BESS-JPL 1.16.0__py3-none-any.whl → 1.18.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of BESS-JPL might be problematic. Click here for more details.

@@ -0,0 +1,122 @@
1
+ ID,name,NDVI_minimum,NDVI_maximum,C4_fraction,carbon_uptake_efficiency,kn,peakVCmax_C3,peakVCmax_C4,ball_berry_slope_C3,ball_berry_slope_C4,ball_berry_intercept_C3,KG_climate,CI,canopy_height_meters,COT,AOT,Ca,wind_speed_mps,vapor_gccm,ozone_cm,geometry
2
+ US-NC3,NC_Clearcut#3,0.4087331578417219,0.8556928956658199,0.07753171362788719,0.07999999821186066,0.40999999642372137,87.34543334528844,51.04062440664798,9.5,4.951962701536608,0.005266873734349401,3,0.2823529411764706,20.642902178642892,0,0,400,0,0,0.3,POINT (-76.656 35.799)
3
+ PE-QFR,Quistococha Forest Reserve,0.657359426907036,0.8266049365657256,0.0005492608001738836,0.06034712931355669,0.1250333919073654,41.36448719554118,41.36448719554118,9.500000000000002,5.000000000000001,0.004999999888241291,1,0.2549019607843137,22.140021130858546,0,0,400,0,0,0.3,POINT (-73.319 -3.8344)
4
+ US-Mi3,LTAR UCB (Upper Chesapeake Bay) Miscanthus 3,0.02790972024855843,0.8554605078954822,0.035045187936972484,0.07999999821186067,0.4099999964237213,119.4354427351645,119.4354427351645,7.499999999999999,4.1211708043072495,0.009882383682270773,4,0.28627450980392155,0.0,0,0,400,0,0,0.3,POINT (-80.637 41.8222)
5
+ US-NC4,NC_AlligatorRiver,0.5913575693840132,0.8697576485713222,0.04621943588956866,0.07999999821186066,0.4099999964237213,64.72016471509369,64.72016471509369,9.5,4.965272261227928,0.005192931745552203,3,0.20784313725490197,14.16482716188921,0,0,400,0,0,0.3,POINT (-75.9038 35.7879)
6
+ CA-DB2,Delta Burns Bog 2,0.3997116688495973,0.6757306344864201,0.00035587351413123274,0.07999999821186067,0.40999999642372137,109.98639536320827,109.98639536320827,9.5,4.550285561939465,0.007498413112436758,3,0.26666666666666666,9.919029464341444,0,0,400,0,0,0.3,POINT (-122.9951 49.119)
7
+ US-Sne,Sherman Island Restored Wetland,0.23912057151136526,0.5572457859736774,0.005166879018109502,0.08094725992358666,0.43841783083715163,60.07227719374705,49.01803092497831,9.5,5.075780914353615,0.005947261070643866,3,1.0,0.46937917905864046,0,0,400,0,0,0.3,POINT (-121.7547 38.0369)
8
+ US-Mi1,LTAR UCB (Upper Chesapeake Bay) Miscanthus 1,0.013335952648099655,0.8410030480622498,0.031587586099533695,0.07999999821186066,0.4099999964237214,120.00000000000001,120.00000000000001,7.500000000000001,4.099999904632568,0.009999999776482582,4,0.2901960784313726,0.0,0,0,400,0,0,0.3,POINT (-80.6313 41.7727)
9
+ US-PFe,NW4 Lake-1 CHEESEHEAD 2019,0.10786169952587384,0.8792312219495471,0.046937113573550446,0.07999999821186067,0.40999999642372137,68.82643068716598,68.82643068716598,7.5,5.000000000000001,0.004999999888241292,4,0.21568627450980393,6.835003613460428,0,0,400,0,0,0.3,POINT (-90.3004 45.9793)
10
+ US-NR1,Niwot Ridge Forest (LTER NWT1),0.1629652118545663,0.6756746233398245,0.015560672307164784,0.07999999821186066,0.40999999642372137,120.00000000000004,120.00000000000004,7.500000000000003,4.099999904632569,0.009999999776482582,4,0.1843137254901961,17.94227891238037,0,0,400,0,0,0.3,POINT (-105.5464 40.0329)
11
+ US-Vcp,Valles Caldera Ponderosa Pine,0.18605682690645955,0.6914219316589686,0.0007811003618295031,0.08767798548433177,0.640339477304817,136.89156293809597,58.57613477056015,7.5,5.405257260427025,0.013838991267514424,4,0.2,15.737897214796718,0,0,400,0,0,0.3,POINT (-106.5974 35.8624)
12
+ US-xAB,NEON Abby Road (ABBY),0.5659936774015306,0.8625376532807679,0.0016622462326137716,0.07999999821186066,0.4099999964237213,63.0,63.0,9.500000000000002,5.0,0.004999999888241291,3,0.18823529411764706,6.244725379160608,0,0,400,0,0,0.3,POINT (-122.3303 45.7624)
13
+ US-HBK,Hubbard Brook Experimental Forest,0.14425547687905033,0.9047851936429718,0.0,0.07999999821186066,0.4099999964237214,96.0,96.0,7.499999999999999,5.0,0.004999999888241291,4,0.26666666666666666,22.527766947864624,0,0,400,0,0,0.3,POINT (-71.7181 43.9397)
14
+ US-EDN,Eden Landing Ecological Reserve,0.18765256202385952,0.41857079733383484,0.00118293722296389,0.07999999821186066,0.4099999964237213,56.984564872933085,56.984564872933085,9.5,5.0,0.004999999888241291,3,1.0,0.0,0,0,400,0,0,0.3,POINT (-122.114 37.6156)
15
+ US-PFh,NE2 Pine-3 CHEESEHEAD 2019,0.12093301546462346,0.8797551246355276,0.04685803556807379,0.07999999821186067,0.4099999964237214,83.22012913735648,83.22012913735648,7.500000000000003,4.919629643627874,0.005446501810793297,4,0.2627450980392157,15.26662213615668,0,0,400,0,0,0.3,POINT (-90.2406 45.9557)
16
+ US-Me6,Metolius Young Pine Burn,0.24290999421865217,0.7695289404153574,0.0003239199591024325,0.07999999821186066,0.4099999964237213,113.49030088098709,113.49030088098709,7.499999999999998,4.202784638455812,0.009428973550736111,4,0.24705882352941178,9.92549467075966,0,0,400,0,0,0.3,POINT (-121.6078 44.3233)
17
+ US-NC2,NC_Loblolly Plantation,0.4370522262817825,0.8539217607998417,0.07948586770191517,0.07999999821186066,0.4099999964237213,85.58671584405877,59.56049992059823,9.5,4.882492070538997,0.005652821634813013,3,0.2627450980392157,10.70707541686137,0,0,400,0,0,0.3,POINT (-76.6685 35.803)
18
+ US-Whs,Walnut Gulch Lucky Hills Shrub,0.13977007170073427,0.3791938485295186,0.5383724796821573,0.08521522266523875,0.5664566367696335,70.34435464914428,50.526512357426625,9.5,5.417217831929673,0.010215221427387174,2,0.2823529411764706,0.0,0,0,400,0,0,0.3,POINT (-110.0522 31.7438)
19
+ US-SRM,Santa Rita Mesquite,0.1687577374028736,0.4243245044164134,0.674624390472964,0.08047068844706014,0.42412069506311245,62.753103972322684,60.964482038056296,9.499999999999998,5.037655207593834,0.0054706898604222325,2,0.23529411764705882,0.0,0,0,400,0,0,0.3,POINT (-110.8661 31.8214)
20
+ US-CS1,Central Sands Irrigated Agricultural Field,0.010983921458627274,0.7909789047832757,0.08676788796147465,0.07999999821186066,0.4099999964237213,106.01582913602904,58.91125359423214,7.500000000000001,4.762408068380375,0.0063199548945351135,4,0.2235294117647059,0.0,0,0,400,0,0,0.3,POINT (-89.5379 44.1031)
21
+ US-PFs,SE5 Aspen-5 CHEESEHEAD 2019,0.1210723801487115,0.8743137902749573,0.04696716582804139,0.07999999821186066,0.40999999642372126,74.2996212009701,74.2996212009701,7.499999999999999,4.8998046546124865,0.005556640624524031,4,0.25882352941176473,6.99144418650845,0,0,400,0,0,0.3,POINT (-90.2382 45.9381)
22
+ US-PFg,NE1 Pine-2 CHEESEHEAD 2019,0.13489335737913405,0.8841975497019787,0.046840622096447286,0.07999999821186068,0.4099999964237213,62.880970800910966,62.880970800910966,7.5,4.998633397280674,0.005007592124596679,4,0.2627450980392157,17.93987252518173,0,0,400,0,0,0.3,POINT (-90.2723 45.9735)
23
+ US-Ha1,Harvard Forest EMS Tower (HFR1),0.1799916046478735,0.903852895096539,0.00036868638126566364,0.07999999821186067,0.4099999964237214,92.68174367107986,92.68174367107986,7.499999999999999,5.000000000000001,0.004999999888241292,4,0.27450980392156865,22.261235455085856,0,0,400,0,0,0.3,POINT (-72.1715 42.5378)
24
+ US-Ne2,Mead - irrigated maize-soybean rotation site,-0.021019106318366558,0.8334119882608211,0.44150058853015933,0.07999999821186066,0.4099999964237213,101.0,37.00000000000001,7.500000000000001,5.0,0.004999999888241291,4,0.2901960784313726,0.0,0,0,400,0,0,0.3,POINT (-96.4701 41.1649)
25
+ US-PFm,SW3 Hardwood-2 CHEESEHEAD 2019,0.10283320668915931,0.8790096079727968,0.0471107898578526,0.07999999821186067,0.4099999964237213,68.75721377556563,68.75721377556563,7.499999999999999,4.952851636768973,0.005261935205914392,4,0.26666666666666666,17.140608339758895,0,0,400,0,0,0.3,POINT (-90.3099 45.9207)
26
