BETTER-NMA 1.0.5__py3-none-any.whl → 1.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,7 @@
1
1
  from sklearn.model_selection import train_test_split
2
2
  import numpy as np
3
3
  from .score_calculator import ScoreCalculator
4
+ from ..photos_uitls import preprocess_numpy_image
4
5
 
5
6
  class AdversarialDataset:
6
7
  def __init__(self, model, clear_images, adversarial_images, Z_full, labels):
@@ -16,8 +17,9 @@ class AdversarialDataset:
16
17
  try:
17
18
  for image in self.clear_images[:50]:
18
19
  # Add batch dimension for model prediction
19
- image_batch = np.expand_dims(image, axis=0)
20
- score = self.score_calculator.calculate_adversarial_score(self.model.predict(image_batch, verbose=0))
20
+ # image_batch = np.expand_dims(image, axis=0)
21
+ preprocessed_img = preprocess_numpy_image(self.model, image)
22
+ score = self.score_calculator.calculate_adversarial_score(self.model.predict(preprocessed_img, verbose=0))
21
23
  scores.append(score)
22
24
  labels.append(0)
23
25
  except Exception as e:
@@ -27,8 +29,9 @@ class AdversarialDataset:
27
29
  try:
28
30
  for adv_image in self.adversarial_images[:50]:
29
31
  # Add batch dimension for model prediction
30
- adv_image_batch = np.expand_dims(adv_image, axis=0)
31
- score = self.score_calculator.calculate_adversarial_score(self.model.predict(adv_image_batch, verbose=0))
32
+ # adv_image_batch = np.expand_dims(adv_image, axis=0)
33
+ preprocessed_adv_img = preprocess_numpy_image(self.model, adv_image)
34
+ score = self.score_calculator.calculate_adversarial_score(self.model.predict(preprocessed_adv_img, verbose=0))
32
35
  scores.append(score)
33
36
  labels.append(1)
34
37
  except Exception as e:
@@ -69,4 +69,22 @@ def preprocess_image(model, image):
69
69
  preprocess_input = get_cached_preprocess_function(model)
70
70
  image_array = preprocess_input(np.array(image))
71
71
  image_preprocessed = np.expand_dims(image_array, axis=0)
72
+ return image_preprocessed
73
+
74
+ def preprocess_numpy_image(model, image):
75
+ """
76
+ Preprocess a NumPy array image for the given model.
77
+ """
78
+ # if isinstance(image, list):
79
+ # image = np.array(image)
80
+ if image.ndim == 3:
81
+ # If the image is 3D, add a batch dimension
82
+ image = np.expand_dims(image, axis=0)
83
+
84
+ # Get the appropriate preprocessing function for the model
85
+ preprocess_input = get_cached_preprocess_function(model)
86
+
87
+ # Apply the preprocessing function
88
+ image_preprocessed = preprocess_input(image)
89
+
72
90
  return image_preprocessed
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: BETTER_NMA
3
- Version: 1.0.5
3
+ Version: 1.0.6
4
4
  Summary: NMA: Dendrogram-based model analysis, white-box testing, and adversarial detection
5
5
  Author: BETTER_XAI
6
6
  Author-email: BETTERXAI2025@gmail.com
@@ -12,12 +12,12 @@ BETTER_NMA/train_adversarial_detector.py,sha256=nMaQ-Pm2vP84qNR1GoKQiVPpmMC3rdor
12
12
  BETTER_NMA/white_box_testing.py,sha256=VZ5pImXUOpM6jWMOoIkTWymwPCsev75zQ2SudSJ0frw,3539
13
13
  BETTER_NMA/utilss/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  BETTER_NMA/utilss/models_utils.py,sha256=gBXY2LFH4iR-2GZmHeUnnB5n9t3VdjIc9sugHDrD3AM,671
15
- BETTER_NMA/utilss/photos_uitls.py,sha256=wxmIIKFgAKYkcYaK95UMjtY-LZS6NDVveKrHBQV8Q70,3166
15
+ BETTER_NMA/utilss/photos_uitls.py,sha256=liGx2exIfGMrJgUngFfCvDLWvoUnISqnwyaDNbUyA1Q,3734
16
16
  BETTER_NMA/utilss/photos_utils.py,sha256=4EjDHbMjrJ8P9y-X4H05P4wez4uKNit60UGnu3sKsys,4412
17
17
  BETTER_NMA/utilss/verbal_explanation.py,sha256=_hrYZUjBUYOfuGr7t5r-DACooR5d60dRtGfUj7FbeZw,549
18
18
  BETTER_NMA/utilss/wordnet_utils.py,sha256=77qcmEQH3Krd1T8dQY-IXVpaEgfwlw406XRk4zYsghw,9482
19
19
  BETTER_NMA/utilss/classes/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- BETTER_NMA/utilss/classes/adversarial_dataset.py,sha256=LKmyseQetyBdoKrl7Q4MaTc7EzMZcMgqNdtCsdAvKHA,2299
20
+ BETTER_NMA/utilss/classes/adversarial_dataset.py,sha256=RGRaaDV9idjMp7GOsUUTVems_1GzswhaiK1Se7y5gFw,2528
21
21
  BETTER_NMA/utilss/classes/adversarial_detector.py,sha256=BE_SxNEwcvuHERBiefefOmk1k6NJSo6juehkAjkEHuQ,2331
22
22
  BETTER_NMA/utilss/classes/dendrogram.py,sha256=vtKBFfwzcz8k01Goc83pZlWC2pO86endTJURlkUWVQI,5141
23
23
  BETTER_NMA/utilss/classes/edges_dataframe.py,sha256=q-RQ6beOeZeIgdEzwi8T5Ag2NBFySv7-ITD5m989nl4,1896
@@ -33,7 +33,7 @@ BETTER_NMA/utilss/classes/preprocessing/z_builder.py,sha256=T8ETfL7mMOgEj7oYNsw6
33
33
  BETTER_NMA/utilss/enums/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
34
  BETTER_NMA/utilss/enums/explanation_method.py,sha256=Ang-rjvxO4AJ1IH4mwS8sNpSwt9jn3PlqFbPPT-R9I8,150
35
35
  BETTER_NMA/utilss/enums/heap_types.py,sha256=0z1d2qu1ZCbpWRXKD1dTopn3M4G1CxRQW9HWxVxyPIA,88
36
- BETTER_NMA-1.0.5.dist-info/METADATA,sha256=oqz6IAT6kY-q94bKDTGFxSxAXI47J1P_GWcZQXKeaxM,5100
37
- BETTER_NMA-1.0.5.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
38
- BETTER_NMA-1.0.5.dist-info/top_level.txt,sha256=SVRNqWPvCnynWVyXNAYnf9CSQIvMAvE6iyyiGHodQgY,11
39
- BETTER_NMA-1.0.5.dist-info/RECORD,,
36
+ BETTER_NMA-1.0.6.dist-info/METADATA,sha256=M2D3uM-BAPpo-O7z7ft7HABhe7Oo3kxI8pdn3-lPkgA,5100
37
+ BETTER_NMA-1.0.6.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
38
+ BETTER_NMA-1.0.6.dist-info/top_level.txt,sha256=SVRNqWPvCnynWVyXNAYnf9CSQIvMAvE6iyyiGHodQgY,11
39
+ BETTER_NMA-1.0.6.dist-info/RECORD,,