CUQIpy 1.3.0.post0.dev298__py3-none-any.whl → 1.4.0.post0.dev92__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. cuqi/__init__.py +2 -0
  2. cuqi/_version.py +3 -3
  3. cuqi/algebra/__init__.py +2 -0
  4. cuqi/{experimental/algebra/_randomvariable.py → algebra/_random_variable.py} +4 -4
  5. cuqi/density/_density.py +9 -1
  6. cuqi/distribution/_distribution.py +25 -16
  7. cuqi/distribution/_joint_distribution.py +99 -14
  8. cuqi/distribution/_posterior.py +9 -0
  9. cuqi/experimental/__init__.py +1 -4
  10. cuqi/experimental/_recommender.py +4 -4
  11. cuqi/geometry/__init__.py +2 -0
  12. cuqi/{experimental/geometry/_productgeometry.py → geometry/_product_geometry.py} +1 -1
  13. cuqi/implicitprior/__init__.py +1 -1
  14. cuqi/implicitprior/_restorator.py +35 -1
  15. cuqi/legacy/__init__.py +2 -0
  16. cuqi/legacy/sampler/__init__.py +11 -0
  17. cuqi/legacy/sampler/_conjugate.py +55 -0
  18. cuqi/legacy/sampler/_conjugate_approx.py +52 -0
  19. cuqi/legacy/sampler/_cwmh.py +196 -0
  20. cuqi/legacy/sampler/_gibbs.py +231 -0
  21. cuqi/legacy/sampler/_hmc.py +335 -0
  22. cuqi/legacy/sampler/_langevin_algorithm.py +198 -0
  23. cuqi/legacy/sampler/_laplace_approximation.py +184 -0
  24. cuqi/legacy/sampler/_mh.py +190 -0
  25. cuqi/legacy/sampler/_pcn.py +244 -0
  26. cuqi/legacy/sampler/_rto.py +284 -0
  27. cuqi/legacy/sampler/_sampler.py +182 -0
  28. cuqi/likelihood/_likelihood.py +1 -1
  29. cuqi/model/_model.py +225 -90
  30. cuqi/pde/__init__.py +4 -0
  31. cuqi/pde/_observation_map.py +36 -0
  32. cuqi/pde/_pde.py +52 -21
  33. cuqi/problem/_problem.py +87 -80
  34. cuqi/sampler/__init__.py +120 -8
  35. cuqi/sampler/_conjugate.py +376 -35
  36. cuqi/sampler/_conjugate_approx.py +40 -16
  37. cuqi/sampler/_cwmh.py +132 -138
  38. cuqi/{experimental/mcmc → sampler}/_direct.py +1 -1
  39. cuqi/sampler/_gibbs.py +276 -130
  40. cuqi/sampler/_hmc.py +328 -201
  41. cuqi/sampler/_langevin_algorithm.py +282 -98
  42. cuqi/sampler/_laplace_approximation.py +87 -117
  43. cuqi/sampler/_mh.py +47 -157
  44. cuqi/sampler/_pcn.py +65 -213
  45. cuqi/sampler/_rto.py +206 -140
  46. cuqi/sampler/_sampler.py +540 -135
  47. {cuqipy-1.3.0.post0.dev298.dist-info → cuqipy-1.4.0.post0.dev92.dist-info}/METADATA +1 -1
  48. cuqipy-1.4.0.post0.dev92.dist-info/RECORD +101 -0
  49. cuqi/experimental/algebra/__init__.py +0 -2
  50. cuqi/experimental/geometry/__init__.py +0 -1
  51. cuqi/experimental/mcmc/__init__.py +0 -122
  52. cuqi/experimental/mcmc/_conjugate.py +0 -396
  53. cuqi/experimental/mcmc/_conjugate_approx.py +0 -76
  54. cuqi/experimental/mcmc/_cwmh.py +0 -190
  55. cuqi/experimental/mcmc/_gibbs.py +0 -374
  56. cuqi/experimental/mcmc/_hmc.py +0 -460
  57. cuqi/experimental/mcmc/_langevin_algorithm.py +0 -382
  58. cuqi/experimental/mcmc/_laplace_approximation.py +0 -154
  59. cuqi/experimental/mcmc/_mh.py +0 -80
  60. cuqi/experimental/mcmc/_pcn.py +0 -89
  61. cuqi/experimental/mcmc/_rto.py +0 -306
  62. cuqi/experimental/mcmc/_sampler.py +0 -564
  63. cuqipy-1.3.0.post0.dev298.dist-info/RECORD +0 -100
  64. /cuqi/{experimental/algebra/_ast.py → algebra/_abstract_syntax_tree.py} +0 -0
  65. /cuqi/{experimental/algebra/_orderedset.py → algebra/_ordered_set.py} +0 -0
  66. {cuqipy-1.3.0.post0.dev298.dist-info → cuqipy-1.4.0.post0.dev92.dist-info}/WHEEL +0 -0
  67. {cuqipy-1.3.0.post0.dev298.dist-info → cuqipy-1.4.0.post0.dev92.dist-info}/licenses/LICENSE +0 -0
  68. {cuqipy-1.3.0.post0.dev298.dist-info → cuqipy-1.4.0.post0.dev92.dist-info}/top_level.txt +0 -0
cuqi/sampler/_gibbs.py CHANGED
@@ -1,14 +1,22 @@
1
- from cuqi.distribution import JointDistribution
1
+ from cuqi.distribution import JointDistribution, Posterior
2
2
  from cuqi.sampler import Sampler
3
- from cuqi.samples import Samples
4
- from typing import Dict, Union
3
+ from cuqi.samples import Samples, JointSamples
4
+ from typing import Dict
5
5
  import numpy as np
6
- import sys
7
-
8
-
9
- class Gibbs:
6
+ import warnings
7
+
8
+ try:
9
+ from tqdm import tqdm
10
+ except ImportError:
11
+ def tqdm(iterable, **kwargs):
12
+ warnings.warn("Module mcmc: tqdm not found. Install tqdm to get sampling progress.")
13
+ return iterable
14
+
15
+ # Not subclassed from Sampler as Gibbs handles multiple samplers and samples multiple parameters
16
+ # Similar approach as for JointDistribution
17
+ class HybridGibbs:
10
18
  """
11
- Gibbs sampler for sampling a joint distribution.
19
+ Hybrid Gibbs sampler for sampling a joint distribution.
12
20
 
