BERATools 0.2.0__py3-none-any.whl → 0.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- beratools/__init__.py +1 -7
- beratools/core/algo_centerline.py +491 -351
- beratools/core/algo_common.py +497 -0
- beratools/core/algo_cost.py +192 -0
- beratools/core/{dijkstra_algorithm.py → algo_dijkstra.py} +503 -460
- beratools/core/algo_footprint_rel.py +577 -0
- beratools/core/algo_line_grouping.py +944 -0
- beratools/core/algo_merge_lines.py +214 -0
- beratools/core/algo_split_with_lines.py +304 -0
- beratools/core/algo_tiler.py +428 -0
- beratools/core/algo_vertex_optimization.py +469 -0
- beratools/core/constants.py +52 -86
- beratools/core/logger.py +76 -85
- beratools/core/tool_base.py +196 -133
- beratools/gui/__init__.py +11 -15
- beratools/gui/{beratools.json → assets/beratools.json} +2185 -2300
- beratools/gui/batch_processing_dlg.py +513 -463
- beratools/gui/bt_data.py +481 -487
- beratools/gui/bt_gui_main.py +710 -691
- beratools/gui/main.py +26 -0
- beratools/gui/map_window.py +162 -146
- beratools/gui/tool_widgets.py +725 -493
- beratools/tools/Beratools_r_script.r +1120 -1120
- beratools/tools/Ht_metrics.py +116 -116
- beratools/tools/__init__.py +7 -7
- beratools/tools/batch_processing.py +136 -132
- beratools/tools/canopy_threshold_relative.py +672 -670
- beratools/tools/canopycostraster.py +222 -222
- beratools/tools/centerline.py +136 -176
- beratools/tools/common.py +857 -885
- beratools/tools/fl_regen_csf.py +428 -428
- beratools/tools/forest_line_attributes.py +408 -408
- beratools/tools/line_footprint_absolute.py +213 -363
- beratools/tools/line_footprint_fixed.py +436 -282
- beratools/tools/line_footprint_functions.py +733 -720
- beratools/tools/line_footprint_relative.py +73 -64
- beratools/tools/line_grouping.py +45 -0
- beratools/tools/ln_relative_metrics.py +615 -615
- beratools/tools/r_cal_lpi_elai.r +24 -24
- beratools/tools/r_generate_pd_focalraster.r +100 -100
- beratools/tools/r_interface.py +79 -79
- beratools/tools/r_point_density.r +8 -8
- beratools/tools/rpy_chm2trees.py +86 -86
- beratools/tools/rpy_dsm_chm_by.py +81 -81
- beratools/tools/rpy_dtm_by.py +63 -63
- beratools/tools/rpy_find_cellsize.py +43 -43
- beratools/tools/rpy_gnd_csf.py +74 -74
- beratools/tools/rpy_hummock_hollow.py +85 -85
- beratools/tools/rpy_hummock_hollow_raster.py +71 -71
- beratools/tools/rpy_las_info.py +51 -51
- beratools/tools/rpy_laz2las.py +40 -40
- beratools/tools/rpy_lpi_elai_lascat.py +466 -466
- beratools/tools/rpy_normalized_lidar_by.py +56 -56
- beratools/tools/rpy_percent_above_dbh.py +80 -80
- beratools/tools/rpy_points2trees.py +88 -88
- beratools/tools/rpy_vegcoverage.py +94 -94
- beratools/tools/tiler.py +48 -206
- beratools/tools/tool_template.py +69 -54
- beratools/tools/vertex_optimization.py +61 -620
- beratools/tools/zonal_threshold.py +144 -144
- beratools-0.2.2.dist-info/METADATA +108 -0
- beratools-0.2.2.dist-info/RECORD +74 -0
- {beratools-0.2.0.dist-info → beratools-0.2.2.dist-info}/WHEEL +1 -1
- {beratools-0.2.0.dist-info → beratools-0.2.2.dist-info}/licenses/LICENSE +22 -22
- beratools/gui/cli.py +0 -18
- beratools/gui/gui.json +0 -8
- beratools/gui_tk/ASCII Banners.txt +0 -248
- beratools/gui_tk/__init__.py +0 -20
- beratools/gui_tk/beratools_main.py +0 -515
- beratools/gui_tk/bt_widgets.py +0 -442
- beratools/gui_tk/cli.py +0 -18
- beratools/gui_tk/img/BERALogo.png +0 -0
- beratools/gui_tk/img/closed.gif +0 -0
- beratools/gui_tk/img/closed.png +0 -0
- beratools/gui_tk/img/open.gif +0 -0
- beratools/gui_tk/img/open.png +0 -0
- beratools/gui_tk/img/tool.gif +0 -0
- beratools/gui_tk/img/tool.png +0 -0
- beratools/gui_tk/main.py +0 -14
- beratools/gui_tk/map_window.py +0 -144
- beratools/gui_tk/runner.py +0 -1481
- beratools/gui_tk/tooltip.py +0 -55
- beratools/third_party/pyqtlet2/__init__.py +0 -9
- beratools/third_party/pyqtlet2/leaflet/__init__.py +0 -26
- beratools/third_party/pyqtlet2/leaflet/control/__init__.py +0 -6
- beratools/third_party/pyqtlet2/leaflet/control/control.py +0 -59
