CUQIpy 1.0.0.post0.dev202__py3-none-any.whl → 1.0.0.post0.dev229__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of CUQIpy might be problematic. Click here for more details.
- {CUQIpy-1.0.0.post0.dev202.dist-info → CUQIpy-1.0.0.post0.dev229.dist-info}/METADATA +1 -1
- {CUQIpy-1.0.0.post0.dev202.dist-info → CUQIpy-1.0.0.post0.dev229.dist-info}/RECORD +11 -11
- cuqi/_version.py +3 -3
- cuqi/distribution/_gaussian.py +12 -4
- cuqi/experimental/mcmc/__init__.py +1 -1
- cuqi/experimental/mcmc/_pcn.py +26 -8
- cuqi/utilities/__init__.py +1 -0
- cuqi/utilities/_utilities.py +15 -1
- {CUQIpy-1.0.0.post0.dev202.dist-info → CUQIpy-1.0.0.post0.dev229.dist-info}/LICENSE +0 -0
- {CUQIpy-1.0.0.post0.dev202.dist-info → CUQIpy-1.0.0.post0.dev229.dist-info}/WHEEL +0 -0
- {CUQIpy-1.0.0.post0.dev202.dist-info → CUQIpy-1.0.0.post0.dev229.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: CUQIpy
|
|
3
|
-
Version: 1.0.0.post0.
|
|
3
|
+
Version: 1.0.0.post0.dev229
|
|
4
4
|
Summary: Computational Uncertainty Quantification for Inverse problems in Python
|
|
5
5
|
Maintainer-email: "Nicolai A. B. Riis" <nabr@dtu.dk>, "Jakob S. Jørgensen" <jakj@dtu.dk>, "Amal M. Alghamdi" <amaal@dtu.dk>, Chao Zhang <chaz@dtu.dk>
|
|
6
6
|
License: Apache License
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
cuqi/__init__.py,sha256=LsGilhl-hBLEn6Glt8S_l0OJzAA1sKit_rui8h-D-p0,488
|
|
2
2
|
cuqi/_messages.py,sha256=fzEBrZT2kbmfecBBPm7spVu7yHdxGARQB4QzXhJbCJ0,415
|
|
3
|
-
cuqi/_version.py,sha256=
|
|
3
|
+
cuqi/_version.py,sha256=qSCcU546LTLb2CnsgdAFPFHEfSeVUxNMie_SdR9XFeY,510
|
|
4
4
|
cuqi/config.py,sha256=wcYvz19wkeKW2EKCGIKJiTpWt5kdaxyt4imyRkvtTRA,526
|
|
5
5
|
cuqi/diagnostics.py,sha256=5OrbJeqpynqRXOe5MtOKKhe7EAVdOEpHIqHnlMW9G_c,3029
|
|
6
6
|
cuqi/array/__init__.py,sha256=-EeiaiWGNsE3twRS4dD814BIlfxEsNkTCZUc5gjOXb0,30
|
|
@@ -21,7 +21,7 @@ cuqi/distribution/_cmrf.py,sha256=tCbEulM_O7FB3C_W-3IqZp9zGHkTofCdFF0ybHc9UZI,37
|
|
|
21
21
|
cuqi/distribution/_custom.py,sha256=uUJwGlGjcMY89mIyu9nFI3OafLOMgn8uAEMfCbTDzi0,10661
|
|
22
22
|
cuqi/distribution/_distribution.py,sha256=G7BCpVueK4QLoLa_hu9h-Euh58Yp9SrgUKuudUlg-pw,18351
|
|
23
23
|
cuqi/distribution/_gamma.py,sha256=9vljt5iaBDCHRhrVCMLc2RWDuBchZRQcv9buJMDYPlM,3434
|
|
24
|
-
cuqi/distribution/_gaussian.py,sha256=
|
|
24
|
+
cuqi/distribution/_gaussian.py,sha256=DmmgVxKp4iEiEYWDdDcRoh35y14Oepn-zDHex0WVaYo,33316
|
|
25
25
|
cuqi/distribution/_gmrf.py,sha256=OwId8qQWEtmC2fxVhL4iBHZnc8ZCrZzfV6yGXDE3k30,9522
