# d. compute new scaling parameter
|
|
193
|
+
zeta = 1/np.sqrt(i+1) # ensures that the variation of lambda(i) vanishes
|
|
194
|
+
lambd = np.exp(np.log(lambd) + zeta*(hat_acc[i]-star_acc))
|
|
195
|
+
|
|
196
|
+
# update parameters
|
|
197
|
+
self.scale = min(lambd, 1)
|
|
198
|
+
|
|
199
|
+
# update counters
|
|
200
|
+
i += 1
|
|
201
|
+
idx += Na
|
|
202
|
+
|
|
203
|
+
# display iterations
|
|
204
|
+
if ((s+1) % (max(Ns//100,1))) == 0 or (s+1) == Ns-1:
|
|
205
|
+
print("\r",'Sample', s+1, '/', Ns, end="")
|
|
206
|
+
|
|
207
|
+
self._call_callback(samples[:, s+1], s+1)
|
|
208
|
+
|
|
209
|
+
print("\r",'Sample', s+2, '/', Ns)
|
|
210
|
+
|
|
211
|
+
# remove burn-in
|
|
212
|
+
samples = samples[:, Nb:]
|
|
213
|
+
loglike_eval = loglike_eval[Nb:]
|
|
214
|
+
accave = acc[Nb:].mean()
|
|
215
|
+
print('\nAverage acceptance rate:', accave, 'MCMC scale:', self.scale, '\n')
|
|
216
|
+
|
|
217
|
+
return samples, loglike_eval, accave
|
|
218
|
+
|
|
219
|
+
def single_update(self, x_t, loglike_eval_t):
|
|
220
|
+
# propose state
|
|
221
|
+
xi = self.prior.sample(1).flatten() # sample from the prior
|
|
222
|
+
x_star = np.sqrt(1-self.scale**2)*x_t + self.scale*xi # pCN proposal
|
|
223
|
+
|
|
224
|
+
# evaluate target
|
|
225
|
+
loglike_eval_star = self._loglikelihood(x_star)
|
|
226
|
+
|
|
227
|
+
# ratio and acceptance probability
|
|
228
|
+
ratio = loglike_eval_star - loglike_eval_t # proposal is symmetric
|
|
229
|
+
alpha = min(0, ratio)
|
|
230
|
+
|
|
231
|
+
# accept/reject
|
|
232
|
+
u_theta = np.log(np.random.rand())
|
|
233
|
+
if (u_theta <= alpha):
|
|
234
|
+
x_next = x_star
|
|
235
|
+
loglike_eval_next = loglike_eval_star
|
|
236
|
+
acc = 1
|
|
237
|
+
else:
|
|
238
|
+
x_next = x_t
|
|
239
|
+
loglike_eval_next = loglike_eval_t
|
|
240
|
+
acc = 0
|
|
241
|
+
|
|
242
|
+
return x_next, loglike_eval_next, acc
|
|
243
|
+
|
|
244
|
+
|
|
@@ -0,0 +1,284 @@
|
|
|
1
|
+
import scipy as sp
|
|
2
|
+
from scipy.linalg.interpolative import estimate_spectral_norm
|
|
3
|
+
from scipy.sparse.linalg import LinearOperator as scipyLinearOperator
|
|
4
|
+
import numpy as np
|
|
5
|
+
import cuqi
|
|
6
|
+
from cuqi.solver import CGLS, FISTA
|
|
7
|
+
from cuqi.legacy.sampler import Sampler
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class LinearRTO(Sampler):
|
|
11
|
+
"""
|
|
12
|
+
Linear RTO (Randomize-Then-Optimize) sampler.
|
|
13
|
+
|
|
14
|
+
Samples posterior related to the inverse problem with Gaussian likelihood and prior, and where the forward model is linear or more generally affine.
|
|
15
|
+
|
|
16
|
+
Parameters
|
|
17
|
+
------------
|
|
18
|
+
target : `cuqi.distribution.Posterior`, `cuqi.distribution.MultipleLikelihoodPosterior` or 5-dimensional tuple.
|
|
19
|
+
If target is of type cuqi.distribution.Posterior or cuqi.distribution.MultipleLikelihoodPosterior, it represents the posterior distribution.