- beratools/third_party/pyqtlet2/leaflet/control/draw.py +0 -52
- beratools/third_party/pyqtlet2/leaflet/control/layers.py +0 -20
- beratools/third_party/pyqtlet2/leaflet/core/Parser.py +0 -24
- beratools/third_party/pyqtlet2/leaflet/core/__init__.py +0 -2
- beratools/third_party/pyqtlet2/leaflet/core/evented.py +0 -180
- beratools/third_party/pyqtlet2/leaflet/layer/__init__.py +0 -5
- beratools/third_party/pyqtlet2/leaflet/layer/featuregroup.py +0 -34
- beratools/third_party/pyqtlet2/leaflet/layer/icon/__init__.py +0 -1
- beratools/third_party/pyqtlet2/leaflet/layer/icon/icon.py +0 -30
- beratools/third_party/pyqtlet2/leaflet/layer/imageoverlay.py +0 -18
- beratools/third_party/pyqtlet2/leaflet/layer/layer.py +0 -105
- beratools/third_party/pyqtlet2/leaflet/layer/layergroup.py +0 -45
- beratools/third_party/pyqtlet2/leaflet/layer/marker/__init__.py +0 -1
- beratools/third_party/pyqtlet2/leaflet/layer/marker/marker.py +0 -91
- beratools/third_party/pyqtlet2/leaflet/layer/tile/__init__.py +0 -2
- beratools/third_party/pyqtlet2/leaflet/layer/tile/gridlayer.py +0 -4
- beratools/third_party/pyqtlet2/leaflet/layer/tile/tilelayer.py +0 -16
- beratools/third_party/pyqtlet2/leaflet/layer/vector/__init__.py +0 -5
- beratools/third_party/pyqtlet2/leaflet/layer/vector/circle.py +0 -15
- beratools/third_party/pyqtlet2/leaflet/layer/vector/circlemarker.py +0 -18
- beratools/third_party/pyqtlet2/leaflet/layer/vector/path.py +0 -5
- beratools/third_party/pyqtlet2/leaflet/layer/vector/polygon.py +0 -14
- beratools/third_party/pyqtlet2/leaflet/layer/vector/polyline.py +0 -18
- beratools/third_party/pyqtlet2/leaflet/layer/vector/rectangle.py +0 -14
- beratools/third_party/pyqtlet2/leaflet/map/__init__.py +0 -1
- beratools/third_party/pyqtlet2/leaflet/map/map.py +0 -220
- beratools/third_party/pyqtlet2/mapwidget.py +0 -45
- beratools/third_party/pyqtlet2/web/custom.js +0 -43
- beratools/third_party/pyqtlet2/web/map.html +0 -23
- beratools/third_party/pyqtlet2/web/modules/leaflet_193/images/layers-2x.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_193/images/layers.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_193/images/marker-icon-2x.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_193/images/marker-icon.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_193/images/marker-shadow.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_193/leaflet.css +0 -656
- beratools/third_party/pyqtlet2/web/modules/leaflet_193/leaflet.js +0 -6
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/.codeclimate.yml +0 -14
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/.editorconfig +0 -4
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/.gitattributes +0 -22
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/.travis.yml +0 -43
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/LICENSE +0 -20
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/images/layers-2x.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/images/layers.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/images/marker-icon-2x.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/images/marker-icon.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/images/marker-shadow.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/images/spritesheet-2x.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/images/spritesheet.png +0 -0
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/images/spritesheet.svg +0 -156
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/leaflet.draw.css +0 -10
- beratools/third_party/pyqtlet2/web/modules/leaflet_draw_414/leaflet.draw.js +0 -10
- beratools/third_party/pyqtlet2/web/modules/leaflet_rotatedMarker_020/LICENSE +0 -22
- beratools/third_party/pyqtlet2/web/modules/leaflet_rotatedMarker_020/leaflet.rotatedMarker.js +0 -57
- beratools/tools/forest_line_ecosite.py +0 -216
- beratools/tools/lapis_all.py +0 -103
- beratools/tools/least_cost_path_from_chm.py +0 -152
- beratools-0.2.0.dist-info/METADATA +0 -63
