CUQIpy 1.1.1.post0.dev86__py3-none-any.whl → 1.1.1.post0.dev90__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of CUQIpy might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: CUQIpy
3
- Version: 1.1.1.post0.dev86
3
+ Version: 1.1.1.post0.dev90
4
4
  Summary: Computational Uncertainty Quantification for Inverse problems in Python
5
5
  Maintainer-email: "Nicolai A. B. Riis" <nabr@dtu.dk>, "Jakob S. Jørgensen" <jakj@dtu.dk>, "Amal M. Alghamdi" <amaal@dtu.dk>, Chao Zhang <chaz@dtu.dk>
6
6
  License: Apache License
@@ -1,6 +1,6 @@
1
1
  cuqi/__init__.py,sha256=LsGilhl-hBLEn6Glt8S_l0OJzAA1sKit_rui8h-D-p0,488
2
2
  cuqi/_messages.py,sha256=fzEBrZT2kbmfecBBPm7spVu7yHdxGARQB4QzXhJbCJ0,415
3
- cuqi/_version.py,sha256=uA6Xuy9UVnhc1O0rUPg4oXOvsCaEZeojsh5XqGatgOA,509
3
+ cuqi/_version.py,sha256=T4zJHk9GS-Zo_rUrR4df7lzaYMb3K6uUw1dTyP6i5F8,509
4
4
  cuqi/config.py,sha256=wcYvz19wkeKW2EKCGIKJiTpWt5kdaxyt4imyRkvtTRA,526
5
5
  cuqi/diagnostics.py,sha256=5OrbJeqpynqRXOe5MtOKKhe7EAVdOEpHIqHnlMW9G_c,3029
6
6
  cuqi/array/__init__.py,sha256=-EeiaiWGNsE3twRS4dD814BIlfxEsNkTCZUc5gjOXb0,30
@@ -39,14 +39,14 @@ cuqi/experimental/mcmc/_conjugate.py,sha256=VNPQkGity0mposcqxrx4UIeXm35EvJvZED4p
39
39
  cuqi/experimental/mcmc/_conjugate_approx.py,sha256=uEnY2ea9su5ivcNagyRAwpQP2gBY98sXU7N0y5hTADo,3653
40
40
  cuqi/experimental/mcmc/_cwmh.py,sha256=BQE7-4kbiC32TJ38rlVtfSQieoKBK5GDca3HCqHJ7zE,7135
41
41
  cuqi/experimental/mcmc/_direct.py,sha256=9pQS_2Qk2-ybt6m8WTfPoKetcxQ00WaTRN85-Z0FrBY,777
42
- cuqi/experimental/mcmc/_gibbs.py,sha256=W0g-BY278XoGcpWvatCJWMKnm0sfaWv60I7YDtNZRXE,12622
42
+ cuqi/experimental/mcmc/_gibbs.py,sha256=a_Zr007F233R6A3CJ_0zlQppsQrVuX8-oWCbNJWJxmA,12745
43
43
  cuqi/experimental/mcmc/_hmc.py,sha256=h63KT0jYq86H541hQzhHHzuLEn7vrRE_2r1o1mTEcZo,19261
44
44
  cuqi/experimental/mcmc/_langevin_algorithm.py,sha256=GKC_mlix3si_3J8E6I58ozh3ErB0XPmHMjV7sFyKLEQ,8200
45
45
  cuqi/experimental/mcmc/_laplace_approximation.py,sha256=rdiE3cMQFq6FLQcOQwPpuGIxrTAp3aoGPxMDSdeopV0,5688
46
46
  cuqi/experimental/mcmc/_mh.py,sha256=W5hOraHqfEW4_havtC9Ib2SinJtNV-NvxcOAENeTYUY,2841
47
47
  cuqi/experimental/mcmc/_pcn.py,sha256=wqJBZLuRFSwxihaI53tumAg6AWVuceLMOmXssTetd1A,3374
48
48
  cuqi/experimental/mcmc/_rto.py,sha256=OtzgiYCxDoTdXp7y4mkLa2upj74qadesoqHYpr11ZCg,10061
49
- cuqi/experimental/mcmc/_sampler.py,sha256=yzrbtBlqiajIHH151vocbD9SrHoCHj29wLP-IyrG3Mw,20017
49
+ cuqi/experimental/mcmc/_sampler.py,sha256=S7sY7ORAPz2d7lvUhCRSg1PCbC745YXn4KVIqRYAZtw,20040
50
50
  cuqi/experimental/mcmc/_utilities.py,sha256=kUzHbhIS3HYZRbneNBK41IogUYX5dS_bJxqEGm7TQBI,525
51
51
  cuqi/geometry/__init__.py,sha256=Tz1WGzZBY-QGH3c0GiyKm9XHN8MGGcnU6TUHLZkzB3o,842
52
52
  cuqi/geometry/_geometry.py,sha256=SDRZdiN2CIuS591lXxqgFoPWPIpwY-MHk75116QvdYY,46901
@@ -85,8 +85,8 @@ cuqi/testproblem/_testproblem.py,sha256=x769LwwRdJdzIiZkcQUGb_5-vynNTNALXWKato7s
85
85
  cuqi/utilities/__init__.py,sha256=H7xpJe2UinjZftKvE2JuXtTi4DqtkR6uIezStAXwfGg,428
86
86
  cuqi/utilities/_get_python_variable_name.py,sha256=QwlBVj2koJRA8s8pWd554p7-ElcI7HUwY32HknaR92E,1827
87
87
  cuqi/utilities/_utilities.py,sha256=Jc4knn80vLoA7kgw9FzXwKVFGaNBOXiA9kgvltZU3Ao,11777
88
- CUQIpy-1.1.1.post0.dev86.dist-info/LICENSE,sha256=kJWRPrtRoQoZGXyyvu50Uc91X6_0XRaVfT0YZssicys,10799
89
- CUQIpy-1.1.1.post0.dev86.dist-info/METADATA,sha256=2maTuUA5SybQincsfkR-eQhNYRNGNoPUxuER4K6FJpk,18410
90
- CUQIpy-1.1.1.post0.dev86.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
91
- CUQIpy-1.1.1.post0.dev86.dist-info/top_level.txt,sha256=AgmgMc6TKfPPqbjV0kvAoCBN334i_Lwwojc7HE3ZwD0,5
92
- CUQIpy-1.1.1.post0.dev86.dist-info/RECORD,,
88
+ CUQIpy-1.1.1.post0.dev90.dist-info/LICENSE,sha256=kJWRPrtRoQoZGXyyvu50Uc91X6_0XRaVfT0YZssicys,10799
89
+ CUQIpy-1.1.1.post0.dev90.dist-info/METADATA,sha256=-Bz6Ib4nK13LCqO_7m0g81twfiggb13wfVF37W0Kqo4,18410
90
+ CUQIpy-1.1.1.post0.dev90.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
91
+ CUQIpy-1.1.1.post0.dev90.dist-info/top_level.txt,sha256=AgmgMc6TKfPPqbjV0kvAoCBN334i_Lwwojc7HE3ZwD0,5
92
+ CUQIpy-1.1.1.post0.dev90.dist-info/RECORD,,
cuqi/_version.py CHANGED
@@ -8,11 +8,11 @@ import json
8
8
 