|
|
20
|
+
If target is a 5-dimensional tuple, it assumes the following structure:
|
|
21
|
+
(data, model, L_sqrtprec, P_mean, P_sqrtrec)
|
|
22
|
+
|
|
23
|
+
Here:
|
|
24
|
+
data: is a m-dimensional numpy array containing the measured data.
|
|
25
|
+
model: is a m by n dimensional matrix, AffineModel or LinearModel representing the forward model.
|
|
26
|
+
L_sqrtprec: is the squareroot of the precision matrix of the Gaussian likelihood.
|
|
27
|
+
P_mean: is the prior mean.
|
|
28
|
+
P_sqrtprec: is the squareroot of the precision matrix of the Gaussian mean.
|
|
29
|
+
|
|
30
|
+
x0 : `np.ndarray`
|
|
31
|
+
Initial point for the sampler. *Optional*.
|
|
32
|
+
|
|
33
|
+
maxit : int
|
|
34
|
+
Maximum number of iterations of the inner CGLS solver. *Optional*.
|
|
35
|
+
|
|
36
|
+
tol : float
|
|
37
|
+
Tolerance of the inner CGLS solver. *Optional*.
|
|
38
|
+
|
|
39
|
+
callback : callable, *Optional*
|
|
40
|
+
If set this function will be called after every sample.
|
|
41
|
+
The signature of the callback function is `callback(sample, sample_index)`,
|
|
42
|
+
where `sample` is the current sample and `sample_index` is the index of the sample.
|
|
43
|
+
An example is shown in demos/demo31_callback.py.
|
|
44
|
+
|
|
45
|
+
"""
|
|
46
|
+
def __init__(self, target, x0=None, maxit=10, tol=1e-6, shift=0, **kwargs):
|
|
47
|
+
|
|
48
|
+
# Accept tuple of inputs and construct posterior
|
|
49
|
+
if isinstance(target, tuple) and len(target) == 5:
|
|
50
|
+
# Structure (data, model, L_sqrtprec, P_mean, P_sqrtprec)
|
|
51
|
+
data = target[0]
|
|
52
|
+
model = target[1]
|
|
53
|
+
L_sqrtprec = target[2]
|
|
54
|
+
P_mean = target[3]
|
|
55
|
+
P_sqrtprec = target[4]
|
|
56
|
+
|
|
57
|
+
# If numpy matrix convert to CUQI model
|
|
58
|
+
if isinstance(model, np.ndarray) and len(model.shape) == 2:
|
|
59
|
+
model = cuqi.model.LinearModel(model)
|
|
60
|
+
|
|
61
|
+
# Check model input
|
|
62
|
+
if not isinstance(model, cuqi.model.AffineModel):
|
|
63
|
+
raise TypeError("Model needs to be cuqi.model.AffineModel or matrix")
|
|
64
|
+
|
|
65
|
+
# Likelihood
|
|
66
|
+
L = cuqi.distribution.Gaussian(model, sqrtprec=L_sqrtprec).to_likelihood(data)
|
|
67
|
+
|
|
68
|
+
# Prior TODO: allow multiple priors stacked
|
|
69
|
+
#if isinstance(P_mean, list) and isinstance(P_sqrtprec, list):
|
|
70
|
+
# P = cuqi.distribution.JointGaussianSqrtPrec(P_mean, P_sqrtprec)
|
|
71
|
+
#else:
|
|
72
|
+
P = cuqi.distribution.Gaussian(P_mean, sqrtprec=P_sqrtprec)
|
|
73
|
+
|
|
74
|
+
# Construct posterior
|
|
75
|
+
target = cuqi.distribution.Posterior(L, P)
|
|
76
|
+
|
|
77
|
+
super().__init__(target, x0=x0, **kwargs)
|
|
78
|
+
|
|
79
|
+
self._check_posterior()
|
|
80
|
+
|
|
81
|
+
# Modify initial guess
|
|
82
|
+
if x0 is not None:
|
|
83
|
+
self.x0 = x0
|
|
84
|
+
else:
|
|
85
|
+
self.x0 = np.zeros(self.prior.dim)
|
|
86
|
+
|
|
87
|
+
# Other parameters
|
|
88
|
+
self.maxit = maxit
|
|
89
|
+
self.tol = tol
