BERATools 0.2.3__py3-none-any.whl → 0.2.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- beratools/__init__.py +8 -3
- beratools/core/{algo_footprint_rel.py → algo_canopy_footprint_exp.py} +176 -139
- beratools/core/algo_centerline.py +61 -77
- beratools/core/algo_common.py +48 -57
- beratools/core/algo_cost.py +18 -25
- beratools/core/algo_dijkstra.py +37 -45
- beratools/core/algo_line_grouping.py +100 -100
- beratools/core/algo_merge_lines.py +40 -8
- beratools/core/algo_split_with_lines.py +289 -304
- beratools/core/algo_vertex_optimization.py +25 -46
- beratools/core/canopy_threshold_relative.py +755 -0
- beratools/core/constants.py +8 -9
- beratools/{tools → core}/line_footprint_functions.py +411 -258
- beratools/core/logger.py +18 -2
- beratools/core/tool_base.py +17 -75
- beratools/gui/assets/BERALogo.ico +0 -0
- beratools/gui/assets/BERA_Splash.gif +0 -0
- beratools/gui/assets/BERA_WizardImage.png +0 -0
- beratools/gui/assets/beratools.json +475 -2171
- beratools/gui/bt_data.py +585 -234
- beratools/gui/bt_gui_main.py +129 -91
- beratools/gui/main.py +4 -7
- beratools/gui/tool_widgets.py +530 -354
- beratools/tools/__init__.py +0 -7
- beratools/tools/{line_footprint_absolute.py → canopy_footprint_absolute.py} +81 -56
- beratools/tools/canopy_footprint_exp.py +113 -0
- beratools/tools/centerline.py +30 -37
- beratools/tools/check_seed_line.py +127 -0
- beratools/tools/common.py +65 -586
- beratools/tools/{line_footprint_fixed.py → ground_footprint.py} +140 -117
- beratools/tools/line_footprint_relative.py +64 -35
- beratools/tools/tool_template.py +48 -40
- beratools/tools/vertex_optimization.py +20 -34
- beratools/utility/env_checks.py +53 -0
- beratools/utility/spatial_common.py +210 -0
- beratools/utility/tool_args.py +138 -0
- beratools-0.2.5.dist-info/METADATA +134 -0
- beratools-0.2.5.dist-info/RECORD +50 -0
- {beratools-0.2.3.dist-info → beratools-0.2.5.dist-info}/WHEEL +1 -1
- beratools-0.2.5.dist-info/entry_points.txt +3 -0
- beratools-0.2.5.dist-info/licenses/LICENSE +674 -0
- beratools/core/algo_tiler.py +0 -428
- beratools/gui/__init__.py +0 -11
- beratools/gui/batch_processing_dlg.py +0 -513
- beratools/gui/map_window.py +0 -162
- beratools/tools/Beratools_r_script.r +0 -1120
- beratools/tools/Ht_metrics.py +0 -116
- beratools/tools/batch_processing.py +0 -136
- beratools/tools/canopy_threshold_relative.py +0 -672
- beratools/tools/canopycostraster.py +0 -222
- beratools/tools/fl_regen_csf.py +0 -428
- beratools/tools/forest_line_attributes.py +0 -408
- beratools/tools/line_grouping.py +0 -45
- beratools/tools/ln_relative_metrics.py +0 -615
- beratools/tools/r_cal_lpi_elai.r +0 -25
- beratools/tools/r_generate_pd_focalraster.r +0 -101
- beratools/tools/r_interface.py +0 -80
- beratools/tools/r_point_density.r +0 -9
- beratools/tools/rpy_chm2trees.py +0 -86
- beratools/tools/rpy_dsm_chm_by.py +0 -81
- beratools/tools/rpy_dtm_by.py +0 -63
- beratools/tools/rpy_find_cellsize.py +0 -43
- beratools/tools/rpy_gnd_csf.py +0 -74
- beratools/tools/rpy_hummock_hollow.py +0 -85
- beratools/tools/rpy_hummock_hollow_raster.py +0 -71
- beratools/tools/rpy_las_info.py +0 -51
- beratools/tools/rpy_laz2las.py +0 -40
- beratools/tools/rpy_lpi_elai_lascat.py +0 -466
- beratools/tools/rpy_normalized_lidar_by.py +0 -56
- beratools/tools/rpy_percent_above_dbh.py +0 -80
- beratools/tools/rpy_points2trees.py +0 -88
- beratools/tools/rpy_vegcoverage.py +0 -94
- beratools/tools/tiler.py +0 -48
- beratools/tools/zonal_threshold.py +0 -144
- beratools-0.2.3.dist-info/METADATA +0 -108
- beratools-0.2.3.dist-info/RECORD +0 -74
- beratools-0.2.3.dist-info/entry_points.txt +0 -2
- beratools-0.2.3.dist-info/licenses/LICENSE +0 -22
|
@@ -1,80 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import time
|
|
3
|
-
|
|
4
|
-
from beratools.tools.common import *
|
|
5
|
-
from beratools.tools.r_interface import *
|
|
6
|
-
|
|
7
|
-
def percentage_aboveDBH(callback, in_las_folder, is_normalized, out_folder, DBH, cell_size, processes, verbose):
|
|
8
|
-
rprocesses = r_processes(processes)
|
|
9
|
-
|
|
10
|
-
# assign R script file to local variable
|
|
11
|
-
Beratools_R_script = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'Beratools_r_script.r')
|
|
12
|
-
# Defining the R script and loading the instance in Python
|
|
13
|
-
r['source'](Beratools_R_script)
|
|
14
|
-
# Loading the function defined in R script.
|
|
15
|
-
r_percentage_aboveDBH = robjects.globalenv['percentage_aboveDBH']
|
|
16
|
-
# Invoking the R function
|
|
17
|
-
r_percentage_aboveDBH(in_las_folder, is_normalized, out_folder, DBH, cell_size, rprocesses)
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
if __name__ == '__main__':
|
|
21
|
-
start_time = time.time()
|
|
22
|
-
print('Finding percentage returns above DBH height process\n @ {}'
|
|
23
|
-
.format(time.strftime("%d %b %Y %H:%M:%S", time.localtime())))
|
|
24
|
-
|
|
25
|
-
packages = ['lidR', 'future', 'terra']
|
|
26
|
-
check_r_packages_installation(packages)
|
|
27
|
-
|
|
28
|
-
print("Checking input parameters ...")