|
|
26
26
|
cuqi/distribution/_inverse_gamma.py,sha256=XRcNGW_jzORL08V7VvtsuMUoQioBAGbN12qe8hCXJvg,3309
|
|
27
27
|
cuqi/distribution/_joint_distribution.py,sha256=jRsV1Dt-pW6sG_xNqF0TugeVKDJY4Kh5aBLsIWfv394,15043
|
|
@@ -32,13 +32,13 @@ cuqi/distribution/_normal.py,sha256=UeoTtGDT7YSf4ZNo2amlVF9K-YQpYbf8q76jcRJTVFw,
|
|
|
32
32
|
cuqi/distribution/_posterior.py,sha256=zAfL0GECxekZ2lBt1W6_LN0U_xskMwK4VNce5xAF7ig,5018
|
|
33
33
|
cuqi/distribution/_uniform.py,sha256=7xJmCZH_LPhuGkwEDGh-_CTtzcWKrXMOxtTJUFb7Ydo,1607
|
|
34
34
|
cuqi/experimental/__init__.py,sha256=vhZvyMX6rl8Y0haqCzGLPz6PSUKyu75XMQbeDHqTTrw,83
|
|
35
|
-
cuqi/experimental/mcmc/__init__.py,sha256=
|
|
35
|
+
cuqi/experimental/mcmc/__init__.py,sha256=UqoyPWNQt4ZGIgc9Buhl5gf3toAxLjXLyQ7DieDQlRw,384
|
|
36
36
|
cuqi/experimental/mcmc/_cwmh.py,sha256=yRlTk5a1QYfH3JyCecfOOTeDf-4-tmJ3Tl2Bc3pyp1Y,7336
|
|
37
37
|
cuqi/experimental/mcmc/_hmc.py,sha256=qqAyoAajLE_JenYMgAbD3tknuEf75AJu-ufF69GKGk4,19384
|
|
38
38
|
cuqi/experimental/mcmc/_langevin_algorithm.py,sha256=MX48u3GYgCckB6Q5h5kXr_qdIaLQH2toOG5u29OY7gk,8245
|
|
39
39
|
cuqi/experimental/mcmc/_laplace_approximation.py,sha256=7reeOnDY77WnOwqYls5WStftHgylwCNVodudRroApF0,5812
|
|
40
40
|
cuqi/experimental/mcmc/_mh.py,sha256=aIV1Ntq0EAq3QJ1_X-DbP7eDAL-d_Or7d3RUO-R48I4,3090
|
|
41
|
-
cuqi/experimental/mcmc/_pcn.py,sha256=
|
|
41
|
+
cuqi/experimental/mcmc/_pcn.py,sha256=m7pR266uUJQociOe_CpUUlKHkfm8g--JfRWaQA2IKis,4364
|
|
42
42
|
cuqi/experimental/mcmc/_rto.py,sha256=jSPznr34XPfWM6LysWIiN4hE-vtyti3cHyvzy9ruykg,11349
|
|
43
43
|
cuqi/experimental/mcmc/_sampler.py,sha256=_5Uo2F-Mta46w3lo7WBVNwvTLYhES_BzMTJrKxA00c8,14861
|
|
44
44
|
cuqi/geometry/__init__.py,sha256=Tz1WGzZBY-QGH3c0GiyKm9XHN8MGGcnU6TUHLZkzB3o,842
|
|
@@ -74,11 +74,11 @@ cuqi/solver/__init__.py,sha256=DGl8IdUnochRXHNDEy_13o_VT0vLFY6FjMmmSH6YUkY,169
|
|
|
74
74
|
cuqi/solver/_solver.py,sha256=TgezixCVf8nKGtEF9ZrkaTtAfxSs1Z8CR_cmhdTMqRw,22776
|
|
75
75
|
cuqi/testproblem/__init__.py,sha256=DWTOcyuNHMbhEuuWlY5CkYkNDSAqhvsKmJXBLivyblU,202
|
|
76
76
|
cuqi/testproblem/_testproblem.py,sha256=x769LwwRdJdzIiZkcQUGb_5-vynNTNALXWKato7sS0Q,52540
|
|
77
|
-
cuqi/utilities/__init__.py,sha256=
|
|
77
|
+
cuqi/utilities/__init__.py,sha256=T4tLsC215MknBCsw_C0Qeeg_ox26aDUrCA5hbWvNQkU,387
|
|
78
78
|
cuqi/utilities/_get_python_variable_name.py,sha256=QwlBVj2koJRA8s8pWd554p7-ElcI7HUwY32HknaR92E,1827
|
|
79
|
-
cuqi/utilities/_utilities.py,sha256=
|
|
80
|
-
CUQIpy-1.0.0.post0.