13
21
  Gibbs sampling samples the variables of the distribution sequentially,
14
22
  one variable at a time. When a variable represents a random vector, the
@@ -17,7 +25,24 @@ class Gibbs:
17
25
  The sampling of each variable is done by sampling from the conditional
18
26
  distribution of that variable given the values of the other variables.
19
27
  This is often a very efficient way of sampling from a joint distribution
20
- if the conditional distributions are easy to sample from.
28
+ if the conditional distributions are easy to sample from.
29
+
30
+ Hybrid Gibbs sampler is a generalization of the Gibbs sampler where the
31
+ conditional distributions are sampled using different MCMC samplers.
32
+
33
+ When the conditionals are sampled exactly, the samples from the Gibbs
34
+ sampler converge to the joint distribution. See e.g.
35
+ Gelman et al. "Bayesian Data Analysis" (2014), Third Edition
36
+ for more details.
37
+
38
+ In each Gibbs step, the corresponding sampler state and history are stored,
39
+ then the sampler is reinitialized. After reinitialization, the sampler state
40
+ and history are set back to the stored values. This ensures preserving the
41
+ statefulness of the samplers.
42
+
43
+ The order in which the conditionals are sampled is the order of the
44
+ variables in the sampling strategy, unless a different sampling order
45
+ is specified by the parameter `scan_order`
21
46
 
22
47
  Parameters
23
48
  ----------
@@ -25,10 +50,25 @@ class Gibbs:
25
50
  Target distribution to sample from.
26
51
 
27
52
  sampling_strategy : dict
28
- Dictionary of sampling strategies for each parameter.
29
- Keys are parameter names.
53
+ Dictionary of sampling strategies for each variable.
54
+ Keys are variable names.
30
55
  Values are sampler objects.
31
56
 
57
+ num_sampling_steps : dict, *optional*
58
+ Dictionary of number of sampling steps for each variable.
59
+ The sampling steps are defined as the number of times the sampler
60
+ will call its step method in each Gibbs step.
61
+ Default is 1 for all variables.
62
+
63
+ scan_order : list or str, *optional*
64
+ Order in which the conditional distributions are sampled.
65
+ If set to "random", use a random ordering at each step.
66
+ If not specified, it will be the order in the sampling_strategy.
67
+
68
+ callback : callable, optional
69
+ A function that will be called after each sampling step. It can be useful for monitoring the sampler during sampling.
70
+ The function should take three arguments: the sampler object, the index of the current sampling step, the total number of requested samples. The last two arguments are integers. An example of the callback function signature is: `callback(sampler, sample_index, num_of_samples)`.
71
+
32
72
  Example
33
73
  -------
34
74
  .. code-block:: python
@@ -37,7 +77,7 @@ class Gibbs:
37
77
  import numpy as np
38
78
 