|
|
29
|
-
in_args, in_verbose = check_arguments()
|
|
30
|
-
in_las_folder = in_args.input["in_las_folder"]
|
|
31
|
-
|
|
32
|
-
try:
|
|
33
|
-
DBH = float(in_args.input["DBH"])
|
|
34
|
-
if DBH < 0:
|
|
35
|
-
raise ValueError
|
|
36
|
-
else:
|
|
37
|
-
in_args.input["DBH"] = DBH
|
|
38
|
-
except ValueError:
|
|
39
|
-
print("Invalid input of DBH, default value is used")
|
|
40
|
-
in_args.input["DBH"] = 1.3
|
|
41
|
-
|
|
42
|
-
try:
|
|
43
|
-
is_normalized = bool(in_args.input["is_normalized"])
|
|
44
|
-
|
|
45
|
-
except ValueError:
|
|
46
|
-
print("Invalid input of checking normalized data box, normalize data will be carried")
|
|
47
|
-
in_args.input["is_normalized"] = False
|
|
48
|
-
|
|
49
|
-
try:
|
|
50
|
-
cell_size = float(in_args.input["cell_size"])
|
|
51
|
-
in_args.input["cell_size"] = cell_size
|
|
52
|
-
except ValueError:
|
|
53
|
-
print("Invalid input of cell size, default value is used")
|
|
54
|
-
in_args.input["cell_size"] = 5.0
|
|
55
|
-
|
|
56
|
-
out_folder = in_args.input["out_folder"]
|
|
57
|
-
|
|
58
|
-
if not os.path.exists(in_las_folder):
|
|
59
|
-
print("Error! Cannot locate Las folder, please check.")
|
|
60
|
-
exit()
|
|
61
|
-
else:
|
|
62
|
-
found = False
|
|
63
|
-
for files in os.listdir(in_las_folder):
|
|
64
|
-
if files.endswith(".las") or files.endswith(".laz"):
|
|
65
|
-
found = True
|
|
66
|
-
break
|
|
67
|
-
if not found:
|
|
68
|
-
print("Error! Cannot locate input LAS file(s), please check!")
|
|
69
|
-
exit()
|
|
70
|
-
|
|
71
|
-
if not os.path.exists(out_folder):
|
|
72
|
-
print("Warning! Cannot locate output folder, It will be created.")
|
|
73
|
-
os.makedirs(out_folder)
|
|
74
|
-
|
|
75
|
-
print("Checking input parameters ... Done")
|
|
76
|
-
|
|
77
|
-
percentage_aboveDBH(print, **in_args.input, processes=int(in_args.processes), verbose=in_verbose)
|
|
78
|
-
|
|
79
|
-
print('Finding percentage returns above DBH height process is done in {} seconds)'
|
|
80
|
-
.format(round(time.time() - start_time, 5)))
|
|
@@ -1,88 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import time
|
|
3
|
-
|
|
4
|
-
from beratools.tools.common import *
|
|
5
|
-
from beratools.tools.r_interface import *
|
|
6
|
-
|
|
7
|
-
def points2trees(callback, in_las_folder, is_normalized, hmin, cell_size, do_nCHM, out_folder, processes, verbose):
|
|
8
|
-
rprocesses = r_processes(processes)
|
|
9
|
-
|
|
10
|
-
# assign R script file to local variable
|
|
11
|
-
Beratools_R_script = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'Beratools_r_script.r')
|
|
12
|
-
# Defining the R script and loading the instance in Python
|
|
13
|
-
r['source'](Beratools_R_script)
|
|
14
|
-
# Loading the function defined in R script.
|
|
15
|
-
r_points2trees = robjects.globalenv['points2trees']
|
|
16
|
-
r_pd2cellsize = robjects.globalenv['pd2cellsize']
|
|
17
|
-
# Invoking the R function
|
|
18
|
-
if do_nCHM:
|
|
19
|
-
CHMcell_size = r_pd2cellsize(in_las_folder, rprocesses)
|
|
20
|
-
print("CHM raster output cell size is: {}m".format(CHMcell_size))
|
|
21
|
-
r_points2trees(in_las_folder, is_normalized, hmin, out_folder, rprocesses, CHMcell_size, cell_size)
|
|
22
|
-
else:
|
|
23
|
-
CHMcell_size = -999
|
|
24
|
-
r_points2trees(in_las_folder, is_normalized, hmin, out_folder, rprocesses, CHMcell_size, cell_size)
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
if __name__ == '__main__':
|
|
28
|
-
start_time = time.time()
|
|
29
|
-
print('Starting tree detection from LAS processing\n @ {}'
|
|
30
|
-
.format(time.strftime("%d %b %Y %H:%M:%S", time.localtime())))
|
|
31
|
-
|
|
32
|
-
packages = ['lidR', 'rgrass', 'rlas', 'future', 'terra', 'sp']
|
|
33
|
-
check_r_packages_installation(packages)
|
|
34
|
-
|
|
35
|
-
print("Checking input parameters ...")
|
|
36
|
-
in_args, in_verbose = check_arguments()
|
|
37
|
-
in_las_folder = in_args.input["in_las_folder"]
|
|
38
|
-
|
|
39
|
-
try:
|
|
40
|
-
hmin = float(in_args.input["hmin"])
|
|
41
|
-
if hmin >= 20:
|
|
42
|
-
print("Invalid input of minimum height (<=20) of a tree, maximum is used")
|
|
43
|
-
in_args.input["hmin"] = 20.0
|
|
44
|
-
else:
|
|
45
|
-
in_args.input["hmin"] = hmin
|
|
46
|
-
except ValueError:
|
|
47
|
-
print("Invalid input of minimum height (<=20) of a tree, default is used")
|
|
48
|
-
in_args.input["hmin"] = 3.0
|
|
49
|
-
|
|
50
|
-
try:
|
|
51
|
-
is_normalized = bool(in_args.input["is_normalized"])
|
|
52
|
-
|
|
53
|
-
except ValueError:
|
|
54
|
-
print("Invalid input of checking normalized data box, normalize data will be carried")
|
|
55
|
-
in_args.input["is_normalized"] = False
|
|
56
|
-
|
|
57
|
-
try:
|
|
58
|
-
cell_size = float(in_args.input["cell_size"])
|
|
59
|
-
in_args.input["cell_size"] = cell_size
|
|
60
|
-
except ValueError:
|
|
61
|
-
print("Invalid input of minimum height of a tree, default is used")
|
|
62
|
-
in_args.input["cell_size"] = 5.0
|
|
63
|
-
|
|
64
|
-
out_folder = in_args.input["out_folder"]
|
|
65
|
-
|
|
66
|
-
if not os.path.exists(in_las_folder):
|
|
67
|
-
print("Error! Cannot locate Las folder, please check.")