+ US-PFr,SE4 Tussock-2 CHEESEHEAD 2019,0.1178902959156713,0.8751436191027069,0.04703024490476953,0.07999999821186066,0.4099999964237213,72.00066865199929,72.00066865199929,7.5,4.905272925639252,0.005526261344940135,4,0.2627450980392157,0.06697374038151778,0,0,400,0,0,0.3,POINT (-90.2475 45.9245)
27
+ US-PFL,SW2 Aspen-3 CHEESEHEAD 2019,0.10249730334680904,0.8778957034402939,0.047166095840123046,0.07999999821186067,0.4099999964237213,70.54082849388648,70.54082849388648,7.5,4.955590227054065,0.005246720817393909,4,0.2627450980392157,19.11929399848674,0,0,400,0,0,0.3,POINT (-90.3177 45.9409)
28
+ US-PFj,NE4 Maple-1 CHEESEHEAD 2019,0.1264813017846415,0.8826089779726481,0.046758006013031976,0.07999999821186067,0.40999999642372126,90.76111754488572,90.76111754488572,7.500000000000001,4.93991709777389,0.005333793746666518,4,0.26666666666666666,11.041227282743666,0,0,400,0,0,0.3,POINT (-90.227 45.9619)
29
+ US-CC2,Coloma Corn 2,-0.00343338611647959,0.8236358222993674,0.08651726177320283,0.07999999821186066,0.4099999964237213,104.34782995244217,51.62473084487892,7.500000000000001,4.841418564396217,0.0058810077507708515,4,0.26666666666666666,0.0,0,0,400,0,0,0.3,POINT (-89.6196 44.1039)
30
+ US-NR3,Niwot Ridge Alpine (T-Van West),0.08074605146099989,0.5793592585991433,0.014946046206295392,0.08276227046098464,0.4928681145041901,126.0769956881182,97.90183386138831,7.5,4.5695860141072675,0.011381135129275032,5,0.2196078431372549,0.0,0,0,400,0,0,0.3,POINT (-105.5864 40.052)
31
+ US-PFt,SE6 Pine-4 CHEESEHEAD 2019,0.12780713135995847,0.8708630982610119,0.047033175646857134,0.07999999821186068,0.4099999964237214,65.96400082187628,65.96400082187628,7.500000000000001,4.962957047608218,0.005205794041789048,4,0.27058823529411763,13.959621322598938,0,0,400,0,0,0.3,POINT (-90.2288 45.9197)
32
+ CA-Cbo,"Ontario - Mixed Deciduous, Borden Forest Site",0.06329028799413368,0.8248724924547485,0.007640331933075449,0.08057791220618238,0.4273374059194719,120.51203012579006,112.05939903538042,7.5,5.046233105767204,0.0055779135596286025,4,1.0,14.63745055646174,0,0,400,0,0,0.3,POINT (-79.9333 44.3167)
33
+ PR-xLA,NEON Lajas Experimental Station (LAJA),0.44800567813649356,0.7484062231696347,0.0,0.08003993850415766,0.4111982044784439,99.3209575227273,37.47416733126552,9.5,4.99201809913933,0.005102035279653169,1,0.3058823529411765,0.09721899711788075,0,0,400,0,0,0.3,POINT (-67.0769 18.0212)
34
+ US-Ne3,Mead - rainfed maize-soybean rotation site,-0.021620733176418706,0.8194694195620175,0.4424480670324988,0.07999999821186066,0.40999999642372137,101.00000000000001,37.00000000000001,7.500000000000003,5.000000000000002,0.004999999888241291,4,0.2980392156862745,0.0,0,0,400,0,0,0.3,POINT (-96.4397 41.1797)
35
+ US-PHM,Plum Island High Marsh,0.002050753613266741,0.7401394034926547,0.0,0.07999999821186066,0.40999999642372137,107.83236254986856,107.83236254986856,7.5,4.21775124727251,0.009345825734645832,4,1.0,0.0,0,0,400,0,0,0.3,POINT (-70.8301 42.7423)
36
+ US-Tw1,Twitchell Wetland West Pond,0.2735372639340857,0.709191445932834,0.006103237015386933,0.08121726308129376,0.4465179207403346,98.20029230218404,37.365179264932515,9.499999999999998,5.097381160532809,0.0062172640774750265,3,0.2901960784313726,0.022010602099844907,0,0,400,0,0,0.3,POINT (-121.6469 38.1074)
37
+ US-Hn3,Hanford 100H sagebrush,-0.013024897612681162,0.44533252922788147,0.005560871398960228,0.09000000357627869,0.7099999785423279,78.0,40.0,9.499999999999998,5.800000190734863,0.014999999664723871,2,0.23921568627450981,0.0,0,0,400,0,0,0.3,POINT (-119.4614 46.6878)
38
+ US-PFk,SW1 Aspen-2 CHEESEHEAD 2019,0.10267653878093534,0.8758384019455226,0.04715292340034931,0.07999999821186067,0.40999999642372137,77.96040448886626,77.96040448886626,7.500000000000001,4.917360692212595,0.00545910709481628,4,0.2784313725490196,13.534742423097446,0,0,400,0,0,0.3,POINT (-90.3425 45.9149)
39
+ US-CS2,Tri county school Pine Forest,0.011847044455880631,0.7862671317958756,0.09103504462650998,0.07999999821186066,0.40999999642372126,102.29944267035722,42.67651271787623,7.500000000000001,4.93844744593442,0.005341958478060344,4,0.22745098039215686,17.517085301252354,0,0,400,0,0,0.3,POINT (-89.5002 44.1467)
40
+ US-ONA,Florida pine flatwoods,0.48596438342772114,0.7542511673347234,0.007011533995388719,0.07999999821186063,0.40999999642372126,120.0,120.0,9.5,5.0,0.004999999888241289,3,0.28627450980392155,0.0,0,0,400,0,0,0.3,POINT (-81.9509 27.3836)
41
+ US-CC1,Coloma Corn 1,0.01410842137754985,0.8712186585789192,0.08300797168049016,0.07999999821186066,0.40999999642372137,119.70852195758626,118.9618633140148,7.5,4.113117809107946,0.009927122538748438,4,0.2823529411764706,0.0,0,0,400,0,0,0.3,POINT (-89.6787 44.0732)
42
+ US-Rls,RCEW Low Sagebrush,-0.017216336690200874,0.4867265894776473,0.0004189586710382337,0.09000000357627869,0.7099999785423278,107.33151697790053,40.0,8.583390094440608,5.800000190734862,0.014999999664723871,2,0.28627450980392155,0.0,0,0,400,0,0,0.3,POINT (-116.7356 43.1439)
43
+ US-UMd,UMBS Disturbance,0.018456804727672922,0.8231026751104258,0.08915746880815566,0.08053803490767206,0.42614108767722264,95.42972887529407,89.94175752199504,7.5,4.9261310424587785,0.006187546646605498,4,1.0,20.807052338440826,0,0,400,0,0,0.3,POINT (-84.6975 45.5625)
44
+ US-PFq,SE3 Aspen-4 CHEESEHEAD 2019,0.1182010779145262,0.8752484910488696,0.04702398679886199,0.07999999821186064,0.40999999642372126,71.88368287561711,71.88368287561711,7.499999999999999,4.908445159345303,0.005508637826612335,4,0.2549019607843137,19.658238597577945,0,0,400,0,0,0.3,POINT (-90.2475 45.9271)
45
+ US-PFn,SW4 Hardwood-3 CHEESEHEAD 2019,0.11214952404130973,0.880997063667563,0.04706005295190416,0.07999999821186067,0.4099999964237213,67.22195801026417,67.22195801026417,7.5,4.973064986076883,0.005149638835279828,4,0.21176470588235294,16.76915357146083,0,0,400,0,0,0.3,POINT (-90.2823 45.9392)
46
+ US-HB3,Hobcaw Barony Longleaf Pine Restoration,0.4929127296247127,0.7696467208353741,0.018059523812039714,0.07999999821186066,0.4099999964237213,67.95618200049809,67.95618200049809,9.5,4.773226409043957,0.006259853009671663,3,0.20392156862745098,0.0,0,0,400,0,0,0.3,POINT (-79.2322 33.3482)
47
+ US-DFC,"US Dairy Forage Research Center, Prairie du Sac",-0.007316776711070038,0.8141013461897569,0.045802160912748704,0.07999999821186066,0.40999999642372126,102.15161504110561,55.85384456411355,7.5,5.000000000000001,0.004999999888241291,4,0.28627450980392155,0.0,0,0,400,0,0,0.3,POINT (-89.7117 43.3448)
48
+ US-Wkg,Walnut Gulch Kendall Grasslands,0.1452498760946111,0.47096671656726485,0.48688925543057326,0.08942724433568043,0.6928172115661085,77.08358570664576,41.26006965336209,9.5,5.754179465142641,0.01442724074417963,2,0.23529411764705882,0.0,0,0,400,0,0,0.3,POINT (-109.9419 31.7365)
49
+ US-CF1,CAF-LTAR Cook East,-0.024475686387094343,0.8559611342171937,0.004770176230634043,0.07999999821186066,0.40999999642372137,100.99999999999999,37.0,7.500000000000001,5.0,0.004999999888241291,4,0.3058823529411765,0.0,0,0,400,0,0,0.3,POINT (-117.0821 46.7815)
50
+ US-Ho2,Howland Forest (west tower),0.218313998452716,0.8721061976948519,0.00012982456508227552,0.07999999821186066,0.40999999642372137,62.49999999999999,62.49999999999999,7.5,5.0,0.004999999888241291,4,0.25098039215686274,15.861582174887225,0,0,400,0,0,0.3,POINT (-68.747 45.2091)
51
+ US-Snf,Sherman Barn,0.2797573267798654,0.6072454449093917,0.0052600244922968685,0.08118396096916877,0.44551885797207214,50.998453230483314,35.0865650381947,9.5,5.094716992356792,0.00618396198395901,3,1.0,0.0,0,0,400,0,0,0.3,POINT (-121.7272 38.0402)
52