|
|
81
|
-
CUQIpy-1.0.0.post0.
|
|
82
|
-
CUQIpy-1.0.0.post0.
|
|
83
|
-
CUQIpy-1.0.0.post0.
|
|
84
|
-
CUQIpy-1.0.0.post0.
|
|
79
|
+
cuqi/utilities/_utilities.py,sha256=MWAqV6L5btMpWwlUzrZYuV2VeSpfTbOaLRMRkuw2WIA,8509
|
|
80
|
+
CUQIpy-1.0.0.post0.dev229.dist-info/LICENSE,sha256=kJWRPrtRoQoZGXyyvu50Uc91X6_0XRaVfT0YZssicys,10799
|
|
81
|
+
CUQIpy-1.0.0.post0.dev229.dist-info/METADATA,sha256=-LQQOopcYpRJTp_ZhyH2H97JxI2jLfgsIS1AzYs1FNU,18393
|
|
82
|
+
CUQIpy-1.0.0.post0.dev229.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
83
|
+
CUQIpy-1.0.0.post0.dev229.dist-info/top_level.txt,sha256=AgmgMc6TKfPPqbjV0kvAoCBN334i_Lwwojc7HE3ZwD0,5
|
|
84
|
+
CUQIpy-1.0.0.post0.dev229.dist-info/RECORD,,
|
cuqi/_version.py
CHANGED
|
@@ -8,11 +8,11 @@ import json
|
|
|
8
8
|
|
|
9
9
|
version_json = '''
|
|
10
10
|
{
|
|
11
|
-
"date": "2024-
|
|
11
|
+
"date": "2024-05-21T12:48:50+0200",
|
|
12
12
|
"dirty": false,
|
|
13
13
|
"error": null,
|
|
14
|
-
"full-revisionid": "
|
|
15
|
-
"version": "1.0.0.post0.
|
|
14
|
+
"full-revisionid": "eb9519734f2558f66772895e41f2cd0c3cd61767",
|
|
15
|
+
"version": "1.0.0.post0.dev229"
|
|
16
16
|
}
|
|
17
17
|
''' # END VERSION_JSON
|
|
18
18
|
|
cuqi/distribution/_gaussian.py
CHANGED
|
@@ -9,7 +9,7 @@ import scipy.linalg as splinalg
|
|
|
9
9
|
|
|
10
10
|
from cuqi import config
|
|
11
11
|
from cuqi.geometry import _get_identity_geometries
|
|
12
|
-
from cuqi.utilities import force_ndarray, sparse_cholesky
|
|
12
|
+
from cuqi.utilities import force_ndarray, sparse_cholesky, check_if_conditional_from_attr
|
|
13
13
|
from cuqi.distribution import Distribution
|
|
14
14
|
|
|
15
15
|
# We potentially allow the use of sksparse.cholmod for sparse Cholesky
|
|
@@ -191,7 +191,7 @@ class Gaussian(Distribution):
|
|
|
191
191
|
value = force_ndarray(value)
|
|
192
192
|
self._sqrtcov = value
|
|
193
193
|
self._cov = None # Reset covariance (in case it was computed before)
|
|
194
|
-
if (value is not None) and (not callable(value)):
|
|
194
|
+
if (value is not None) and (not callable(value)):
|
|
195
195
|
if self.dim > config.MIN_DIM_SPARSE:
|
|
196
196
|
sparse_flag = True # do sparse computations
|
|
197
197
|
else:
|
|
@@ -214,7 +214,7 @@ class Gaussian(Distribution):
|
|
|
214
214
|
value = force_ndarray(value)
|
|
215
215
|
self._sqrtprec = value
|
|
216
216
|
self._cov = None # Reset covariance (in case it was computed before)
|
|
217
|
-
if
|
|
217
|
+
if not check_if_conditional_from_attr(value):
|
|
218
218
|
if self.dim > config.MIN_DIM_SPARSE:
|
|
219
219
|
sparse_flag = True # do sparse computations
|
|
220
220
|
else:
|
|
@@ -631,7 +631,7 @@ def get_sqrtprec_from_sqrtprec(dim, sqrtprec, sparse_flag):
|
|
|
631
631
|
dim : int
|
|
632
632
|
Dimension of the sqrtprec matrix.