9
9
  version_json = '''
10
10
  {
11
- "date": "2024-09-12T20:00:34+0200",
11
+ "date": "2024-09-13T08:36:06+0200",
12
12
  "dirty": false,
13
13
  "error": null,
14
- "full-revisionid": "464aa149f16618852db3d404a3d6702f34ffed0d",
15
- "version": "1.1.1.post0.dev86"
14
+ "full-revisionid": "22a43b19a36622c11b96970eff2e8ab6776a7142",
15
+ "version": "1.1.1.post0.dev90"
16
16
  }
17
17
  ''' # END VERSION_JSON
18
18
 
@@ -66,7 +66,7 @@ class HybridGibbs:
66
66
  import numpy as np
67
67
 
68
68
  # Model and data
69
- A, y_obs, probinfo = cuqi.testproblem.Deconvolution1D(phantom='square').get_components()
69
+ A, y_obs, probinfo = cuqi.testproblem.Deconvolution1D(phantom='sinc').get_components()
70
70
  n = A.domain_dim
71
71
 
72
72
  # Define distributions
@@ -90,7 +90,11 @@ class HybridGibbs:
90
90
  sampler = cuqi.experimental.mcmc.HybridGibbs(posterior, sampling_strategy)
91
91
 
92
92
  # Run sampler
93
- samples = sampler.sample(Ns=1000, Nb=200)
93
+ sampler.warmup(200)
94
+ sampler.sample(1000)
95
+
96
+ # Get samples removing burn-in
97
+ samples = sampler.get_samples().burnthin(200)
94
98
 
95
99
  # Plot results
96
100
  samples['x'].plot_ci(exact=probinfo.exactSolution)
@@ -161,7 +165,7 @@ class HybridGibbs:
161
165
 
162
166
  """
163
167
 
164
- for _ in tqdm(range(Ns)):
168
+ for _ in tqdm(range(Ns), "Sample: "):
165
169
 
166
170
  self.step()
167
171
 
@@ -184,7 +188,7 @@ class HybridGibbs:
184
188
 
185
189
  tune_interval = max(int(tune_freq * Nb), 1)
186
190
 
187
- for idx in tqdm(range(Nb)):
191
+ for idx in tqdm(range(Nb), "Warmup: "):
188
192
 
189
193
  self.step()
190
194
 
@@ -220,7 +220,7 @@ class Sampler(ABC):
220
220
  if hasattr(self, "_pre_sample"): self._pre_sample()
221
221
 
222
222
  # Draw samples
223
- for _ in tqdm( range(Ns) ):
223
+ for _ in tqdm( range(Ns), "Sample: "):
224
224
 
225
225
  # Perform one step of the sampler
226
226
  acc = self.step()
@@ -260,7 +260,7 @@ class Sampler(ABC):
260
260
  if hasattr(self, "_pre_warmup"): self._pre_warmup()
261
261
 
262
262
  # Draw warmup samples with tuning
263
- for idx in tqdm(range(Nb)):
263
+ for idx in tqdm(range(Nb), "Warmup: "):
264
264
 
265
265
  # Perform one step of the sampler
266
266
  acc = self.step()