+ US-Me2,Metolius mature ponderosa pine,0.2616413814567097,0.8124016432555928,0.0003046857921924876,0.07999999821186066,0.40999999642372126,71.10432067616483,71.10432067616483,7.500000000000001,4.872037028395849,0.005710905194821917,4,0.19215686274509805,17.203438526950002,0,0,400,0,0,0.3,POINT (-121.5574 44.4523)
53
+ US-CF3,CAF-LTAR Boyd North,-0.01203388335311237,0.8181944200469764,0.005130662087878857,0.07999999821186067,0.4099999964237213,98.0394210979951,38.96090290912013,7.500000000000001,5.0,0.004999999888241292,4,0.3058823529411765,0.0,0,0,400,0,0,0.3,POINT (-117.1261 46.7551)
54
+ US-Ne1,Mead - irrigated continuous maize site,-0.021009207403568292,0.8337851188490267,0.4418467009294897,0.07999999821186066,0.40999999642372137,101.00000000000001,37.0,7.5,5.000000000000001,0.004999999888241291,4,0.2901960784313726,0.0,0,0,400,0,0,0.3,POINT (-96.4766 41.1651)
55
+ US-Ha2,Harvard Forest Hemlock Site,0.18249513355855806,0.9023605219289734,0.0003645376401809861,0.07999999821186066,0.40999999642372137,91.48117954124994,91.48117954124994,7.5,5.0,0.004999999888241291,4,0.26666666666666666,20.82702130229827,0,0,400,0,0,0.3,POINT (-72.1779 42.5393)
56
+ CA-Ca3,British Columbia - Pole sapling Douglas-fir stand,0.35407636112449037,0.8879262295668724,5.402219549833483e-05,0.07999999821186064,0.40999999642372126,60.641532354321456,60.641532354321456,9.39223177533376,4.999999999999999,0.00499999988824129,3,0.19607843137254902,13.230460179677898,0,0,400,0,0,0.3,POINT (-124.9004 49.5346)
57
+ US-SP1,Slashpine-Austin Cary- 65yrs nat regen,0.5691812098517238,0.7940243702310268,0.007936279404811244,0.07999999821186068,0.4099999964237213,108.4048429271508,108.4048429271508,9.500000000000004,4.279924774828511,0.00900041729254489,3,0.20784313725490197,17.679970692191432,0,0,400,0,0,0.3,POINT (-82.2188 29.7381)
58
+ US-UMB,Univ. of Mich. Biological Station,0.03174982788293263,0.8248730266931917,0.0871280014272026,0.07999999821186067,0.40999999642372137,95.77499185324714,95.77499185324714,7.500000000000002,4.823074529584666,0.005982919042202668,4,1.0,21.827131302796026,0,0,400,0,0,0.3,POINT (-84.7138 45.5598)
59
+ US-Bi1,Bouldin Island Alfalfa,0.26912559723628576,0.7477459300185619,0.006234041071067856,0.08034582686953035,0.4203748499699173,100.20459451404842,37.10374854164585,9.499999999999998,5.027666284368382,0.005345828352664275,3,0.28627450980392155,0.0,0,0,400,0,0,0.3,POINT (-121.4993 38.0992)
60
+ US-PFi,NE3 Hardwood-1 CHEESEHEAD 2019,0.1359741814580438,0.8869888798724404,0.04664507849369497,0.07999999821186066,0.4099999964237214,94.78676387384857,94.78676387384857,7.5,4.985034874869054,0.005083139461634003,4,0.27058823529411763,11.508748492189826,0,0,400,0,0,0.3,POINT (-90.2327 45.9749)
61
+ US-CF2,CAF-LTAR Cook West,-0.02196958308281892,0.848641594062847,0.0047909295021055995,0.07999999821186067,0.40999999642372137,101.00000000000001,37.0,7.500000000000001,5.000000000000001,0.004999999888241292,4,0.3058823529411765,0.0,0,0,400,0,0,0.3,POINT (-117.0908 46.784)
62
+ US-KFS,Kansas Field Station,0.27267855712763617,0.7986740708690908,0.37593364893285874,0.07999999821186066,0.4099999964237212,117.95860351414211,111.08232061441036,7.5,4.999999999999999,0.004999999888241291,4,0.2823529411764706,0.0,0,0,400,0,0,0.3,POINT (-95.1907 39.0561)
63
+ US-CMW,Charleston Mesquite Woodland,0.14778324757311856,0.4628999314463006,0.5529815297798273,0.08951678830687212,0.6955035291006891,77.22685598369628,41.0630730224176,9.5,5.761342980703082,0.01451678466533475,2,0.29411764705882354,3.9179074666374056,0,0,400,0,0,0.3,POINT (-110.1777 31.6637)
64
+ US-Ro4,Rosemount Prairie,-0.021555012782910866,0.8289251730083561,0.25439896652939414,0.07999999821186064,0.40999999642372126,101.0,37.00000000000001,7.500000000000001,5.000000000000002,0.00499999988824129,4,0.27450980392156865,0.0,0,0,400,0,0,0.3,POINT (-93.0723 44.6781)
65
+ US-PAS,"Florida, Paspalum notatum pasture",0.48697821201358876,0.7562767155145488,0.007054500984967353,0.07999999821186067,0.4099999964237213,120.00000000000003,120.00000000000003,9.500000000000002,5.0,0.004999999888241292,3,0.22745098039215686,0.0,0,0,400,0,0,0.3,POINT (-81.951 27.3944)
66
+ US-xYE,NEON Yellowstone Northern Range (Frog Rock) (YELL),0.00785267134927765,0.6032047756369527,0.00019616805898248083,0.08941945545527555,0.692583545293238,140.72279481893938,44.64438247658405,7.499999999999999,5.723280735401539,0.014587649732624781,4,0.2235294117647059,10.17531865696768,0,0,400,0,0,0.3,POINT (-110.5391 44.9535)
67
+ US-Los,Lost Creek,0.08206634657679468,0.8568525609024192,0.02389146201185007,0.07999999821186066,0.4099999964237212,69.90936484339393,69.90936484339393,7.5,4.910660918642935,0.005496328054316136,4,0.25882352941176473,0.0,0,0,400,0,0,0.3,POINT (-89.9792 46.0827)
68
+ US-PFd,NW3 Tussock-1 CHEESEHEAD 2019,0.10728203333403268,0.8788174041178145,0.047010698755165094,0.07999999821186066,0.40999999642372137,68.02731483019502,68.02731483019502,7.5,4.999999999999999,0.004999999888241291,4,0.20392156862745098,4.234582501186277,0,0,400,0,0,0.3,POINT (-90.301 45.9689)
69
+ US-KM4,KBS Marshall Farms Smooth Brome Grass (Ref),0.008242746942216796,0.8328631710220482,0.18722426516989543,0.07999999821186067,0.4099999964237214,116.95275514232739,106.68835141121974,7.499999999999998,4.497795875696682,0.007790022443034203,4,0.2823529411764706,0.0,0,0,400,0,0,0.3,POINT (-85.3301 42.4423)
70
+ US-Syv,Sylvania Wilderness Area,0.09096690481321135,0.8784962886274448,0.009326731067693507,0.07999999821186064,0.40999999642372126,72.02047511228062,72.02047511228062,7.499999999999998,4.999999999999999,0.00499999988824129,4,0.2627450980392157,22.032710264511714,0,0,400,0,0,0.3,POINT (-89.3477 46.242)
71
+ US-WCr,Willow Creek,0.07854830315115682,0.8912569427517121,0.048217020962668916,0.07999999821186064,0.40999999642372126,102.79344741592236,102.79344741592236,7.499999999999999,4.745245694908175,0.006415301401590664,4,0.2784313725490196,22.94535521065764,0,0,400,0,0,0.3,POINT (-90.0799 45.8059)
72
+ US-Rws,Reynolds Creek Wyoming big sagebrush,0.004509057501874835,0.41941068457948516,0.00044523162532180105,0.09000000357627869,0.7099999785423279,81.0335982382361,39.99999999999999,9.40520005505512,5.800000190734864,0.014999999664723871,2,0.28627450980392155,0.0,0,0,400,0,0,0.3,POINT (-116.7132 43.1675)
73
+ US-xJE,NEON Jones Ecological Research Center (JERC),0.43553002056546214,0.7927568467710036,0.011980531922772555,0.07999999821186066,0.40999999642372137,116.70687910104104,105.61426133612662,9.500000000000002,4.255989858480967,0.0091333890329689,3,0.2196078431372549,15.595609032370277,0,0,400,0,0,0.3,POINT (-84.4686 31.1948)
74
+ US-SRG,Santa Rita Grassland,0.2116718389624474,0.5799489157777623,0.6583911856853132,0.08133261673529595,0.44997852829771606,64.13218849370139,59.0682408211606,9.500000000000002,5.106609450102737,0.006332617667018329,2,0.2980392156862745,0.0,0,0,400,0,0,0.3,POINT (-110.8277 31.7894)
75
+ US-xNW,NEON Niwot Ridge Mountain Research Station (NIWO),0.08403786249038447,0.5836209150313519,0.015017829741361066,0.08234185180259626,0.48025556227020655,125.15207513582986,101.26518132425504,7.499999999999999,4.498114868493081,0.011170925917544402,4,0.2235294117647059,0.0,0,0,400,0,0,0.3,POINT (-105.5824 40.0543)
76
+ US-Rms,RCEW Mountain Big Sagebrush,0.01613737195211912,0.5938638974956257,0.0003628479069995922,0.0900000035762787,0.7099999785423279,132.97066457862053,40.0,7.78216673191811,5.800000190734864,0.014999999664723875,4,0.21176470588235294,4.572696446649116,0,0,400,0,0,0.3,POINT (-116.7486 43.0645)
77
+ US-NR4,Niwot Ridge Alpine (T-Van East),0.08136959430879162,0.5802803335195635,0.014954318480065697,0.08271514025249509,0.49145420909225684,125.97330928506292,98.2788753270439,7.499999999999998,4.56157388161368,0.011357570038198277,5,0.2196078431372549,0.0,0,0,400,0,0,0.3,POINT (-105.5859 40.052)