|
|
633
633
|
|
|
634
|
-
sqrtprec : 1-d or 2-d ndarray or sparse matrix
|
|
634
|
+
sqrtprec : 1-d or 2-d ndarray or sparse matrix or scipy.sparse.linalg.LinearOperator
|
|
635
635
|
Square root of precision matrix. If 1-dimensional, then assumed to be a diagonal matrix.
|
|
636
636
|
|
|
637
637
|
sparse_flag: bool
|
|
@@ -666,6 +666,14 @@ def get_sqrtprec_from_sqrtprec(dim, sqrtprec, sparse_flag):
|
|
|
666
666
|
logdet = np.sum(-np.log(sqrtprec.data**2))
|
|
667
667
|
rank = dim
|
|
668
668
|
|
|
669
|
+
# sqrtprec is LinearOperator
|
|
670
|
+
elif isinstance(sqrtprec, spa.linalg.LinearOperator):
|
|
671
|
+
if hasattr(sqrtprec, 'logdet'):
|
|
672
|
+
logdet = sqrtprec.logdet
|
|
673
|
+
else:
|
|
674
|
+
logdet = None
|
|
675
|
+
rank = dim
|
|
676
|
+
|
|
669
677
|
# sqrtprec diagonal
|
|
670
678
|
elif np.count_nonzero(sqrtprec-np.diag(sqrtprec.diagonal())) == 0:
|
|
671
679
|
stdinv = sqrtprec.diagonal()
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
from ._sampler import SamplerNew, ProposalBasedSamplerNew
|
|
4
4
|
from ._langevin_algorithm import ULANew, MALANew
|
|
5
5
|
from ._mh import MHNew
|
|
6
|
-
from ._pcn import
|
|
6
|
+
from ._pcn import PCNNew
|
|
7
7
|
from ._rto import LinearRTONew, RegularizedLinearRTONew
|
|
8
8
|
from ._cwmh import CWMHNew
|
|
9
9
|
from ._laplace_approximation import UGLANew
|
cuqi/experimental/mcmc/_pcn.py
CHANGED
|
@@ -3,9 +3,9 @@ import cuqi
|
|
|
3
3
|
from cuqi.experimental.mcmc import SamplerNew
|
|
4
4
|
from cuqi.array import CUQIarray
|
|
5
5
|
|
|
6
|
-
class
|
|
6
|
+
class PCNNew(SamplerNew): # Refactor to Proposal-based sampler?
|
|
7
7
|
|
|
8
|
-
_STATE_KEYS = SamplerNew._STATE_KEYS.union({'scale', 'current_likelihood_logd'})
|
|
8
|
+
_STATE_KEYS = SamplerNew._STATE_KEYS.union({'scale', 'current_likelihood_logd', 'lambd'})
|
|
9
9
|
|
|
10
10
|
def __init__(self, target, scale=1.0, **kwargs):
|
|
11
11
|
|
|
@@ -17,6 +17,11 @@ class pCNNew(SamplerNew): # Refactor to Proposal-based sampler?
|
|
|
17
17
|
|
|
18
18
|
self._acc = [1] # TODO. Check if we need this
|
|
19
19
|
|
|
20
|
+
# parameters used in the Robbins-Monro recursion for tuning the scale parameter
|
|
21
|
+
# see details and reference in the tune method
|
|
22
|
+
self.lambd = self.scale
|
|
23
|
+
self.star_acc = 0.44 #TODO: 0.234 # target acceptance rate
|
|
24
|
+
|
|
20
25
|
def validate_target(self):
|
|
21
26
|
try:
|
|
22
27
|
if isinstance(self.prior, (cuqi.distribution.Gaussian, cuqi.distribution.Normal)):
|
|
@@ -29,7 +34,7 @@ class pCNNew(SamplerNew): # Refactor to Proposal-based sampler?