|
|
90
|
+
self.shift = 0
|
|
91
|
+
|
|
92
|
+
L1 = [likelihood.distribution.sqrtprec for likelihood in self.likelihoods]
|
|
93
|
+
L2 = self.prior.sqrtprec
|
|
94
|
+
L2mu = self.prior.sqrtprecTimesMean
|
|
95
|
+
|
|
96
|
+
# pre-computations
|
|
97
|
+
self.n = len(self.x0)
|
|
98
|
+
self.b_tild = np.hstack([L@(likelihood.data - model._shift) for (L, likelihood, model) in zip(L1, self.likelihoods, self.models)]+ [L2mu])
|
|
99
|
+
|
|
100
|
+
callability = [callable(likelihood.model) for likelihood in self.likelihoods]
|
|
101
|
+
notcallability = [not c for c in callability]
|
|
102
|
+
if all(notcallability):
|
|
103
|
+
self.M = sp.sparse.vstack([L@likelihood.model for (L, likelihood) in zip(L1, self.likelihoods)] + [L2])
|
|
104
|
+
elif all(callability):
|
|
105
|
+
# in this case, model is a function doing forward and backward operations
|
|
106
|
+
def M(x, flag):
|
|
107
|
+
if flag == 1:
|
|
108
|
+
out1 = [L @ likelihood.model._forward_func_no_shift(x) for (L, likelihood) in zip(L1, self.likelihoods)] # Use forward function which excludes shift
|
|
109
|
+
out2 = L2 @ x
|
|
110
|
+
out = np.hstack(out1 + [out2])
|
|
111
|
+
elif flag == 2:
|
|
112
|
+
idx_start = 0
|
|
113
|
+
idx_end = 0
|
|
114
|
+
out1 = np.zeros(self.n)
|
|
115
|
+
for likelihood in self.likelihoods:
|
|
116
|
+
idx_end += len(likelihood.data)
|
|
117
|
+
out1 += likelihood.model._adjoint_func_no_shift(likelihood.distribution.sqrtprec.T@x[idx_start:idx_end]) # Use adjoint function which excludes shift
|
|
118
|
+
idx_start = idx_end
|
|
119
|
+
out2 = L2.T @ x[idx_end:]
|
|
120
|
+
out = out1 + out2
|
|
121
|
+
return out
|
|
122
|
+
self.M = M
|
|
123
|
+
else:
|
|
124
|
+
raise TypeError("All likelihoods need to be callable or none need to be callable.")
|
|
125
|
+
|
|
126
|
+
@property
|
|
127
|
+
def prior(self):
|
|
128
|
+
return self.target.prior
|
|
129
|
+
|
|
130
|
+
@property
|
|
131
|
+
def likelihood(self):
|
|
132
|
+
return self.target.likelihood
|
|
133
|
+
|
|
134
|
+
@property
|
|
135
|
+
def likelihoods(self):
|
|
136
|
+
if isinstance(self.target, cuqi.distribution.Posterior):
|
|
137
|
+
return [self.target.likelihood]
|
|
138
|
+
elif isinstance(self.target, cuqi.distribution.MultipleLikelihoodPosterior):
|
|
139
|
+
return self.target.likelihoods
|
|
140
|
+
|
|
141
|
+
@property
|
|
142
|
+
def model(self):
|
|
143
|
+
return self.target.model
|
|
144
|
+
|
|
145
|
+
@property
|
|
146
|
+
def models(self):
|
|
147
|
+
if isinstance(self.target, cuqi.distribution.Posterior):
|
|
148
|
+
return [self.target.model]
|
|
149
|
+
elif isinstance(self.target, cuqi.distribution.MultipleLikelihoodPosterior):
|
|
150
|
+
return self.target.models
|
|
151
|
+
|
|
152
|
+
def _sample(self, N, Nb):
|
|
153
|
+
Ns = N+Nb # number of simulations
|
|
154
|
+
samples = np.empty((self.n, Ns))
|
|
155
|
+
|
|
156
|
+
# initial state
|
|
157
|
+
samples[:, 0] = self.x0
|
|
158
|
+
for s in range(Ns-1):
|
|
159
|
+