78
+ US-xDS,NEON Disney Wilderness Preserve (DSNY),0.4973639420138239,0.715324722064415,0.028235298691412305,0.07999999821186067,0.40999999642372137,118.68641733735389,118.68641733735389,9.500000000000002,5.0,0.004999999888241292,3,0.21568627450980393,0.0,0,0,400,0,0,0.3,POINT (-81.4362 28.125)
79
+ US-xJR,NEON Jornada LTER (JORN),0.12733616826479466,0.360686143530532,0.7358452007760038,0.07999999821186064,0.4099999964237213,62.0,62.0,9.5,5.0,0.00499999988824129,2,0.3215686274509804,0.0,0,0,400,0,0,0.3,POINT (-106.8425 32.5907)
80
+ US-Bar,Bartlett Experimental Forest,0.1867524064374743,0.878037671304298,0.00032694562116477357,0.07999999821186064,0.4099999964237212,92.30735551697218,92.30735551697218,7.499999999999999,5.0,0.00499999988824129,4,0.26666666666666666,18.432093461841223,0,0,400,0,0,0.3,POINT (-71.2881 44.0646)
81
+ US-ALQ,Allequash Creek Site,0.08171194116070679,0.8665118950794343,0.022387954051174563,0.07999999821186064,0.4099999964237213,70.47530139490881,70.47530139490881,7.499999999999999,4.999999999999999,0.00499999988824129,4,0.2549019607843137,0.0,0,0,400,0,0,0.3,POINT (-89.6067 46.0308)
82
+ US-MMS,Morgan Monroe State Forest,0.2823703648732803,0.9175582590433609,0.4041865217678945,0.07999999821186066,0.40999999642372126,96.0684345327952,95.19247251301664,7.499999999999998,4.999999999999999,0.004999999888241291,4,0.27450980392156865,25.74251378203622,0,0,400,0,0,0.3,POINT (-86.4131 39.3232)
83
+ US-UC1,LTAR UCB (Upper Chesapeake Bay) EC1,0.048636062924460974,0.8648507538653104,0.09611361629526055,0.07999999821186066,0.40999999642372137,96.69903286553514,87.75141218668543,7.500000000000001,5.0,0.004999999888241291,4,0.26666666666666666,0.0,0,0,400,0,0,0.3,POINT (-78.0056 40.7536)
84
+ US-PFb,NW1 Pine-1 CHEESEHEAD 2019,0.08995320311083482,0.8728946856438946,0.0471069508468557,0.07999999821186066,0.40999999642372126,63.148504336700725,63.148504336700725,7.499999999999998,5.0,0.004999999888241291,4,0.21176470588235294,15.291328007811302,0,0,400,0,0,0.3,POINT (-90.3232 45.972)
85
+ US-xDL,NEON Dead Lake (DELA),0.3782908271750038,0.773298041035145,0.08904439022155984,0.07999999821186066,0.40999999642372137,81.0611416765429,81.0611416765429,9.500000000000002,4.941080161116164,0.005327332284482986,3,0.2196078431372549,25.104924340813678,0,0,400,0,0,0.3,POINT (-87.8039 32.5417)
86
+ US-xPU,NEON Pu'u Maka'ala Natural Area Reserve (PUUM),0.4915185001086692,0.6800122209779613,0.0,0.07999999821186066,0.40999999642372126,82.49190024930452,82.49190024930452,9.500000000000002,4.660391646324331,0.006886712722122624,3,0.24313725490196078,16.00187488986781,0,0,400,0,0,0.3,POINT (-155.3173 19.5531)
87
+ US-xBL,NEON Blandy Experimental Farm (BLAN),0.23290378346672946,0.7882458903315729,0.14320452604901554,0.07999999821186066,0.4099999964237213,112.64414663488051,112.64414663488051,7.499999999999999,4.980396014068566,0.005108910907218724,4,0.2980392156862745,4.110317769535565,0,0,400,0,0,0.3,POINT (-78.0716 39.0603)
88
+ US-xST,NEON Steigerwaldt Land Services (STEI),0.07986228746714846,0.8667352598806095,0.05527376657661181,0.07999999821186064,0.4099999964237213,99.21700716952283,99.21700716952283,7.5,4.879362218359655,0.005670209700244861,4,0.27450980392156865,22.886456724316574,0,0,400,0,0,0.3,POINT (-89.5864 45.5089)
89
+ US-xSB,NEON Ordway-Swisher Biological Station (OSBS),0.5119628206376107,0.7317411593412771,0.00521660386925363,0.07999999821186067,0.4099999964237213,120.00000000000001,120.00000000000001,9.5,4.099999904632569,0.009999999776482584,3,0.27450980392156865,0.0,0,0,400,0,0,0.3,POINT (-81.9934 29.6893)
90
+ US-xRN,NEON Oak Ridge National Lab (ORNL),0.3711365920257157,0.8255869922117649,0.09602876895024935,0.07999999821186064,0.4099999964237212,66.53013331881384,66.53013331881384,9.5,4.9297972562031225,0.005390015081512261,3,0.2784313725490196,22.09015092022609,0,0,400,0,0,0.3,POINT (-84.2826 35.9641)
91
+ US-UC2,LTAR UCB (Upper Chesapeake Bay) EC2,0.04862782462036976,0.8630071762212352,0.09964935589255433,0.07999999821186066,0.4099999964237213,96.94405876008986,84.8601066309397,7.500000000000001,5.000000000000001,0.004999999888241291,4,0.2823529411764706,0.0,0,0,400,0,0,0.3,POINT (-77.9998 40.7559)
92
+ US-xTR,NEON Treehaven (TREE),0.08928135399698017,0.8606690895156016,0.055305411390853404,0.07999999821186064,0.40999999642372126,100.14153215945866,100.14153215945866,7.499999999999998,4.844692527563328,0.005862819068843005,4,0.27450980392156865,23.647797320173403,0,0,400,0,0,0.3,POINT (-89.5857 45.4937)
93
+ US-xRM,"NEON Rocky Mountain National Park, CASTNET (RMNP)",0.1704044145842011,0.6242891464542177,0.011047207877373592,0.07999999821186064,0.4099999964237213,120.0,120.0,7.5,4.099999904632568,0.00999999977648258,4,0.19607843137254902,13.056867966697768,0,0,400,0,0,0.3,POINT (-105.5459 40.2759)
94
+ US-Tw4,Twitchell East End Wetland,0.267918630234126,0.7102531045067177,0.006067214467032747,0.08131288819188554,0.449386672348178,97.98035466580677,37.39386678272086,9.500000000000002,5.105031167100271,0.006312889134632117,3,0.28627450980392155,2.8031128785626596,0,0,400,0,0,0.3,POINT (-121.6413 38.1027)
95
+ US-Bi2,Bouldin Island corn,0.23864556081901508,0.7690385256883943,0.006313804299933983,0.07999999821186067,0.4099999964237213,101.00000000000001,37.00000000000001,9.500000000000002,5.000000000000001,0.004999999888241292,3,0.28627450980392155,0.0,0,0,400,0,0,0.3,POINT (-121.5351 38.1091)
96
+ US-Jo2,Jornada Experimental Range Mixed Shrubland,0.1335976024229522,0.31389221495434,0.9392833171850932,0.07999999821186066,0.40999999642372137,62.0,62.0,9.5,5.000000000000001,0.004999999888241291,2,0.29411764705882354,0.0,0,0,400,0,0,0.3,POINT (-106.6032 32.5849)
97
+ US-CS5,Central Sands Irrigated Agricultural Field,0.007640264962628648,0.7856562894084331,0.08739989745800403,0.07999999821186066,0.4099999964237213,104.07215700880023,50.42047535423256,7.500000000000002,4.854476757847163,0.00580846224090765,4,0.2901960784313726,0.0,0,0,400,0,0,0.3,POINT (-89.5377 44.1095)
98
+ US-Mpj,Mountainair Pinyon-Juniper Woodland,0.04273712281221086,0.4449268392496286,0.04285454812382234,0.09000000357627869,0.7099999785423279,78.0,40.00000000000001,9.5,5.800000190734864,0.014999999664723877,2,0.21176470588235294,0.0,0,0,400,0,0,0.3,POINT (-106.2377 34.4384)
99
+ US-xWR,NEON Wind River Experimental Forest (WREF),0.5477450639653825,0.8969787098713023,0.0008724538924845859,0.07999999821186067,0.4099999964237213,63.00000000000001,63.00000000000001,9.407118761953923,5.000000000000001,0.004999999888241292,3,0.19215686274509805,30.192381364266236,0,0,400,0,0,0.3,POINT (-121.9519 45.8205)
100
+ US-xUK,NEON The University of Kansas Field Station (UKFS),0.2634781336173303,0.7871996132070884,0.3775263690874297,0.07999999821186066,0.40999999642372137,114.61758832508715,96.48735952538074,7.499999999999999,5.0,0.004999999888241291,4,0.2901960784313726,18.017808722734678,0,0,400,0,0,0.3,POINT (-95.1921 39.0404)
101
+ US-xUN,NEON University of Notre Dame Environmental Research Center (UNDE),0.08285437806331074,0.870716687559855,0.010095175981873969,0.07999999821186066,0.4099999964237213,63.407461377668064,63.407461377668064,7.5,4.999999999999999,0.004999999888241291,4,0.26666666666666666,22.10856263578877,0,0,400,0,0,0.3,POINT (-89.5373 46.2339)
102
+ US-xBR,NEON Bartlett Experimental Forest (BART),0.18669641177218566,0.8781389559203983,0.0003268633909591533,0.07999999821186066,0.4099999964237213,92.20501820877294,92.20501820877294,7.5,5.0,0.004999999888241291,4,0.26666666666666666,14.4387401046389,0,0,400,0,0,0.3,POINT (-71.2873 44.0639)