|
|
68
|
-
exit()
|
|
69
|
-
else:
|
|
70
|
-
found = False
|
|
71
|
-
for files in os.listdir(in_las_folder):
|
|
72
|
-
if files.endswith(".las") or files.endswith(".laz"):
|
|
73
|
-
found = True
|
|
74
|
-
break
|
|
75
|
-
if not found:
|
|
76
|
-
print("Error! Cannot locate input LAS file(s), please check!")
|
|
77
|
-
exit()
|
|
78
|
-
|
|
79
|
-
if not os.path.exists(out_folder):
|
|
80
|
-
print("Warning! Cannot locate output folder, It will be created.")
|
|
81
|
-
os.makedirs(out_folder)
|
|
82
|
-
|
|
83
|
-
print("Checking input parameters ... Done")
|
|
84
|
-
|
|
85
|
-
points2trees(print, **in_args.input, processes=int(in_args.processes), verbose=in_verbose)
|
|
86
|
-
|
|
87
|
-
print('Tree detection from Lidar data processing is done in {} seconds)'
|
|
88
|
-
.format(round(time.time() - start_time, 5)))
|
|
@@ -1,94 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import time
|
|
3
|
-
|
|
4
|
-
from beratools.tools.common import *
|
|
5
|
-
from beratools.tools.r_interface import *
|
|
6
|
-
|
|
7
|
-
def veg_cover_percentage(callback, in_las_folder, is_normalized, out_folder, hmin, hmax, cell_size, processes, verbose):
|
|
8
|
-
rprocesses = r_processes(processes)
|
|
9
|
-
|
|
10
|
-
# assign R script file to local variable
|
|
11
|
-
Beratools_R_script = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'Beratools_r_script.r')
|
|
12
|
-
# Defining the R script and loading the instance in Python
|
|
13
|
-
r['source'](Beratools_R_script)
|
|
14
|
-
# Loading the function defined in R script.
|
|
15
|
-
r_veg_metrics = robjects.globalenv['veg_cover_percentage']
|
|
16
|
-
# Invoking the R function
|
|
17
|
-
r_veg_metrics(in_las_folder, is_normalized, out_folder, hmin, hmax, cell_size, rprocesses)
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
if __name__ == '__main__':
|
|
21
|
-
start_time = time.time()
|
|
22
|
-
print('Finding Vegetation Coverage from Lidar data process\n @ {}'
|
|
23
|
-
.format(time.strftime("%d %b %Y %H:%M:%S", time.localtime())))
|
|
24
|
-
|
|
25
|
-
packages = ['lidR', 'future', 'terra']
|
|
26
|
-
check_r_packages_installation(packages)
|
|
27
|
-
|
|
28
|
-
print("Checking input parameters ...")
|
|
29
|
-
in_args, in_verbose = check_arguments()
|
|
30
|
-
in_las_folder = in_args.input["in_las_folder"]
|
|
31
|
-
|
|
32
|
-
try:
|
|
33
|
-
hmin = float(in_args.input["hmin"])
|
|
34
|
-
if hmin < 0:
|
|
35
|
-
raise ValueError
|
|
36
|
-
else:
|
|
37
|
-
in_args.input["hmin"] = hmin
|
|
38
|
-
except ValueError:
|
|
39
|
-
print("Invalid input of minimum height of a tree, default value is used")
|
|
40
|
-
in_args.input["hmin"] = 3.0
|
|
41
|
-
|
|
42
|
-
try:
|
|
43
|
-
hmax = float(in_args.input["hmax"])
|
|
44
|
-
if hmax <= hmin:
|
|
45
|
-
raise ValueError
|
|
46
|
-
else:
|
|
47
|
-
in_args.input["hmax"] = hmax
|
|
48
|
-
except ValueError:
|
|
49
|
-
print("Invalid input of maximum height of a tree, default value is used")
|
|
50
|
-
if hmin < 10:
|
|
51
|
-
in_args.input["hmax"] = 10.0
|
|
52
|
-
else:
|
|
53
|
-
in_args.input["hmin"] = 3.0
|
|
54
|
-
in_args.input["hmax"] = 10.0
|
|
55
|
-
|
|
56
|
-
try:
|
|
57
|
-
is_normalized = bool(in_args.input["is_normalized"])
|
|
58
|
-
|
|
59
|
-
except ValueError:
|
|
60
|
-
print("Invalid input of checking normalized data box, normalize data will be carried")
|
|
61
|
-
in_args.input["is_normalized"] = False
|
|
62
|
-
|
|
63
|
-
try:
|
|
64
|
-
cell_size = float(in_args.input["cell_size"])
|
|
65
|
-
in_args.input["cell_size"] = cell_size
|
|
66
|
-
except ValueError:
|
|
67
|
-
print("Invalid input of cell size, default value is used")
|
|
68
|
-
in_args.input["cell_size"] = 5.0
|
|
69
|
-
|
|
70
|
-
out_folder = in_args.input["out_folder"]
|
|
71
|
-
|
|
72
|
-
if not os.path.exists(in_las_folder):
|
|
73
|
-
print("Error! Cannot locate Las folder, please check.")
|
|
74
|
-
exit()
|
|
75
|
-
else:
|
|
76
|
-
found = False
|
|
77
|
-
for files in os.listdir(in_las_folder):
|
|
78
|
-
if files.endswith(".las") or files.endswith(".laz"):
|
|
79
|
-
found = True
|
|
80
|
-
break
|
|
81
|
-
if not found:
|
|
82
|
-
print("Error! Cannot locate input LAS file(s), please check!")