39
79
  # Model and data
40
- A, y_obs, probinfo = cuqi.testproblem.Deconvolution1D(phantom='square').get_components()
80
+ A, y_obs, probinfo = cuqi.testproblem.Deconvolution1D(phantom='sinc').get_components()
41
81
  n = A.domain_dim
42
82
 
43
83
  # Define distributions
@@ -52,15 +92,20 @@ class Gibbs:
52
92
 
53
93
  # Define sampling strategy
54
94
  sampling_strategy = {
55
- 'x': cuqi.sampler.LinearRTO,
56
- ('d', 'l'): cuqi.sampler.Conjugate,
95
+ 'x': cuqi.sampler.LinearRTO(maxit=15),
96
+ 'd': cuqi.sampler.Conjugate(),
97
+ 'l': cuqi.sampler.Conjugate(),
57
98
  }
58
99
 
59
100
  # Define Gibbs sampler
60
- sampler = cuqi.sampler.Gibbs(posterior, sampling_strategy)
101
+ sampler = cuqi.sampler.HybridGibbs(posterior, sampling_strategy)
61
102
 
62
103
  # Run sampler
63
- samples = sampler.sample(Ns=1000, Nb=200)
104
+ sampler.warmup(200)
105
+ sampler.sample(1000)
106
+
107
+ # Get samples removing burn-in
108
+ samples = sampler.get_samples().burnthin(200)
64
109
 
65
110
  # Plot results
66
111
  samples['x'].plot_ci(exact=probinfo.exactSolution)
@@ -69,159 +114,260 @@ class Gibbs:
69
114
 
70
115
  """
71
116
 
72
- def __init__(self, target: JointDistribution, sampling_strategy: Dict[Union[str,tuple], Sampler]):
117
+ def __init__(self, target: JointDistribution, sampling_strategy: Dict[str, Sampler], num_sampling_steps: Dict[str, int] = None, scan_order = None, callback=None):
73
118
 
74
119
  # Store target and allow conditioning to reduce to a single density
75
120
  self.target = target() # Create a copy of target distribution (to avoid modifying the original)
76
121
 
77
- # Parse samplers and split any keys that are tuple into separate keys
78
- self.samplers = {}
79
- for par_name in sampling_strategy.keys():
80
- if isinstance(par_name, tuple):
81
- for par_name_ in par_name:
82
- self.samplers[par_name_] = sampling_strategy[par_name]
83
- else:
84
- self.samplers[par_name] = sampling_strategy[par_name]
122
+ # Store sampler instances (again as a copy to avoid modifying the original)
123
+ self.samplers = sampling_strategy.copy()
124
+
125
+ # Store number of sampling steps for each parameter
126
+ self.num_sampling_steps = num_sampling_steps
85
127
 
86
128
  # Store parameter names
87
129
  self.par_names = self.target.get_parameter_names()
88
130
 
89
- # ------------ Public methods ------------
90
- def sample(self, Ns, Nb=0):
91
- """ Sample from target distribution """
131
+ # Store the scan order
132
+ self._scan_order = scan_order
133
+
134
+ # Check that the parameters of the target align with the sampling_strategy and scan_order
135
+ if set(self.par_names) != set(self.scan_order):
136
+ raise ValueError("Parameter names in JointDistribution do not equal the names in the scan order.")
137
+
138
+ # Initialize sampler (after target is set)
139
+ self._initialize()
140
+
141
+ # Set the callback function
142
+ self.callback = callback
143
+
144
+ def _initialize(self):
145
+ """ Initialize sampler """
92
146
 
93
147
  # Initial points
94
- current_samples = self._get_initial_points()
148
+ self.current_samples = self._get_initial_points()
95
149
 
96
- # Compute how many samples were already taken previously
97
- at_Nb = self._Nb
98
- at_Ns = self._Ns
150
+ # Initialize sampling steps
151
+ self._initialize_num_sampling_steps()
99
152
 
100
- # Allocate memory for samples
101
- self._allocate_samples_warmup(Nb)
102
- self._allocate_samples(Ns)
153
+ # Allocate samples
154
+ self._allocate_samples()
103
155
 