y = self.b_tild + np.random.randn(len(self.b_tild))
|
|
160
|
+
sim = CGLS(self.M, y, samples[:, s], self.maxit, self.tol, self.shift)
|
|
161
|
+
samples[:, s+1], _ = sim.solve()
|
|
162
|
+
|
|
163
|
+
self._print_progress(s+2,Ns) #s+2 is the sample number, s+1 is index assuming x0 is the first sample
|
|
164
|
+
self._call_callback(samples[:, s+1], s+1)
|
|
165
|
+
|
|
166
|
+
# remove burn-in
|
|
167
|
+
samples = samples[:, Nb:]
|
|
168
|
+
|
|
169
|
+
return samples, None, None
|
|
170
|
+
|
|
171
|
+
def _sample_adapt(self, N, Nb):
|
|
172
|
+
return self._sample(N,Nb)
|
|
173
|
+
|
|
174
|
+
def _check_posterior(self):
|
|
175
|
+
# Check target type
|
|
176
|
+
if not isinstance(self.target, (cuqi.distribution.Posterior, cuqi.distribution.MultipleLikelihoodPosterior)):
|
|
177
|
+
raise ValueError(f"To initialize an object of type {self.__class__}, 'target' need to be of type 'cuqi.distribution.Posterior' or 'cuqi.distribution.MultipleLikelihoodPosterior'.")
|
|
178
|
+
|
|
179
|
+
# Check Linear model and Gaussian likelihood(s)
|
|
180
|
+
if isinstance(self.target, cuqi.distribution.Posterior):
|
|
181
|
+
if not isinstance(self.model, cuqi.model.AffineModel):
|
|
182
|
+
raise TypeError("Model needs to be linear or affine")
|
|
183
|
+
|
|
184
|
+
if not hasattr(self.likelihood.distribution, "sqrtprec"):
|
|
185
|
+
raise TypeError("Distribution in Likelihood must contain a sqrtprec attribute")
|
|
186
|
+
|
|
187
|
+
elif isinstance(self.target, cuqi.distribution.MultipleLikelihoodPosterior): # Elif used for further alternatives, e.g., stacked posterior
|
|
188
|
+
for likelihood in self.likelihoods:
|
|
189
|
+
if not isinstance(likelihood.model, cuqi.model.LinearModel):
|
|
190
|
+
raise TypeError("Model needs to be linear")
|
|
191
|
+
|
|
192
|
+
if not hasattr(likelihood.distribution, "sqrtprec"):
|
|
193
|
+
raise TypeError("Distribution in Likelihood must contain a sqrtprec attribute")
|
|
194
|
+
|
|
195
|
+
# Check Gaussian prior
|
|
196
|
+
if not hasattr(self.prior, "sqrtprec"):
|
|
197
|
+
raise TypeError("prior must contain a sqrtprec attribute")
|
|
198
|
+
|
|
199
|
+
if not hasattr(self.prior, "sqrtprecTimesMean"):
|
|
200
|
+
raise TypeError("Prior must contain a sqrtprecTimesMean attribute")
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
class RegularizedLinearRTO(LinearRTO):
|
|
204
|
+
"""
|
|
205
|
+
Regularized Linear RTO (Randomize-Then-Optimize) sampler.
|
|
206
|
+
|
|
207
|
+
Samples posterior related to the inverse problem with Gaussian likelihood and implicit Gaussian prior, and where the forward model is Linear.
|
|
208
|
+
|
|
209
|
+
Parameters
|
|
210
|
+
------------
|
|
211
|
+
target : `cuqi.distribution.Posterior`
|
|
212
|
+
See `cuqi.legacy.sampler.LinearRTO`
|
|
213
|
+
|
|
214
|
+
x0 : `np.ndarray`
|
|
215
|
+
Initial point for the sampler. *Optional*.
|
|
216
|
+
|
|
217
|
+
maxit : int
|
|
218
|
+
Maximum number of iterations of the inner FISTA solver. *Optional*.