103
+ US-CF4,CAF-LTAR Boyd South,-0.010999906803963642,0.8124497766579353,0.005163748192798795,0.07999999821186066,0.40999999642372137,97.27505946352613,39.467168407274904,7.500000000000001,5.0,0.004999999888241291,4,0.3058823529411765,0.0,0,0,400,0,0,0.3,POINT (-117.1285 46.7518)
104
+ US-xCL,NEON LBJ National Grassland (CLBJ),0.3061995698192829,0.7180278822475559,0.39905242611923514,0.0900000035762787,0.7099999785423279,78.00000000000001,39.99999999999999,9.5,5.800000190734864,0.014999999664723873,3,0.29411764705882354,6.96284365309675,0,0,400,0,0,0.3,POINT (-97.57 33.4012)
105
+ CA-DBB,Delta Burns Bog,0.4298948098218294,0.6854093861188868,0.00036891788856120554,0.07999999821186064,0.40999999642372126,115.36926886645571,115.36926886645571,9.499999999999998,4.275182160749559,0.00902676514515822,3,1.0,3.18067914609519,0,0,400,0,0,0.3,POINT (-122.9849 49.1293)
106
+ US-Hn2,Hanford 100H grassland,-0.012772100970790873,0.4477947335240179,0.005556917245422874,0.09000000357627869,0.709999978542328,78.00000000000001,40.0,9.500000000000002,5.800000190734864,0.014999999664723873,2,0.23921568627450981,0.0,0,0,400,0,0,0.3,POINT (-119.4641 46.6889)
107
+ US-PFp,SE2 Hardwood-4 CHEESEHEAD 2019,0.11385126484925401,0.88066853412369,0.047024068619455184,0.07999999821186064,0.4099999964237213,67.3345639745341,67.3345639745341,7.499999999999998,4.973901438430578,0.005144991878355567,4,0.26666666666666666,16.996332264289464,0,0,400,0,0,0.3,POINT (-90.2641 45.9365)
108
+ US-xKA,NEON Konza Prairie Biological Station - Relocatable (KONA),0.25200893057920976,0.7690676416173009,0.40102153258648077,0.08441585372445912,0.5424755828400674,117.96671415277223,39.07868413230414,7.5,5.3532683357257325,0.009415852933289505,4,0.2823529411764706,0.0,0,0,400,0,0,0.3,POINT (-96.6129 39.1104)
109
+ US-CS3,Central Sands Irrigated Agricultural Field,-0.010124426316489703,0.8021515110436562,0.0903334761218076,0.07999999821186066,0.40999999642372137,101.43104939896475,38.883005269161785,7.500000000000001,4.979581868411771,0.005113433938064986,4,0.29411764705882354,0.0,0,0,400,0,0,0.3,POINT (-89.5727 44.1394)
110
+ US-xTE,NEON Lower Teakettle (TEAK),0.12673528157857603,0.6218498100003294,0.00386233286325533,0.07999999821186066,0.4099999964237213,120.00000000000001,120.00000000000001,8.276833564227385,4.8108573386186455,0.006050792316638027,4,0.1843137254901961,18.530790925993426,0,0,400,0,0,0.3,POINT (-119.006 37.0058)
111
+ US-Rwf,RCEW Upper Sheep Prescibed Fire,-0.03340489998452843,0.4925324999586286,0.0004061882397882294,0.09000000357627867,0.7099999785423279,138.83983302844948,40.0,7.598755217860953,5.800000190734863,0.014999999664723871,4,0.2901960784313726,0.0,0,0,400,0,0,0.3,POINT (-116.7231 43.1207)
112
+ US-xML,NEON Mountain Lake Biological Station (MLBS),0.2882344315758688,0.9161296971281405,0.2993259498906422,0.07999999821186066,0.4099999964237213,95.99999999999997,95.99999999999997,7.5,4.999999999999999,0.004999999888241291,4,0.2627450980392157,23.19730922838923,0,0,400,0,0,0.3,POINT (-80.5248 37.3783)
113
+ US-UiB,University of Illinois Miscanthus,0.02588083792723599,0.7958818613572446,0.44170655714515256,0.07999999821186066,0.4099999964237213,99.53390529561383,37.97104973926876,7.5,5.0,0.004999999888241291,4,0.2901960784313726,0.0,0,0,400,0,0,0.3,POINT (-88.1984 40.0628)
114
+ PR-xGU,NEON Guanica Forest (GUAN),0.4685091047827422,0.8021379455530312,0.0,0.07999999821186066,0.40999999642372137,85.65056946496779,85.04940948577665,9.5,4.190658672840825,0.00949634001773076,1,0.25098039215686274,4.63201088564212,0,0,400,0,0,0.3,POINT (-66.8687 17.9696)
115
+ US-ARM,ARM Southern Great Plains site- Lamont,0.2624583280383546,0.7246942182590146,0.17137567627875439,0.07999999821186066,0.40999999642372126,101.0,36.99999999999999,9.5,5.0,0.004999999888241291,3,0.2980392156862745,0.0,0,0,400,0,0,0.3,POINT (-97.4888 36.6058)
116
+ US-Kon,Konza Prairie LTER (KNZ),0.22953957985158824,0.7834399018400104,0.40847225152916894,0.08974012368296676,0.7022035863899819,140.93449300900355,39.92203607382953,7.5,5.779209805465924,0.01474011991663106,4,0.2901960784313726,0.0,0,0,400,0,0,0.3,POINT (-96.5603 39.0824)
117
+ US-HB2,Hobcaw Barony Mature Longleaf Pine,0.5037070076595864,0.769539040856944,0.017834696313681137,0.07999999821186064,0.40999999642372126,52.82109356256992,52.82109356256992,9.499999999999998,4.957050527297421,0.005238608039305144,3,0.25882352941176473,17.617756205505202,0,0,400,0,0,0.3,POINT (-79.244 33.3242)
118
+ US-xSL,"NEON North Sterling, CO (STER)",-0.025449434552178435,0.49520610753181765,0.3407758727411859,0.09000000357627867,0.7099999785423279,78.0,40.0,9.5,5.8000001907348615,0.014999999664723875,2,0.2980392156862745,0.0,0,0,400,0,0,0.3,POINT (-103.0293 40.4619)
119
+ US-xWD,NEON Woodworth (WOOD),-0.04178529617437308,0.7538628864753554,0.032479164613013686,0.07999999821186066,0.40999999642372126,100.99999999999999,37.0,7.5,5.000000000000001,0.004999999888241291,4,0.29411764705882354,0.0,0,0,400,0,0,0.3,POINT (-99.2414 47.1282)
120
+ US-CS4,Central Sands Irrigated Agricultural Field,-0.0030261665837659026,0.7767401520835833,0.09245373047365935,0.07999999821186066,0.4099999964237213,100.99999999999999,37.00000000000001,7.5,5.000000000000001,0.004999999888241291,4,0.2784313725490196,0.0,0,0,400,0,0,0.3,POINT (-89.5475 44.1597)
121
+ US-xAE,NEON Klemme Range Research Station (OAES),0.23350258235219168,0.5545383733710677,0.37112725395278673,0.09000000357627869,0.7099999785423278,78.0,40.0,9.499999999999998,5.800000190734862,0.014999999664723873,3,0.30196078431372547,0.0,0,0,400,0,0,0.3,POINT (-99.0588 35.4106)
122
+ US-GLE,GLEES,0.08343055737509326,0.7083671421156569,0.0014226370284919662,0.08809727414076567,0.6529181295003729,137.8139974874181,55.22182731847957,7.499999999999999,5.476536305779675,0.014048635478583545,4,0.2,15.02847456846871,0,0,400,0,0,0.3,POINT (-106.2399 41.3665)
@@ -0,0 +1,19 @@
1
+ import os
2
+ import pandas as pd
3
+
4
+ def load_ECOv002_calval_BESS_inputs() -> pd.DataFrame:
5
+ """
6
+ Load the input data for the BESS model from the ECOSTRESS Collection 2 Cal-Val dataset.
7
+
8
+ Returns:
9
+ pd.DataFrame: A DataFrame containing the input data.
10
+ """
11
+
12
+ # Define the path to the input CSV file relative to this module's directory
13
+ module_dir = os.path.dirname(os.path.abspath(__file__))
14
+ input_file_path = os.path.join(module_dir, "ECOv002-cal-val-BESS-JPL-inputs.csv")
15
+
16
+ # Load the input data into a DataFrame
17
+ inputs_df = pd.read_csv(input_file_path)
18
+
19
+ return inputs_df
@@ -0,0 +1,19 @@
1
+ import os
2
+ import pandas as pd
3
+
4
+ def load_ECOv002_static_tower_BESS_inputs() -> pd.DataFrame:
5
+ """
6
+ Load the input data for the BESS-JPL model from the ECOSTRESS Collection 2 Cal-Val dataset.
7
+
8
+ Returns:
9
+ pd.DataFrame: A DataFrame containing the input data.
10
+ """
11
+
12
+ # Define the path to the input CSV file relative to this module's directory
13
+ module_dir = os.path.dirname(os.path.abspath(__file__))
14
+ input_file_path = os.path.join(module_dir, "ECOv002-static-tower-BESS-JPL-inputs.csv")
15
+
16
+ # Load the input data into a DataFrame
17
+ inputs_df = pd.read_csv(input_file_path)
18
+
19
+ return inputs_df
BESS_JPL/LAI_from_NDVI.py CHANGED
@@ -23,7 +23,6 @@ def LAI_from_NDVI(
23
23
  Union[Raster, np.ndarray]: Converted LAI data.
24
24
  """
25
25
  fIPAR = rt.clip(NDVI - 0.05, min_fIPAR, max_fIPAR)
26
- fIPAR = np.where(fIPAR == 0, np.nan, fIPAR)
27
26
  LAI = rt.clip(-np.log(1 - fIPAR) * (1 / KPAR), min_LAI, max_LAI)
28
27
 