104
- # Sample tuning phase
105
- for i in range(at_Nb, at_Nb+Nb):
106
- current_samples = self.step_tune(current_samples)
107
- self._store_samples(self.samples_warmup, current_samples, i)
108
- self._print_progress(i+1+at_Nb, at_Nb+Nb, 'Warmup')
156
+ # Set targets
157
+ self._set_targets()
109
158
 
110
- # Sample phase
111
- for i in range(at_Ns, at_Ns+Ns):
112
- current_samples = self.step(current_samples)
113
- self._store_samples(self.samples, current_samples, i)
114
- self._print_progress(i+1, at_Ns+Ns, 'Sample')
159
+ # Initialize the samplers
160
+ self._initialize_samplers()
115
161
 
116
- # Convert to samples objects and return
117
- return self._convert_to_Samples(self.samples)
162
+ # Validate all targets for samplers.
163
+ self.validate_targets()
118
164
 
119
- def step(self, current_samples):
120
- """ Sequentially go through all parameters and sample them conditionally on each other """
165
+ @property
166
+ def scan_order(self):
167
+ if self._scan_order is None:
168
+ return list(self.samplers.keys())
169
+ if self._scan_order == "random":
170
+ arr = list(self.samplers.keys())
171
+ np.random.shuffle(arr) # Shuffle works in-place
172
+ return arr
173
+ return self._scan_order
121
174
 
122
- # Extract par names
123
- par_names = self.par_names
175
+ # ------------ Public methods ------------
176
+ def validate_targets(self):
177
+ """ Validate each of the conditional targets used in the Gibbs steps """
178
+ if not isinstance(self.target, (JointDistribution, Posterior)):
179
+ raise ValueError('Target distribution must be a JointDistribution or Posterior.')
180
+ for sampler in self.samplers.values():
181
+ sampler.validate_target()
182
+
183
+ def sample(self, Ns, Nt=1) -> 'HybridGibbs':
184
+ """ Sample from the joint distribution using Gibbs sampling
185
+
186
+ Parameters
187
+ ----------
188
+ Ns : int
189
+ The number of samples to draw.
190
+ Nt : int, optional, default=1
191
+ The thinning interval. If Nt >= 1, every Nt'th sample is stored. The larger Nt, the fewer samples are stored.
192
+
193
+ """
194
+ for idx in tqdm(range(Ns), "Sample: "):
124
195
 
125
- # Sample from each conditional distribution
126
- for par_name in par_names:
196
+ self.step()
127
197
 
128
- # Dict of all other parameters to condition on
129
- other_params = {par_name_: current_samples[par_name_] for par_name_ in par_names if par_name_ != par_name}
198
+ if (Nt > 0) and (idx % Nt == 0):
199
+ self._store_samples()
130
200
 
131
- # Set up sampler for current conditional distribution
132
- sampler = self.samplers[par_name](self.target(**other_params))
201
+ # Call callback function if specified
202
+ self._call_callback(idx, Ns)
133
203
 
134
- # Take a MCMC step
135
- current_samples[par_name] = sampler.step(current_samples[par_name])
204
+ return self
136
205
 
137
- # Ensure even 1-dimensional samples are 1D arrays
138
- current_samples[par_name] = current_samples[par_name].reshape(-1)
206
+ def warmup(self, Nb, Nt=1, tune_freq=0.1) -> 'HybridGibbs':
207
+ """ Warmup (tune) the samplers in the Gibbs sampling scheme
208
+
209
+ Parameters
210
+ ----------
211
+ Nb : int
212
+ The number of samples to draw during warmup.
139
213
 
140
- return current_samples
214
+ Nt : int, optional, default=1
215
+ The thinning interval. If Nt >= 1, every Nt'th sample is stored. The larger Nt, the fewer samples are stored.
216
+
217
+ tune_freq : float, optional
218
+ Frequency of tuning the samplers. Tuning is performed every tune_freq*Nb steps.
219
+
220
+ """
221
+
222
+ tune_interval = max(int(tune_freq * Nb), 1)
223
+
224
+ for idx in tqdm(range(Nb), "Warmup: "):
225
+
226
+ self.step()
227
+
228
+ # Tune the sampler at tuning intervals (matching behavior of Sampler class)
229
+ if (idx + 1) % tune_interval == 0:
230
+ self.tune(tune_interval, idx // tune_interval)
231
+
232
+ if (Nt > 0) and (idx % Nt == 0):
233
+ self._store_samples()
234
+
235
+ # Call callback function if specified
236
+ self._call_callback(idx, Nb)
237
+
238
+ return self
239
+
240
+ def get_samples(self) -> Dict[str, Samples]:
241
+ samples_object = JointSamples()
242
+ for par_name in self.par_names:
243
+ samples_array = np.array(self.samples[par_name]).T
244
+ samples_object[par_name] = Samples(samples_array, self.target.get_density(par_name).geometry)
245
+ return samples_object
246
+
247
+ def step(self):
248
+ """ Sequentially go through all parameters and sample them conditionally on each other """
249
+
250
+ # Sample from each conditional distribution
251
+ for par_name in self.scan_order:
141
252
 