|
|
83
|
-
exit()
|
|
84
|
-
|
|
85
|
-
if not os.path.exists(out_folder):
|
|
86
|
-
print("Warning! Cannot locate output folder, It will be created.")
|
|
87
|
-
os.makedirs(out_folder)
|
|
88
|
-
|
|
89
|
-
print("Checking input parameters ... Done")
|
|
90
|
-
|
|
91
|
-
veg_cover_percentage(print, **in_args.input, processes=int(in_args.processes), verbose=in_verbose)
|
|
92
|
-
|
|
93
|
-
print('Finding Vegetation Coverage from Lidar data process is done in {} seconds)'
|
|
94
|
-
.format(round(time.time() - start_time, 5)))
|
beratools/tools/tiler.py
DELETED
|
@@ -1,48 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Copyright (C) 2025 Applied Geospatial Research Group.
|
|
3
|
-
|
|
4
|
-
This script is licensed under the GNU General Public License v3.0.
|
|
5
|
-
See <https://gnu.org/licenses/gpl-3.0> for full license details.
|
|
6
|
-
|
|
7
|
-
Author: Richard Zeng
|
|
8
|
-
|
|
9
|
-
Description:
|
|
10
|
-
This script is part of the BERA Tools.
|
|
11
|
-
Webpage: https://github.com/appliedgrg/beratools
|
|
12
|
-
|
|
13
|
-
The purpose of this script is to split input vector and raster data into
|
|
14
|
-
smaller tiles based on a specified tile size and buffer distance.
|
|
15
|
-
"""
|
|
16
|
-
|
|
17
|
-
import time
|
|
18
|
-
|
|
19
|
-
import beratools.tools.common as bt_common
|
|
20
|
-
import beratools.core.algo_tiler as bt_tiler
|
|
21
|
-
|
|
22
|
-
def tiler(
|
|
23
|
-
in_line,
|
|
24
|
-
in_raster,
|
|
25
|
-
out_file,
|
|
26
|
-
n_clusters,
|
|
27
|
-
processes,
|
|
28
|
-
verbose,
|
|
29
|
-
tile_buffer=50,
|
|
30
|
-
in_layer=None,
|
|
31
|
-
):
|
|
32
|
-
clustering = bt_tiler.DensityBasedClustering(
|
|
33
|
-
in_line=in_line,
|
|
34
|
-
in_raster=in_raster,
|
|
35
|
-
out_file=out_file,
|
|
36
|
-
n_clusters=int(n_clusters),
|
|
37
|
-
tile_buffer=tile_buffer,
|
|
38
|
-
layer=in_layer,
|
|
39
|
-
)
|
|
40
|
-
|
|
41
|
-
clustering.run()
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
if __name__ == "__main__":
|
|
45
|
-
in_args, in_verbose = bt_common.check_arguments()
|
|
46
|
-
start_time = time.time()
|
|
47
|
-
tiler(**in_args.input, processes=int(in_args.processes), verbose=in_verbose)
|
|
48
|
-
print("Elapsed time: {}".format(time.time() - start_time))
|
|
@@ -1,144 +0,0 @@
|
|
|
1
|
-
from multiprocessing.pool import Pool
|
|
2
|
-
import geopandas
|
|
3
|
-
import json
|
|
4
|
-
import argparse
|
|
5
|
-
import time
|
|
6
|
-
import pandas
|
|
7
|
-
import numpy
|
|
8
|
-
import shapely
|
|
9
|
-
|
|
10
|
-
from beratools.tools.common import *
|
|
11
|
-
|
|
12
|
-
corridor_th_field = 'CorridorTh'
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
class OperationCancelledException(Exception):
|
|
16
|
-
pass
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def zonal_threshold(callback, in_line, in_canopy_raster, canopy_search_r, min_canopy_th, max_canopy_th,
|
|
20
|
-
out_line, processes, verbose):
|
|
21
|
-
line_seg = geopandas.GeoDataFrame.from_file(in_line)
|
|
22
|
-
# check coordinate systems between line and raster features
|
|
23
|
-
with rasterio.open(in_canopy_raster) as in_canopy:
|
|
24
|
-
if line_seg.crs.to_epsg() != in_canopy.crs.to_epsg():
|
|
25
|
-
print("Line and raster spatial references are not same, please check.")
|
|
26
|
-
exit()
|
|
27
|
-
|
|
28
|
-
del in_canopy
|
|
29
|
-
|
|
30
|
-
if not corridor_th_field in line_seg.columns.array:
|
|
31
|
-
print("Cannot find {} column in input data.\n '{}' column will be create".format(corridor_th_field,
|
|
32
|
-
corridor_th_field))
|
|
33
|
-
line_seg[corridor_th_field] = numpy.nan
|
|
34
|
-
|
|
35
|
-
# copy original line input to another Geodataframe
|
|
36
|
-
line_buffer = geopandas.GeoDataFrame.copy((line_seg))
|
|
37
|
-
# buffer the input lines
|
|
38
|
-
buffer = shapely.buffer(line_buffer['geometry'], float(canopy_search_r), cap_style=1, quad_segs=16)
|
|
39
|
-
# replace line geometry by polygon geometry
|
|
40
|
-
line_buffer['geometry'] = buffer
|
|
41
|
-
# create a New column for Zonal Mean
|
|
42
|
-
line_buffer['ZonMean'] = numpy.nan
|
|
43
|
-
print('%{}'.format(10))
|
|
44
|
-
print("Line preparing... ")
|
|
45
|
-
#
|
|
46
|
-
line_arg = []
|
|
47
|
-
|
|
48
|
-
for row in line_buffer.index:
|
|
49
|
-
list_items = [row] # 0
|
|
50
|
-
list_items.append(line_buffer.iloc[[row]]) # 1
|
|
51
|
-
# list_items.append(line_buffer) #1
|
|
52
|
-
list_items.append(in_canopy_raster) # 2
|
|
53
|
-
list_items.append(canopy_search_r) # 3
|
|
54
|
-
list_items.append(min_canopy_th) # 4
|
|
55
|
-
list_items.append(max_canopy_th) # 5
|
|
56
|
-
list_items.append(corridor_th_field) # 6
|
|
57
|
-
|
|
58
|
-
line_arg.append(list_items)
|
|
59
|
-
print('%{}'.format(60))
|
|
60
|
-
print("Calculating zonal statistic ...")
|
|
61
|
-
features = []
|
|
62
|
-
# for row in range(0,len(line_arg)):
|
|
63
|
-
# features.append(zonal_prepare(line_arg[row]))
|
|
64
|
-
features = execute_multiprocessing(line_arg)
|
|
65
|
-
print("Merging results ...")
|
|
66
|
-
results = geopandas.GeoDataFrame(pandas.concat(features))
|
|
67
|
-
results['geometry'] = line_seg['geometry']
|
|
68
|
-
|
|
69
|
-
print("Saving output ...")
|
|
70
|
-
print('%{}'.format(100))
|
|
71
|
-
# Debug save
|
|
72
|
-
geopandas.GeoDataFrame.to_file(results, out_line)
|
|
73
|
-
callback('Zonal Threshold tool done.')