|
|
219
|
+
|
|
220
|
+
stepsize : string or float
|
|
221
|
+
If stepsize is a string and equals either "automatic", then the stepsize is automatically estimated based on the spectral norm.
|
|
222
|
+
If stepsize is a float, then this stepsize is used.
|
|
223
|
+
|
|
224
|
+
abstol : float
|
|
225
|
+
Absolute tolerance of the inner FISTA solver. *Optional*.
|
|
226
|
+
|
|
227
|
+
callback : callable, *Optional*
|
|
228
|
+
If set this function will be called after every sample.
|
|
229
|
+
The signature of the callback function is `callback(sample, sample_index)`,
|
|
230
|
+
where `sample` is the current sample and `sample_index` is the index of the sample.
|
|
231
|
+
An example is shown in demos/demo31_callback.py.
|
|
232
|
+
|
|
233
|
+
"""
|
|
234
|
+
def __init__(self, target, x0=None, maxit=100, stepsize = "automatic", abstol=1e-10, adaptive = True, **kwargs):
|
|
235
|
+
|
|
236
|
+
if not callable(target.prior.proximal):
|
|
237
|
+
raise TypeError("Projector needs to be callable")
|
|
238
|
+
|
|
239
|
+
super().__init__(target, x0=x0, maxit=100, **kwargs)
|
|
240
|
+
|
|
241
|
+
# Other parameters
|
|
242
|
+
self.stepsize = stepsize
|
|
243
|
+
self.abstol = abstol
|
|
244
|
+
self.adaptive = adaptive
|
|
245
|
+
self.proximal = target.prior.proximal
|
|
246
|
+
|
|
247
|
+
@property
|
|
248
|
+
def prior(self):
|
|
249
|
+
return self.target.prior.gaussian
|
|
250
|
+
|
|
251
|
+
def _sample(self, N, Nb):
|
|
252
|
+
Ns = N+Nb # number of simulations
|
|
253
|
+
samples = np.empty((self.n, Ns))
|
|
254
|
+
|
|
255
|
+
if isinstance(self.stepsize, str):
|
|
256
|
+
if self.stepsize in ["automatic"]:
|
|
257
|
+
if not callable(self.M):
|
|
258
|
+
M_op = scipyLinearOperator(self.M.shape, matvec = lambda v: self.M@v, rmatvec = lambda w: self.M.T@w)
|
|
259
|
+
else:
|
|
260
|
+
M_op = scipyLinearOperator((len(self.b_tild), self.n), matvec = lambda v: self.M(v,1), rmatvec = lambda w: self.M(w,2))
|
|
261
|
+
|
|
262
|
+
_stepsize = 0.99/(estimate_spectral_norm(M_op)**2)
|
|
263
|
+
# print(f"Estimated stepsize for regularized Linear RTO: {_stepsize}")
|
|
264
|
+
else:
|
|
265
|
+
raise ValueError("Stepsize choice not supported")
|
|
266
|
+
else:
|
|
267
|
+
_stepsize = self.stepsize
|
|
268
|
+
|
|
269
|
+
# initial state
|
|
270
|
+
samples[:, 0] = self.x0
|
|
271
|
+
for s in range(Ns-1):
|
|
272
|
+
y = self.b_tild + np.random.randn(len(self.b_tild))
|
|
273
|
+
sim = FISTA(self.M, y, self.proximal,
|
|
274
|
+
samples[:, s], maxit = self.maxit, stepsize = _stepsize, abstol = self.abstol, adaptive = self.adaptive)
|
|
275
|
+
samples[:, s+1], _ = sim.solve()
|
|
276
|
+
|
|
277
|
+
self._print_progress(s+2,Ns) #s+2 is the sample number, s+1 is index assuming x0 is the first sample
|
|
278
|
+
self._call_callback(samples[:, s+1], s+1)
|
|
279
|
+
# remove burn-in
|
|
280
|
+
samples = samples[:, Nb:]
|
|
281
|
+
|
|
282
|
+
return samples, None, None
|
|
283
|
+
|
|
284
|
+
|