29
28
  return LAI
BESS_JPL/__init__.py CHANGED
@@ -1,10 +1,5 @@
1
1
  from .BESS_JPL import *
2
+ from .version import __version__
2
3
 
3
- from os.path import join, dirname, abspath
4
-
5
- with open(join(abspath(dirname(__file__)), "version.txt")) as f:
6
- version = f.read()
7
-
8
- __version__ = version
9
4
  __author__ = "Gregory H. Halverson"
10
5
 
BESS_JPL/constants.py CHANGED
@@ -5,4 +5,7 @@ MAX_FIPAR = 1.0
5
5
  MIN_LAI = 0.0
6
6
  MAX_LAI = 10.0
7
7
  BALL_BERRY_INTERCEPT_C4 = 0.04
8
- RESAMPLING = "cubic"
8
+ RESAMPLING = "cubic"
9
+
10
+ # Default scale factor for C4 fraction
11
+ C4_FRACTION_SCALE_FACTOR = 0.01
@@ -5,10 +5,16 @@ from rasters import Raster, RasterGeometry
5
5
 
6
6
  import numpy as np
7
7
 
8
- def load_C4_fraction(geometry: RasterGeometry = None, resampling: str = "nearest") -> Raster:
8
+ from .constants import *
9
+
10
+ def load_C4_fraction(
11
+ geometry: RasterGeometry = None,
12
+ resampling: str = "nearest",
13
+ scale_factor: float = C4_FRACTION_SCALE_FACTOR) -> Raster:
9
14
  filename = join(abspath(dirname(__file__)), "C4_fraction.tif")
10
15
  image = Raster.open(filename, geometry=geometry, resampling=resampling, nodata=np.nan)
11
16
  image = rt.clip(image, 0, 100)
12
- # TODO: scale C4_fraction to be within 0 and 1?
17
+ # Scale image to be between 0 and 1 using a multiplicative scale factor
18
+ image *= scale_factor
13
19
 
14
20
  return image
BESS_JPL/model.py CHANGED
@@ -9,7 +9,7 @@ from rasters import Raster, RasterGeometry
9
9
  from check_distribution import check_distribution
10
10
 
11
11
  from sun_angles import calculate_SZA_from_DOY_and_hour
12
- from solar_apparent_time import solar_day_of_year_for_area, solar_hour_of_day_for_area
12
+ from solar_apparent_time import calculate_solar_day_of_year, calculate_solar_hour_of_day
13
13
 