142
- def step_tune(self, current_samples):
143
- """ Perform a single MCMC step for each parameter and tune the sampler """
144
- # Not implemented. No tuning happening here yet. Requires samplers to be able to be modified after initialization.
145
- return self.step(current_samples)
253
+ # Set target for current parameter
254
+ self._set_target(par_name)
255
+
256
+ # Get sampler
257
+ sampler = self.samplers[par_name]
258
+
259
+ # Instead of simply changing the target of the sampler, we reinitialize it.
260
+ # This is to ensure that all internal variables are set to match the new target.
261
+ # To return the sampler to the old state and history, we first extract the state and history
262
+ # before reinitializing the sampler and then set the state and history back to the sampler
263
+
264
+ # Extract state and history from sampler
265
+ sampler_state = sampler.get_state()
266
+ sampler_history = sampler.get_history()
267
+
268
+ # Reinitialize sampler
269
+ sampler.reinitialize()
270
+
271
+ # Set state and history back to sampler
272
+ sampler.set_state(sampler_state)
273
+ sampler.set_history(sampler_history)
274
+
275
+ # Allow for multiple sampling steps in each Gibbs step
276
+ for _ in range(self.num_sampling_steps[par_name]):
277
+ # Sampling step
278
+ acc = sampler.step()
279
+
280
+ # Store acceptance rate in sampler (matching behavior of Sampler class Sample method)
281
+ sampler._acc.append(acc)
282
+
283
+ # Extract samples (Ensure even 1-dimensional samples are 1D arrays)
284
+ if isinstance(sampler.current_point, np.ndarray):
285
+ self.current_samples[par_name] = sampler.current_point.reshape(-1)
286
+ else:
287
+ self.current_samples[par_name] = sampler.current_point
288
+
289
+ def tune(self, skip_len, update_count):
290
+ """ Run a single tuning step on each of the samplers in the Gibbs sampling scheme
291
+
292
+ Parameters
293
+ ----------
294
+ skip_len : int
295
+ Defines the number of steps in between tuning (i.e. the tuning interval).
296
+
297
+ update_count : int
298
+ The number of times tuning has been performed. Can be used for internal bookkeeping.
299
+
300
+ """
301
+ for par_name in self.par_names:
302
+ self.samplers[par_name].tune(skip_len=skip_len, update_count=update_count)
146
303
 
147
304
  # ------------ Private methods ------------
148
- def _allocate_samples(self, Ns):
149
- """ Allocate memory for samples """
150
- # Allocate memory for samples
151
- samples = {}
305
+ def _call_callback(self, sample_index, num_of_samples):
306
+ """ Calls the callback function. Assumes input is sampler, sample index, and total number of samples """
307
+ if self.callback is not None:
308
+ self.callback(self, sample_index, num_of_samples)
309
+
310
+ def _initialize_samplers(self):
311
+ """ Initialize samplers """
312
+ for sampler in self.samplers.values():
313
+ sampler.initialize()
314
+
315
+ def _initialize_num_sampling_steps(self):
316
+ """ Initialize the number of sampling steps for each sampler. Defaults to 1 if not set by user """
317
+
318
+ if self.num_sampling_steps is None:
319
+ self.num_sampling_steps = {par_name: 1 for par_name in self.par_names}
320
+
152
321
  for par_name in self.par_names:
153
- samples[par_name] = np.zeros((self.target.get_density(par_name).dim, Ns))
154
-
155
- # Store samples in self
156
- if hasattr(self, 'samples'):
157
- # Append to existing samples (This makes a copy)
158
- for par_name in self.par_names:
159
- samples[par_name] = np.hstack((self.samples[par_name], samples[par_name]))
160
- self.samples = samples
322
+ if par_name not in self.num_sampling_steps:
323
+ self.num_sampling_steps[par_name] = 1
161
324
 