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
# task executed in a worker process
|
|
77
|
-
def zonal_prepare(task_data):
|
|
78
|
-
# report a message
|
|
79
|
-
row_index = task_data[0]
|
|
80
|
-
df = task_data[1]
|
|
81
|
-
in_canopy_raster = task_data[2]
|
|
82
|
-
corridor_th_field = task_data[6]
|
|
83
|
-
MinValue = float(task_data[4])
|
|
84
|
-
MaxValue = float(task_data[5])
|
|
85
|
-
|
|
86
|
-
line_buffer = df['geometry']
|
|
87
|
-
|
|
88
|
-
with rasterio.open(in_canopy_raster) as in_canopy:
|
|
89
|
-
# clipped the chm base on polygon of line buffer or footprint
|
|
90
|
-
clipped_canopy, out_transform = rasterio.mask.mask(in_canopy, line_buffer, crop=True,
|
|
91
|
-
nodata=BT_NODATA, filled=True)
|
|
92
|
-
clipped_canopy = numpy.squeeze(clipped_canopy, axis=0)
|
|
93
|
-
|
|
94
|
-
# mask out all -9999 value cells
|
|
95
|
-
zonal_canopy = numpy.ma.masked_where(clipped_canopy == BT_NODATA, clipped_canopy)
|
|
96
|
-
|
|
97
|
-
# Calculate the zonal mean and threshold
|
|
98
|
-
zonal_mean = numpy.ma.mean(zonal_canopy)
|
|
99
|
-
threshold = MinValue + (zonal_mean * zonal_mean) * (MaxValue - MinValue)
|
|
100
|
-
# return the generated value
|
|
101
|
-
df.loc[df.index == row_index, 'ZonMean'] = zonal_mean
|
|
102
|
-
df.loc[df.index == row_index, corridor_th_field] = threshold
|
|
103
|
-
|
|
104
|
-
return df
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
# protect the entry point
|
|
108
|
-
def execute_multiprocessing(line_args):
|
|
109
|
-
# create and configure the process pool
|
|
110
|
-
# data = [[random() for n in range(100)] for i in range(300)]
|
|
111
|
-
try:
|
|
112
|
-
total_steps = len(line_args)
|
|
113
|
-
features = []
|
|
114
|
-
with Pool(processes=int(args.processes)) as pool:
|
|
115
|
-
step = 0
|
|
116
|
-
# execute tasks in order, process results out of order
|
|
117
|
-
for result in pool.imap_unordered(zonal_prepare, line_args):
|
|
118
|
-
if BT_DEBUGGING:
|
|
119
|
-
print('Got result: {}'.format(result), flush=True)
|
|
120
|
-
features.append(result)
|
|
121
|
-
step += 1
|
|
122
|
-
print('%{}'.format(step / total_steps * 100))
|
|
123
|
-
return features
|
|
124
|
-
except OperationCancelledException:
|
|
125
|
-
print("Operation cancelled")
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
if __name__ == '__main__':
|
|
129
|
-
start_time = time.time()
|
|
130
|
-
print('Starting zonal threshold calculation processing @ {}'.format(
|
|
131
|
-
time.strftime("%d %b %Y %H:%M:%S", time.localtime())))
|
|
132
|
-
|
|
133
|
-
parser = argparse.ArgumentParser()
|
|
134
|
-
parser.add_argument('-i', '--input', type=json.loads)
|
|
135
|
-
parser.add_argument('-p', '--processes')
|
|
136
|
-
parser.add_argument('-v', '--verbose')
|
|
137
|
-
args = parser.parse_args()
|
|
138
|
-
|
|
139
|
-
verbose = True if args.verbose == 'True' else False
|
|
140
|
-
zonal_threshold(print, **args.input, processes=int(args.processes), verbose=verbose)
|
|
141
|
-
|
|
142
|
-
print('%{}'.format(100))
|
|
143
|
-
print('Finishing zonal threshold calculation processing @ {} (or in {} second)'.format(
|
|
144
|
-
time.strftime("%d %b %Y %H:%M:%S", time.localtime()), round(time.time() - start_time, 5)))
|
|
@@ -1,108 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: BERATools
|
|
3
|
-
Version: 0.2.3
|
|
4
|
-
Summary: An advanced forest line feature analysis platform
|
|
5
|
-
Project-URL: Homepage, https://github.com/RichardQZeng/BTools
|
|
6
|
-
Author-email: AppliedGRG <appliedgrg@gmail.com>, Richard Zeng <richardqzeng@gmail.com>
|
|
7
|
-
License: MIT License
|
|
8
|
-
|
|
9
|
-
Copyright (c) 2023, AppliedGRG
|
|
10
|
-
|
|
11
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
12
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
13
|
-
in the Software without restriction, including without limitation the rights
|
|
14
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
15
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
16
|
-
furnished to do so, subject to the following conditions:
|
|
17
|
-
|
|
18
|
-
The above copyright notice and this permission notice shall be included in all
|
|
19
|
-
copies or substantial portions of the Software.
|
|
20
|
-
|
|
21
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
22
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
23
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
24
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
25
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
26
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
27
|
-
SOFTWARE.