14
14
  from koppengeiger import load_koppen_geiger
15
15
  from gedi_canopy_height import load_canopy_height, GEDI_DOWNLOAD_DIRECTORY
@@ -87,6 +87,7 @@ def BESS_JPL(
87
87
  peakVCmax_C3: np.ndarray = None, # peak maximum carboxylation rate for C3 plants
88
88
  peakVCmax_C4: np.ndarray = None, # peak maximum carboxylation rate for C4 plants
89
89
  CI: Union[Raster, np.ndarray] = None,
90
+ C4_fraction_scale_factor: float = C4_FRACTION_SCALE_FACTOR,
90
91
  MODISCI_connection: MODISCI = None,
91
92
  NASADEM_connection: NASADEMConnection = None,
92
93
  resampling: str = RESAMPLING,
@@ -98,8 +99,8 @@ def BESS_JPL(
98
99
  GEOS5FP_connection = GEOS5FP()
99
100
 
100
101
  if (day_of_year is None or hour_of_day is None) and time_UTC is not None and geometry is not None:
101
- day_of_year = solar_day_of_year_for_area(time_UTC=time_UTC, geometry=geometry)
102
- hour_of_day = solar_hour_of_day_for_area(time_UTC=time_UTC, geometry=geometry)
102
+ day_of_year = calculate_solar_day_of_year(time_UTC=time_UTC, geometry=geometry)
103
+ hour_of_day = calculate_solar_hour_of_day(time_UTC=time_UTC, geometry=geometry)
103
104
 
104
105
  if time_UTC is None and day_of_year is None and hour_of_day is None:
105
106
  raise ValueError("no time given between time_UTC, day_of_year, and hour_of_day")
@@ -111,54 +112,84 @@ def BESS_JPL(
111
112
 
112
113
  elevation_km = NASADEM_connection.elevation_km(geometry=geometry)
113
114
 
115
+ check_distribution(elevation_km, "elevation_km")
116
+
114
117
  # load air temperature in Celsius if not provided
115
118
  if Ta_C is None:
116
119
  Ta_C = GEOS5FP_connection.Ta_C(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
117
120
 
121
+ check_distribution(Ta_C, "Ta_C")
122
+
118
123
  # load relative humidity if not provided
119
124
  if RH is None:
120
125
  RH = GEOS5FP_connection.RH(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
121
126
 
127
+ check_distribution(RH, "RH")
128
+
122
129
  # load minimum NDVI if not provided
123
130
  if NDVI_minimum is None and geometry is not None:
124
131
  NDVI_minimum = load_NDVI_minimum(geometry=geometry, resampling=resampling)
125
132
 
133
+ check_distribution(NDVI_minimum, "NDVI_minimum")
134
+
126
135
  # load maximum NDVI if not provided
127
136
  if NDVI_maximum is None and geometry is not None:
128
137
  NDVI_maximum = load_NDVI_maximum(geometry=geometry, resampling=resampling)
129
138
 
139
+ check_distribution(NDVI_maximum, "NDVI_maximum")
140
+
130
141
  # load C4 fraction if not provided
131
142
  if C4_fraction is None:
132
- C4_fraction = load_C4_fraction(geometry=geometry, resampling=resampling)
143
+ C4_fraction = load_C4_fraction(
144
+ geometry=geometry,
145
+ resampling=resampling,
146
+ scale_factor=C4_fraction_scale_factor
147
+ )
148
+
149
+ check_distribution(C4_fraction, "C4_fraction")
133
150
 
134
151
  # load carbon uptake efficiency if not provided
135
152
  if carbon_uptake_efficiency is None:
136
153
  carbon_uptake_efficiency = load_carbon_uptake_efficiency(geometry=geometry, resampling=resampling)
137
154
 
155
+ check_distribution(carbon_uptake_efficiency, "carbon_uptake_efficiency")
156
+
138
157
  # load kn if not provided
139
158
  if kn is None:
140
159
  kn = load_kn(geometry=geometry, resampling=resampling)
141
160
 
161
+ check_distribution(kn, "kn")
162
+
142
163
  # load peak VC max for C3 plants if not provided
143
164
  if peakVCmax_C3 is None:
144
165
  peakVCmax_C3 = load_peakVCmax_C3(geometry=geometry, resampling=resampling)
145
166
 
167
+ check_distribution(peakVCmax_C3, "peakVCmax_C3")
168
+
146
169
  # load peak VC max for C4 plants if not provided
147
170
  if peakVCmax_C4 is None:
148
171
  peakVCmax_C4 = load_peakVCmax_C4(geometry=geometry, resampling=resampling)
149
172
 
173
+ check_distribution(peakVCmax_C4, "peakVCmax_C4")
174
+
150
175
  # load Ball-Berry slope for C3 plants if not provided
151
176
  if ball_berry_slope_C3 is None:
152
177
  ball_berry_slope_C3 = load_ball_berry_slope_C3(geometry=geometry, resampling=resampling)
153
178
 
179
+ check_distribution(ball_berry_slope_C3, "ball_berry_slope_C3")
180
+
154
181
  # load Ball-Berry slope for C4 plants if not provided
155
182
  if ball_berry_slope_C4 is None:
156
183
  ball_berry_slope_C4 = load_ball_berry_slope_C4(geometry=geometry, resampling=resampling)
157
184
 
185
+ check_distribution(ball_berry_slope_C4, "ball_berry_slope_C4")
186
+
158
187
  # load Ball-Berry intercept for C3 plants if not provided
159
188
  if ball_berry_intercept_C3 is None:
160
189
  ball_berry_intercept_C3 = load_ball_berry_intercept_C3(geometry=geometry, resampling=resampling)
161
190
 
191
+ check_distribution(ball_berry_intercept_C3, "ball_berry_intercept_C3")
192
+
162
193
  # Create a dictionary of variables to check
163
194
  variables_to_check = {
164
195
  "Rg": Rg,
@@ -185,7 +216,12 @@ def BESS_JPL(
185
216
  logger.warning(f"Variable '{name}' has a different size: {size} (expected: {reference_size}).")
186
217
 
187
218
  # check if any of the FLiES outputs are not given
188
- if None in (Rg, VISdiff, VISdir, NIRdiff, NIRdir, UV, albedo_visible, albedo_NIR):
219
+ flies_variables = [Rg, VISdiff, VISdir, NIRdiff, NIRdir, UV, albedo_visible, albedo_NIR]
220
+ flies_variables_missing = False
221
+ for variable in flies_variables:
222
+ if variable is None:
223
+ flies_variables_missing = True
224
+ if flies_variables_missing:
189
225
  # load cloud optical thickness if not provided
190
226
  if COT is None:
191
227
  COT = GEOS5FP_connection.COT(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
@@ -222,13 +258,21 @@ def BESS_JPL(
222
258
  UV = FLiES_results["UV"]
223
259
  # albedo_visible = FLiES_results["VIS"]
224
260
  # albedo_NIR = FLiES_results["NIR"]
225
- albedo_NWP = GEOS5FP_connection.ALBEDO(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
226
- RVIS_NWP = GEOS5FP_connection.ALBVISDR(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
227
- albedo_visible = rt.clip(albedo * (RVIS_NWP / albedo_NWP), 0, 1)
261
+
262
+ if albedo_visible is None:
263
+ albedo_NWP = GEOS5FP_connection.ALBEDO(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
264
+ RVIS_NWP = GEOS5FP_connection.ALBVISDR(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
265
+ albedo_visible = rt.clip(albedo * (RVIS_NWP / albedo_NWP), 0, 1)
266
+
228
267
  check_distribution(albedo_visible, "RVIS")
229
- RNIR_NWP = GEOS5FP_connection.ALBNIRDR(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
230
- albedo_NIR = rt.clip(albedo * (RNIR_NWP / albedo_NWP), 0, 1)
268
+
269
+ if albedo_NIR is None:
270
+ albedo_NWP = GEOS5FP_connection.ALBEDO(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
271
+ RNIR_NWP = GEOS5FP_connection.ALBNIRDR(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
272
+ albedo_NIR = rt.clip(albedo * (RNIR_NWP / albedo_NWP), 0, 1)
273
+
231
274
  check_distribution(albedo_NIR, "RNIR")
275
+
232
276
  PARDir = VISdir
233
277
  check_distribution(PARDir, "PARDir")
234
278
  else:
@@ -238,6 +282,7 @@ def BESS_JPL(
238
282
  if KG_climate is None:
239
283
  KG_climate = load_koppen_geiger(geometry=geometry)
240
284
 
285
+ check_distribution(np.float32(KG_climate), "KG_climate")
241
286
 
242
287
  # load canopy height in meters if not provided
243
288
  if canopy_height_meters is None:
@@ -247,14 +292,20 @@ def BESS_JPL(
247
292
  source_directory=GEDI_download_directory
248
293
  )
249
294
 