162
- def _allocate_samples_warmup(self, Nb):
163
- """ Allocate memory for samples """
164
-
165
- # If we already have warmup samples and more are requested raise error
166
- if hasattr(self, 'samples_warmup') and Nb != 0:
167
- raise ValueError('Sampler already has run warmup phase. Cannot run warmup phase again.')
168
325
 
169
- # Allocate memory for samples
326
+ def _set_targets(self):
327
+ """ Set targets for all samplers using the current samples """
328
+ par_names = self.par_names
329
+ for par_name in par_names:
330
+ self._set_target(par_name)
331
+
332
+ def _set_target(self, par_name):
333
+ """ Set target conditional distribution for a single parameter using the current samples """
334
+ # Get all other conditional parameters other than the current parameter and update the target
335
+ # This defines - from a joint p(x,y,z) - the conditional distribution p(x|y,z) or p(y|x,z) or p(z|x,y)
336
+ conditional_params = {par_name_: self.current_samples[par_name_] for par_name_ in self.par_names if par_name_ != par_name}
337
+ self.samplers[par_name].target = self.target(**conditional_params)
338
+
339
+ def _allocate_samples(self):
340
+ """ Allocate memory for samples """
170
341
  samples = {}
171
342
  for par_name in self.par_names:
172
- samples[par_name] = np.zeros((self.target.get_density(par_name).dim, Nb))
173
- self.samples_warmup = samples
343
+ samples[par_name] = []
344
+ self.samples = samples
174
345
 
175
346
  def _get_initial_points(self):
176
347
  """ Get initial points for each parameter """
177
348
  initial_points = {}
178
349
  for par_name in self.par_names:
179
- if hasattr(self, 'samples'):
180
- initial_points[par_name] = self.samples[par_name][:, -1]
181
- elif hasattr(self, 'samples_warmup'):
182
- initial_points[par_name] = self.samples_warmup[par_name][:, -1]
183
- elif hasattr(self.target.get_density(par_name), 'init_point'):
184
- initial_points[par_name] = self.target.get_density(par_name).init_point
185
- else:
186
- initial_points[par_name] = np.ones(self.target.get_density(par_name).dim)
350
+ sampler = self.samplers[par_name]
351
+ if sampler.initial_point is None:
352
+ sampler.initial_point = sampler._get_default_initial_point(self.target.get_density(par_name).dim)
353
+ initial_points[par_name] = sampler.initial_point
354
+
187
355
  return initial_points
188
356
 
189
- def _store_samples(self, samples, current_samples, i):
357
+ def _store_samples(self):
190
358
  """ Store current samples at index i of samples dict """
191
359
  for par_name in self.par_names:
192
- samples[par_name][:, i] = current_samples[par_name]
360
+ self.samples[par_name].append(self.current_samples[par_name])
193
361
 
194
- def _convert_to_Samples(self, samples):
195
- """ Convert each parameter in samples dict to cuqi.samples.Samples object with correct geometry """
196
- samples_object = {}
197
- for par_name in self.par_names:
198
- samples_object[par_name] = Samples(samples[par_name], self.target.get_density(par_name).geometry)
199
- return samples_object
200
-
201
- def _print_progress(self, s, Ns, phase):
202
- """Prints sampling progress"""
203
- if Ns < 2: # Don't print progress if only one sample
204
- return
205
- if (s % (max(Ns//100,1))) == 0:
206
- msg = f'{phase} {s} / {Ns}'
207
- sys.stdout.write('\r'+msg)
208
- if s==Ns:
209
- msg = f'{phase} {s} / {Ns}'
210
- sys.stdout.write('\r'+msg+'\n')
211
-
212
- # ------------ Private properties ------------
213
- @property
214
- def _Ns(self):
215
- """ Number of samples already taken """
216
- if hasattr(self, 'samples'):
217
- return self.samples[self.par_names[0]].shape[-1]
362
+ def __repr__(self):
363
+ """ Return a string representation of the sampler. """
364
+ msg = f"Sampler: {self.__class__.__name__} \n"
365
+ if self.target is None:
366
+ msg += f" Target: None \n"
218
367
  else:
219
- return 0
220
-
221
- @property
222
- def _Nb(self):
223
- """ Number of samples already taken in warmup phase """
224
- if hasattr(self, 'samples_warmup'):
225
- return self.samples_warmup[self.par_names[0]].shape[-1]
226
- else:
227
- return 0
368
+ msg += f" Target: \n \t {self.target} \n\n"
369
+
370
+ for key, value in zip(self.samplers.keys(), self.samplers.values()):
371
+ msg += f" Variable '{key}' with {value} \n"
372
+
373
+ return msg