|
|
28
|
-
|
|
29
|
-
License-File: LICENSE
|
|
30
|
-
Keywords: BERA,Line
|
|
31
|
-
Classifier: Development Status :: 2 - Pre-Alpha
|
|
32
|
-
Classifier: Intended Audience :: Developers
|
|
33
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
34
|
-
Classifier: Natural Language :: English
|
|
35
|
-
Classifier: Programming Language :: Python :: 3
|
|
36
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
37
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
38
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
39
|
-
Requires-Python: >=3.10
|
|
40
|
-
Requires-Dist: bera-centerlines
|
|
41
|
-
Requires-Dist: gdal>=3.9.2
|
|
42
|
-
Requires-Dist: geopandas
|
|
43
|
-
Requires-Dist: pip
|
|
44
|
-
Requires-Dist: psutil
|
|
45
|
-
Requires-Dist: pyogrio>=0.9.0
|
|
46
|
-
Requires-Dist: pyqt5
|
|
47
|
-
Requires-Dist: pyqtlet2
|
|
48
|
-
Requires-Dist: pytest
|
|
49
|
-
Requires-Dist: pyyaml
|
|
50
|
-
Requires-Dist: rioxarray
|
|
51
|
-
Requires-Dist: scikit-image>=0.24.0
|
|
52
|
-
Requires-Dist: tqdm
|
|
53
|
-
Requires-Dist: xarray-spatial
|
|
54
|
-
Description-Content-Type: text/markdown
|
|
55
|
-
|
|
56
|
-
# BERA Tools
|
|
57
|
-
<div align="center">
|
|
58
|
-
BERA Tools is successor of [Forest Line Mapper](https://github.com/appliedgrg/flm). It is a toolset for enhanced delineation and attribution of linear disturbances in forests.
|
|
59
|
-
|
|
60
|
-
[](https://github.com/appliedgrg/bera-tools/actions/workflows/python-tests.yml)
|
|
61
|
-
[](https://bera-tools.readthedocs.io/en/latest/)
|
|
62
|
-
<br>
|
|
63
|
-
[](https://anaconda.org/AppliedGRG/beratools)
|
|
64
|
-
[](https://www.python.org/downloads/release/python-390/)
|
|
65
|
-
<br>
|
|
66
|
-
[](https://github.com/appliedgrg/bera-tools/blob/main/LICENSE)
|
|
67
|
-
|
|
68
|
-
</div>
|
|
69
|
-
<!---->
|
|
70
|
-
|
|
71
|
-
## [Quick Start](https://beratools.readthedocs.io/en/latest/installation.html)
|
|
72
|
-
|
|
73
|
-
BERA Tools is built upon open-source Python libraries. Anaconda is used to manage runtime environments.
|
|
74
|
-
|
|
75
|
-
Installation Steps:
|
|
76
|
-
|
|
77
|
-
- Install Miniconda. Download Miniconda from [Miniconda](https://docs.anaconda.com/miniconda/) and install on your machine.
|
|
78
|
-
- Launch **Anaconda Prompt**. Run the following command to create a new environment. **BERA Tools** will be installed in the new environment at the same time. Download the file [conda_environment.yml](https://github.com/RichardQZeng/BTools/blob/main/conda_environment.yml) first.
|
|
79
|
-
|
|
80
|
-
```bash
|
|
81
|
-
$ conda env create -f conda_environment.yml
|
|
82
|
-
```
|
|
83
|
-
|
|
84
|
-
Wait until the installation is done.
|
|
85
|
-
- Activate the **bera** environment and launch BERA Tools:
|
|
86
|
-
|
|
87
|
-
```bash
|
|
88
|
-
$ conda activate bera
|
|
89
|
-
$ beratools
|
|
90
|
-
```
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
## User Guide
|
|
94
|
-
|
|
95
|
-
Check the online [User Guide](https://beratools.readthedocs.io/en/latest/) for more information.
|
|
96
|
-
|
|
97
|
-
## Technical Documentation
|
|
98
|
-
|
|
99
|
-
BERA Tools provides a series of tools for forest lines processing. Please refer to the technical documentation for programming APIs and algorithms details.
|
|
100
|
-
|
|
101
|
-
Check the link for more information: [Technical Documentation](https://beratools.readthedocs.io/en/latest/)
|
|
102
|
-
|
|
103
|
-
## Credits
|
|
104
|
-
|
|
105
|
-
This tool is part of the [**Boreal Ecosystem Recovery and Assessment (BERA)**](http://www.beraproject.org/) Project, and is being actively developed by the [**Applied Geospatial Research Group**](https://www.appliedgrg.ca/).
|
|
106
|
-
|
|
107
|
-

|
|
108
|
-
*Copyright (C) 2025 Applied Geospatial Research Group*
|
beratools-0.2.3.dist-info/RECORD
DELETED
|
@@ -1,74 +0,0 @@
|
|
|
1
|
-
beratools/__init__.py,sha256=Mdv1nAvOXx6fFOvIS_3Qob8L_hjZxvsne1JXzaSm5Ao,90