295
+ check_distribution(canopy_height_meters, "canopy_height_meters")
296
+
250
297
  # load CO2 concentration in ppm if not provided
251
298
  if Ca is None:
252
299
  Ca = GEOS5FP_connection.CO2SC(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
253
300
 
301
+ check_distribution(Ca, "Ca")
302
+
254
303
  # load wind speed in meters per second if not provided
255
304
  if wind_speed_mps is None:
256
305
  wind_speed_mps = GEOS5FP_connection.wind_speed(time_UTC=time_UTC, geometry=geometry, resampling=resampling)
257
306
 
307
+ check_distribution(wind_speed_mps, "wind_speed_mps")
308
+
258
309
  # canopy temperature defaults to surface temperature
259
310
  if canopy_temperature_C is None:
260
311
  canopy_temperature_C = ST_C
@@ -331,7 +382,7 @@ def BESS_JPL(
331
382
 
332
383
  # Check the distribution for each variable
333
384
  for var_name, var_value in meteorology_outputs.items():
334
- check_distribution(var_value, var_name, time_UTC)
385
+ check_distribution(var_value, var_name)
335
386
 
336
387
  # convert NDVI to LAI
337
388
  LAI = LAI_from_NDVI(NDVI)
@@ -358,9 +409,9 @@ def BESS_JPL(
358
409
 
359
410
  # Check the distribution for each variable
360
411
  for var_name, var_value in VCmax_outputs.items():
361
- check_distribution(var_value, var_name, time_UTC)
412
+ check_distribution(var_value, var_name)
362
413
 
363
- sunlit_fraction, APAR_sunlit, APAR_shaded, ASW_sunlit, ASW_shaded, ASW_soil, G = canopy_shortwave_radiation(
414
+ sunlit_fraction, APAR_sunlit, APAR_shaded, ASW_sunlit, ASW_shaded, ASW_soil, G_Wm2 = canopy_shortwave_radiation(
364
415
  PARDiff=VISdiff, # diffuse photosynthetically active radiation in W/m^2
365
416
  PARDir=VISdir, # direct photosynthetically active radiation in W/m^2
366
417
  NIRDiff=NIRdiff, # diffuse near-infrared radiation in W/m^2
@@ -381,12 +432,12 @@ def BESS_JPL(
381
432
  "ASW_sunlit": ASW_sunlit,
382
433
  "ASW_shaded": ASW_shaded,
383
434
  "ASW_soil": ASW_soil,
384
- "G": G
435
+ "G": G_Wm2
385
436
  }
386
437
 
387
438
  # Check the distribution for each variable
388
439
  for var_name, var_value in canopy_radiation_outputs.items():
389
- check_distribution(var_value, var_name, time_UTC)
440
+ check_distribution(var_value, var_name)
390
441
 
391
442
  canopy_temperature_K = canopy_temperature_C + 273.15
392
443
  soil_temperature_K = soil_temperature_C + 273.15
@@ -406,7 +457,7 @@ def BESS_JPL(
406
457
  ball_berry_slope=ball_berry_slope_C3, # Ball-Berry slope for C3 photosynthesis
407
458
  ball_berry_intercept=ball_berry_intercept_C3, # Ball-Berry intercept for C3 photosynthesis
408
459
  sunlit_fraction=sunlit_fraction, # fraction of sunlit leaves
409
- G=G, # soil heat flux
460
+ G=G_Wm2, # soil heat flux
410
461
  SZA=SZA, # solar zenith angle
411
462
  Ca=Ca, # atmospheric CO2 concentration
412
463
  Ps_Pa=Ps_Pa, # surface pressure in Pascal
@@ -438,7 +489,7 @@ def BESS_JPL(
438
489
 
439
490
  # Check the distribution for each variable
440
491
  for var_name, var_value in carbon_water_fluxes_outputs.items():
441
- check_distribution(var_value, var_name, time_UTC)
492
+ check_distribution(var_value, var_name)
442
493
 
443
494
  GPP_C4, LE_C4, LE_soil_C4, LE_canopy_C4, Rn_C4, Rn_soil_C4, Rn_canopy_C4 = carbon_water_fluxes(
444
495
  canopy_temperature_K=canopy_temperature_K, # canopy temperature in Kelvin
@@ -455,7 +506,7 @@ def BESS_JPL(
455
506
  ball_berry_slope=ball_berry_slope_C4, # Ball-Berry slope for C4 photosynthesis
456
507
  ball_berry_intercept=ball_berry_intercept_C4, # Ball-Berry intercept for C4 photosynthesis
457
508
  sunlit_fraction=sunlit_fraction, # fraction of sunlit leaves
458
- G=G, # soil heat flux
509
+ G=G_Wm2, # soil heat flux
459
510
  SZA=SZA, # solar zenith angle
460
511
  Ca=Ca, # atmospheric CO2 concentration
461
512
  Ps_Pa=Ps_Pa, # surface pressure in Pascal
@@ -487,7 +538,7 @@ def BESS_JPL(
487
538
 
488
539
  # Check the distribution for each variable
489
540
  for var_name, var_value in carbon_water_fluxes_C4_outputs.items():
490
- check_distribution(var_value, var_name, time_UTC)
541
+ check_distribution(var_value, var_name)
491
542
 
492
543
  # interpolate C3 and C4 GPP
493
544
  ST_K = ST_C + 273.15
@@ -505,31 +556,31 @@ def BESS_JPL(
505
556
  GPP_daily = np.where(SZA >= 90, 0, GPP_daily)
506
557
 
507
558
  # interpolate C3 and C4 net radiation
508
- Rn = np.clip(interpolate_C3_C4(Rn_C3, Rn_C4, C4_fraction), 0, 1000)
559
+ Rn_Wm2 = np.clip(interpolate_C3_C4(Rn_C3, Rn_C4, C4_fraction), 0, 1000)
509
560
 
510
561
  # interpolate C3 and C4 soil net radiation
511
- Rn_soil = np.clip(interpolate_C3_C4(Rn_soil_C3, Rn_soil_C4, C4_fraction), 0, 1000)
562
+ Rn_soil_Wm2 = np.clip(interpolate_C3_C4(Rn_soil_C3, Rn_soil_C4, C4_fraction), 0, 1000)
512
563
 
513
564
  # interpolate C3 and C4 canopy net radiation
514
- Rn_canopy = np.clip(interpolate_C3_C4(Rn_canopy_C3, Rn_canopy_C4, C4_fraction), 0, 1000)
565
+ Rn_canopy_Wm2 = np.clip(interpolate_C3_C4(Rn_canopy_C3, Rn_canopy_C4, C4_fraction), 0, 1000)
515
566
 
516
567
  # interpolate C3 and C4 latent heat flux
517
- LE = np.clip(interpolate_C3_C4(LE_C3, LE_C4, C4_fraction), 0, 1000)
568
+ LE_Wm2 = np.clip(interpolate_C3_C4(LE_C3, LE_C4, C4_fraction), 0, 1000)
518
569
 
519
570
  # interpolate C3 and C4 soil latent heat flux
520
- LE_soil = np.clip(interpolate_C3_C4(LE_soil_C3, LE_soil_C4, C4_fraction), 0, 1000)
571
+ LE_soil_Wm2 = np.clip(interpolate_C3_C4(LE_soil_C3, LE_soil_C4, C4_fraction), 0, 1000)
521
572
 
522
573
  # interpolate C3 and C4 canopy latent heat flux
523
- LE_canopy = np.clip(interpolate_C3_C4(LE_canopy_C3, LE_canopy_C4, C4_fraction), 0, 1000)
574
+ LE_canopy_Wm2 = np.clip(interpolate_C3_C4(LE_canopy_C3, LE_canopy_C4, C4_fraction), 0, 1000)
524
575
 
525
576
  return {
526
577
  "GPP": GPP,
527
578
  "GPP_daily": GPP_daily,
528
- "Rn": Rn,
529
- "Rn_soil": Rn_soil,
530
- "Rn_canopy": Rn_canopy,
531
- "LE": LE,
532
- "LE_soil": LE_soil,
533
- "LE_canopy": LE_canopy,
534
- "G": G
579
+ "Rn_Wm2": Rn_Wm2,
580
+ "Rn_soil_Wm2": Rn_soil_Wm2,
581
+ "Rn_canopy_Wm2": Rn_canopy_Wm2,
582
+ "LE_Wm2": LE_Wm2,
583
+ "LE_soil_Wm2": LE_soil_Wm2,
584
+ "LE_canopy_Wm2": LE_canopy_Wm2,
585
+ "G_Wm2": G_Wm2
535
586
  }