|
|
|
29
34
|
def step(self):
|
|
30
35
|
# propose state
|
|
31
36
|
xi = self.prior.sample(1).flatten() # sample from the prior
|
|
32
|
-
x_star = np.sqrt(1-self.scale**2)*self.current_point + self.scale*xi #
|
|
37
|
+
x_star = np.sqrt(1-self.scale**2)*self.current_point + self.scale*xi # PCN proposal
|
|
33
38
|
|
|
34
39
|
# evaluate target
|
|
35
40
|
loglike_eval_star = self._loglikelihood(x_star)
|
|
@@ -74,10 +79,6 @@ class pCNNew(SamplerNew): # Refactor to Proposal-based sampler?
|
|
|
74
79
|
self._loglikelihood = lambda x : self.likelihood.logd(x)
|
|
75
80
|
else:
|
|
76
81
|
raise ValueError(f"To initialize an object of type {self.__class__}, 'target' need to be of type 'cuqi.distribution.Posterior'.")
|
|
77
|
-
|
|
78
|
-
#TODO:
|
|
79
|
-
#if not isinstance(self.prior,(cuqi.distribution.Gaussian, cuqi.distribution.Normal)):
|
|
80
|
-
# raise ValueError("The prior distribution of the target need to be Gaussian")
|
|
81
82
|
|
|
82
83
|
@property
|
|
83
84
|
def dim(self): # TODO. Check if we need this. Implemented in base class
|
|
@@ -88,4 +89,21 @@ class pCNNew(SamplerNew): # Refactor to Proposal-based sampler?
|
|
|
88
89
|
return self._dim
|
|
89
90
|
|
|
90
91
|
def tune(self, skip_len, update_count):
|
|
91
|
-
|
|
92
|
+
"""
|
|
93
|
+
Tune the scale parameter of the PCN sampler.
|
|
94
|
+
The tuning is based on algorithm 4 in Andrieu, Christophe, and Johannes Thoms.
|
|
95
|
+
"A tutorial on adaptive MCMC." Statistics and computing 18 (2008): 343-373.
|
|
96
|
+
Note: the tuning algorithm here is the same as the one used in MH sampler.
|
|
97
|
+
"""
|
|
98
|
+
|
|
99
|
+
# average acceptance rate in the past skip_len iterations
|
|
100
|
+
hat_acc = np.mean(self._acc[-skip_len:])
|
|
101
|
+
|
|
102
|
+
# new scaling parameter zeta to be used in the Robbins-Monro recursion
|
|
103
|
+
zeta = 1/np.sqrt(update_count+1)
|
|
104
|
+
|
|
105
|
+
# Robbins-Monro recursion to ensure that the variation of lambd vanishes
|
|
106
|
+
self.lambd = np.exp(np.log(self.lambd) + zeta*(hat_acc-self.star_acc))
|
|
107
|
+
|
|
108
|
+
# update scale parameter
|
|
109
|
+
self.scale = min(self.lambd, 1)
|
cuqi/utilities/__init__.py
CHANGED
cuqi/utilities/_utilities.py
CHANGED
|
@@ -64,13 +64,27 @@ def get_indirect_variables(dist):
|
|
|
64
64
|
attributes = []
|
|
65
65
|
for attribute in dist.get_mutable_variables():
|
|
66
66
|
value = getattr(dist, attribute)
|
|
67
|
-
if
|
|
67
|
+
if check_if_conditional_from_attr(value):
|
|
68
68
|
keys = get_non_default_args(value)
|
|
69
69
|
for key in keys:
|
|
70
70
|
if key not in attributes: #Ensure we did not already find this key
|
|
71
71
|
attributes.append(key)
|
|
72
72
|
return attributes
|
|
73
73
|
|
|
74
|
+
def check_if_conditional_from_attr(value):
|
|
75
|
+
"""
|
|
76
|
+
Check if a distribution is conditional from a given attribute.
|
|
77
|
+
So far, we assume that a distribution is conditional if
|
|
78
|
+
- the given attribute is a callable function and
|
|
79
|
+
- the given attribute is not a LinearOperator.
|
|
80
|
+
"""
|
|
81
|
+
if isinstance(value, spslinalg.LinearOperator):
|
|
82
|
+
return False
|
|
83
|
+
elif callable(value):
|
|
84
|
+
return True
|
|
85
|
+
else:
|
|
86
|
+
return False
|
|
87
|
+
|
|
74
88
|
def get_writeable_attributes(dist):
|
|
75
89
|
""" Get writeable attributes of object instance. """
|
|
76
90
|
attributes = []
|
|
File without changes
|
|
File without changes
|
|
File without changes
|