|
|
2
|
-
beratools/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
beratools/core/algo_centerline.py,sha256=mIHUsda68Pya7I51ZAb_xtF-5DYW1jebzh72r9tjSas,15582
|
|
4
|
-
beratools/core/algo_common.py,sha256=klM19p56VYcbH_h-_PyxJhqJMiF7hlqpG64QVMLVRJc,14965
|
|
5
|
-
beratools/core/algo_cost.py,sha256=qL-eVr14CFaMBAbiokB2Yr1lWwqT3jSfnXwyHFUoGrU,6345
|
|
6
|
-
beratools/core/algo_dijkstra.py,sha256=w_vcAOmr8bLhxWZhNRaT8V-BK-VhodZqt7v3i4HwLLk,15249
|
|
7
|
-
beratools/core/algo_footprint_rel.py,sha256=Nc1gzGVw3RxXnyBrnk0ie-Acjw8UuiCiHU1W3oF7EaE,20565
|
|
8
|
-
beratools/core/algo_line_grouping.py,sha256=Fp9ekoYf91bYE1bD49vCjxyMwpfgNN2m2KXUZ7AMJHA,32914
|
|
9
|
-
beratools/core/algo_merge_lines.py,sha256=1ptv8UAO-W2kYRYgbuUCdH6QX-qiYZQUjRavvRudmxE,6876
|
|
10
|
-
beratools/core/algo_split_with_lines.py,sha256=k1_E2H02Bxn6nzrWJstalQyZ_c5e-PWzl7jwTLmx3HE,11552
|
|
11
|
-
beratools/core/algo_tiler.py,sha256=Leo4WJ0h6pIJFPmsByPVRq8HpKFk3fDxR8yammtvbRo,16747
|
|
12
|
-
beratools/core/algo_vertex_optimization.py,sha256=kaRfaVs13BCfn_ASEQ1RfI6SFWc5FWfqWHU-4VzKRDs,15629
|
|
13
|
-
beratools/core/constants.py,sha256=SEu9czHJu5r4nWfHeoHOvPuxsaum3-D8hATsGktPP1k,1157
|
|
14
|
-
beratools/core/logger.py,sha256=0QnK800fLdUV8krzEIuKQ_cflqeIoZmi2G61gu-fGP4,2334
|
|
15
|
-
beratools/core/tool_base.py,sha256=0D_2Y9TDQYJDwk3OG6PHEKIEm24gR6biNVThWvH6gDw,6911
|
|
16
|
-
beratools/gui/__init__.py,sha256=zYIIWtPF73iVlXdH9euMUQ4DH7f-jg5yLgjn3qCQ36o,151
|
|
17
|
-
beratools/gui/batch_processing_dlg.py,sha256=44jOC3wL1_8XioFphGdiLua54D0cfUhvXfkD7rSL344,19286
|
|
18
|
-
beratools/gui/bt_data.py,sha256=dbwd6yeG1bAYZMubFV7ZiwIJZ7QhXMKRmcH9fLsSGzM,17292
|
|
19
|
-
beratools/gui/bt_gui_main.py,sha256=MM9-Z0e5bJ_J7F6_sNq1mehyFssDhxEqCy0oPOR6AVE,25125
|
|
20
|
-
beratools/gui/main.py,sha256=A4ZR3XI6Eea9Din1Wvhlp5WlNfeYHKAcJwhd3oFmPJc,644
|
|
21
|
-
beratools/gui/map_window.py,sha256=nyAQtWtDFT6QOttfyC_yE9LLNzpIsyB7T6lTDVIfMu0,5374
|
|
22
|
-
beratools/gui/tool_widgets.py,sha256=XmvBGsT8et7K9lDc5pgAqg57pjkN7WOK3HpI7STHAIo,27593
|
|
23
|
-
beratools/gui/assets/BERALogo.png,sha256=hnGLSL7Jv2ljDn6Z8ad5ekzH9k1PEuq7xe7Hh8bXZkE,6660
|
|
24
|
-
beratools/gui/assets/beratools.json,sha256=dvjfMgTmUZgAue4ir_jGtcjWeH7V7ZKrD5ar5hl7Ygg,120640
|
|
25
|
-
beratools/gui/assets/closed.gif,sha256=T9BBGl286-FdSRYbWVt68HwPRF0geWoowtBzeYsk_bI,592
|
|
26
|
-
beratools/gui/assets/closed.png,sha256=FRSAh3wzASowFUEt88zHhk1BQmwRbjoCs50Ff8KpJNQ,311
|
|
27
|
-
beratools/gui/assets/gui.json,sha256=kRD3Ozim9IotcY8P3fapgs4qqj5vebQHLxmss_SOJdY,329
|
|
28
|
-
beratools/gui/assets/open.gif,sha256=o8LL1OaDNkQ0Gcc9dO-1f1UZFAQ3ALc4svtqiUuWJPY,1062
|
|
29
|
-
beratools/gui/assets/open.png,sha256=v0OOwfTNGMmtdFbffCbxdYLaNZeRC9Cy5whAwi71oVw,524
|
|
30
|
-
beratools/gui/assets/tool.gif,sha256=2KGcUI_b-qFdrJJhgbx9pMZ8pExX7zH8nYvweRiQs6U,555
|
|
31
|
-
beratools/gui/assets/tool.png,sha256=35Txwum2l_aKeazF_I97ZaZAKHsrKQCGG-LZxEIFyZw,714
|
|
32
|
-
beratools/tools/Beratools_r_script.r,sha256=bc2Y4pI9q9IKpHAYPlMjqqnL1fVSxWErlBKVKKsUwcw,42502
|
|
33
|
-
beratools/tools/Ht_metrics.py,sha256=kQXPcsgLy80YOA4IAuuS5rR5QWEm1xROZdOcx_rIs4Y,4069
|
|
34
|
-
beratools/tools/__init__.py,sha256=lii4UkW4D105ZHpuoLi0REiZ_SA6le8T109Rl2qwkaU,129
|
|
35
|
-
beratools/tools/batch_processing.py,sha256=r7iXGwqr_rvXgnGdZj08kpCwKIcbJHTFBxNc8NCgJL4,4975
|
|
36
|
-
beratools/tools/canopy_threshold_relative.py,sha256=ZdUXJmMRytTeOvLg6lq8-9_PxS-mjsUDtsy0R5QEqA8,29116
|
|
37
|
-
beratools/tools/canopycostraster.py,sha256=ZS6lUIamr5hGfMGlxcantp7Kh8GYCiQHAmxyhDBAA6E,8079
|
|
38
|
-
beratools/tools/centerline.py,sha256=yWXAXS1XzpDMx5kKW58drHfcbmRQ2CSuOXxQJSlrOOQ,4045
|
|
39
|
-
beratools/tools/common.py,sha256=lIwPt7-XDNHpxiHsEQhsNiHzKGjxvQc_R9jPNTKhqzg,26615
|
|
40
|
-
beratools/tools/fl_regen_csf.py,sha256=omAkhQNGjkW263muX4o_w6YurNintUNI3UKrePK5OAk,16062
|
|
41
|
-
beratools/tools/forest_line_attributes.py,sha256=ioS6xOp9Lb323WSyEM0JgwRQqkFUtlGEqM_Q0hM2LxQ,14568
|
|
42
|
-
beratools/tools/line_footprint_absolute.py,sha256=bq0REhxAuv5sJ_9JcBlzS9TpQopJLQoOZSdyDPWtlME,6311
|
|
43
|
-
beratools/tools/line_footprint_fixed.py,sha256=H3ntIjgIRdCjzGrkxoqa6A5fK_cDzA5OzK2lHlcYayk,14045
|
|
44
|
-
beratools/tools/line_footprint_functions.py,sha256=KT1HkRUi923HUXIbadf2HQsdPXotVjoyB-6sIKsWmKg,30771
|
|
45
|
-
beratools/tools/line_footprint_relative.py,sha256=0UBO0q-7PYj6SVhgJlVSwGeQ4mhUMm-vZdXpnC_hGWw,3178
|
|
46
|
-
beratools/tools/line_grouping.py,sha256=kUqlVvKY0u4Kjf4VYOGxwcN1s7Ebjab9IuuZnKYkVGg,1296
|
|
47
|
-
beratools/tools/ln_relative_metrics.py,sha256=Iq3AkmX9yvjEUKBvoJwkLOcZ2Rm86lFwLlKzJp-XD9k,24874
|
|
48
|
-
beratools/tools/r_cal_lpi_elai.r,sha256=IizjOgbAdDaFdHwVY54uvmjYfi-jhTwzbu2oYzubtJY,676
|
|
49
|
-
beratools/tools/r_generate_pd_focalraster.r,sha256=2gCtcYk5Qt_Z_MRYHR_rtECfDoZVNnZhHFcvfWXq70E,3591
|
|
50
|
-
beratools/tools/r_interface.py,sha256=dKsujqUrTG1PFVnMAebWYSYZcdaEV2jGuZgkd270VnA,2473
|
|
51
|
-
beratools/tools/r_point_density.r,sha256=lzlFA_lz5QVAoJ03wC7HFOqr4NqVnwjTTFWCqVDt7mo,206
|
|
52
|
-
beratools/tools/rpy_chm2trees.py,sha256=aLSrD06Pnhwvx5Zp9doaalLR-2x_S_hpmeIZap1Po8o,3064
|
|
53
|
-
beratools/tools/rpy_dsm_chm_by.py,sha256=BNztSKtKR95LtJQPLWQxj_iuZF2swQPUqxyFl3atSPU,2819
|
|
54
|
-
beratools/tools/rpy_dtm_by.py,sha256=RrTcNGpqphT3Vy8DYm6n9gyn_fFA0-hMAgs9VwgZip0,2292
|
|
55
|
-
beratools/tools/rpy_find_cellsize.py,sha256=rSkUMR7Et77l8Sn_LN_BAhwotYZjZrMmbVP1F9tzDXk,1534
|
|
56
|
-
beratools/tools/rpy_gnd_csf.py,sha256=--cpvopOyms8zh_oSuCJLW8WbQ5M1v8htDHgAEUsWn8,2831
|
|
57
|
-
beratools/tools/rpy_hummock_hollow.py,sha256=eN-zVZepNuzNQGQ9dy8kgL7CenlJuLrvO-2aAWYaQ6U,3026
|
|
58
|
-
beratools/tools/rpy_hummock_hollow_raster.py,sha256=_Qq5S1_8VICeIxIizNv9CqlxshuIGjsgLWmg4CYByA8,2647
|
|
59
|
-
beratools/tools/rpy_las_info.py,sha256=8b4WfNg46dqXnbefjmaKZSyIfHrKN4xhKQuqYPwZpJw,1731
|
|
60
|
-
beratools/tools/rpy_laz2las.py,sha256=GAZn-B5tXMe7SXdi9HoNgrR-fm5i4brb-hlyVPPtcDI,1392
|
|
61
|
-
beratools/tools/rpy_lpi_elai_lascat.py,sha256=QXGlFMtIWaZLsgl636ea73nq4L2HO7mWKQaPyUMS7BE,19205
|
|
62
|
-
beratools/tools/rpy_normalized_lidar_by.py,sha256=kbhrX0Vcpj2SsXXyUq07gZJJzMaXDLojJ31zqoHo8cg,2080
|
|
63
|
-
beratools/tools/rpy_percent_above_dbh.py,sha256=ybRPBjuBYHmY8qolY2zlqSU0fCujWYoIg8bedh7-eww,2854
|
|
64
|
-
beratools/tools/rpy_points2trees.py,sha256=Q3f_qLiFZI1KC1ApcTw8y_K-U6bRIWfh7zccsLYpxuc,3346
|
|
65
|
-
beratools/tools/rpy_vegcoverage.py,sha256=lwCMzCNrS2FjcHmpJFBqctJ7ou2B68JkuK8OU9L8p6k,3308
|
|
66
|
-
beratools/tools/tiler.py,sha256=jwYUzO_z18-1LxLbrdIXkt_FSw9tzeJ38IHS9WBPYdI,1224
|
|
67
|
-
beratools/tools/tool_template.py,sha256=mPqrQG5WJmrih0vjGH8HhDVEloWJQxgNmi8Nslxi0To,1734
|
|
68
|
-
beratools/tools/vertex_optimization.py,sha256=w9ZqH0bHM3K6XyM3DgdMBLAd-upinfNG2fAKIfrEin8,1430
|
|
69
|
-
beratools/tools/zonal_threshold.py,sha256=4GPnKoaV1CmH0NnbCdsfpp4s2I4eMnqDxP-9mHIMhEQ,5361
|
|
70
|
-
beratools-0.2.3.dist-info/METADATA,sha256=OyATzVy44FuXiPdgPs9nPiEMD6g1DlWoQ5oCQFc-ZaM,5117
|
|
71
|
-
beratools-0.2.3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
72
|
-
beratools-0.2.3.dist-info/entry_points.txt,sha256=ph47-gzMqhlWmHogQd9HTl4l8dWQUV8FhSOL2FaRrIM,53
|
|
73
|
-
beratools-0.2.3.dist-info/licenses/LICENSE,sha256=IZ1f9V4p0qV6UciLtuKE9nyPJIm6gQiWRBtG0ETDdfY,1069
|
|
74
|
-
beratools-0.2.3.dist-info/RECORD,,
|
|
@@ -1,22 +0,0 @@
|
|
|
1
|
-
MIT License
|
|
2
|
-
|
|
3
|
-
Copyright (c) 2023, AppliedGRG
|
|
4
|
-
|
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
-
in the Software without restriction, including without limitation the rights
|
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
-
furnished to do so, subject to the following conditions:
|
|
11
|
-
|
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
|
13
|
-
copies or substantial portions of the Software.
|
|
14
|
-
|
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
-
SOFTWARE.
|
|
22
|
-
|