- beratools-0.2.0.dist-info/RECORD +0 -142
- /beratools/gui/{img → assets}/BERALogo.png +0 -0
- /beratools/gui/{img → assets}/closed.gif +0 -0
- /beratools/gui/{img → assets}/closed.png +0 -0
- /beratools/{gui_tk → gui/assets}/gui.json +0 -0
- /beratools/gui/{img → assets}/open.gif +0 -0
- /beratools/gui/{img → assets}/open.png +0 -0
- /beratools/gui/{img → assets}/tool.gif +0 -0
- /beratools/gui/{img → assets}/tool.png +0 -0
- {beratools-0.2.0.dist-info → beratools-0.2.2.dist-info}/entry_points.txt +0 -0
|
@@ -1,1120 +1,1120 @@
|
|
|
1
|
-
chm2trees<-function(in_chm,Min_ws,hmin,out_folder,rprocesses)
|
|
2
|
-
{
|
|
3
|
-
# update.packages(list('terra','lidR','future'))
|
|
4
|
-
library(lidR)
|
|
5
|
-
library(terra)
|
|
6
|
-
library(future)
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
plan(multisession, workers = rprocesses)
|
|
10
|
-
set_lidr_threads(rprocesses)
|
|
11
|
-
|
|
12
|
-
#read Las file and drop any noise from the point cloud
|
|
13
|
-
current_chm <- rast(in_chm)
|
|
14
|
-
cell_size <- res(current_chm)[1]
|
|
15
|
-
# find the highest point of CHM
|
|
16
|
-
tallest_ht = minmax(current_chm)[2]
|
|
17
|
-
|
|
18
|
-
#Reforestation Standard of Alberta 2018
|
|
19
|
-
#(https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/formain15749/$FILE/reforestation-standard-alberta-may1-2018.pdf, p.53)
|
|
20
|
-
#Live crown ratio is the proportion of total stem length that is covered by living branches. It is expressed as a percentage or decimal of the total tree height. Live crown ratio is a useful indicator of the status of the tree in relation to vigor, photosynthetic leaf area, and is inversely related to stocking density. It is assumed that live crown ratio must be greater than 0.3 (30%) in order for the tree to release well
|
|
21
|
-
|
|
22
|
-
if (Min_ws >= (0.3 * hmin)) {
|
|
23
|
-
(Min_ws <- Min_ws) }else {
|
|
24
|
-
(Min_ws <- 0.3 * hmin) }
|
|
25
|
-
|
|
26
|
-
f <- function(x) {
|
|
27
|
-
y <- (x * 0.3) + Min_ws
|
|
28
|
-
y[x < hmin] <- (Min_ws) # Smallest Crown
|
|
29
|
-
y[x > tallest_ht] <- (tallest_ht * 0.3) # Largest Crown
|
|
30
|
-
return(y)
|
|
31
|
-
}
|
|
32
|
-
|
|
33
|
-
out_ttop_filename = paste0(out_folder, "/", substr(basename(in_chm), 1, nchar(basename(in_chm)) - 4), ".shp")
|
|
34
|
-
|
|
35
|
-
ttop <- locate_trees(current_chm, lmf(ws = f, hmin = hmin, shape = "circular"), uniqueness = "bitmerge")
|
|
36
|
-
|
|
37
|
-
x <- vect(ttop)
|
|
38
|
-
writeVector(x, out_ttop_filename, overwrite = TRUE)
|
|
39
|
-
#st_write(ttop,out_ttop_filename)
|
|
40
|
-
|
|
41
|
-
}
|
|
42
|
-
|
|
43
|
-
##################################################################################################################
|
|
44
|
-
#create a 'generate_pd' function
|
|
45
|
-
generate_pd <- function(ctg, radius_fr_CHM, focal_radius, cell_size, cache_folder,
|
|
46
|
-
cut_ht, PD_Ground_folder, PD_Total_folder, rprocesses) {
|
|
47
|
-
# update.packages(list('terra','lidR','future'))
|
|
48
|
-
library(terra)
|
|
49
|
-
library(lidR)
|
|
50
|
-
library(future)
|
|
51
|
-
|
|
52
|
-
plan(multisession, workers = rprocesses)
|
|
53
|
-
set_lidr_threads(rprocesses)
|
|
54
|
-
|
|
55
|
-
opts <- paste0("-drop_class 7")
|
|
56
|
-
|
|
57
|
-
print("Processing using R packages.")
|
|
58
|
-
|
|
59
|
-
folder <- paste0(cache_folder, "/nlidar/n_{*}")
|
|
60
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- folder
|
|
61
|
-
opt_laz_compression(ctg) <- FALSE
|
|
62
|
-
opt_filter(ctg) <- "-drop_class 7"
|
|
63
|
-
opt_chunk_alignment(ctg) <- c(0, 0)
|
|
64
|
-
|
|
65
|
-
catalog_laxindex = function(ctg)
|
|
66
|
-
{
|
|
67
|
-
stopifnot(is(ctg, "LAScatalog"))
|
|
68
|
-
|
|
69
|
-
opt_chunk_size(ctg) <- 0
|
|
70
|
-
opt_chunk_buffer(ctg) <- 0
|
|
71
|
-
opt_wall_to_wall(ctg) <- FALSE
|
|
72
|
-
opt_output_files(ctg) <- ""
|
|
73
|
-
|
|
74
|
-
create_lax_file = function(cluster) {
|
|
75
|
-
rlas::writelax(cluster@files)
|
|
76
|
-
return(0)
|
|
77
|
-
}
|
|
78
|
-
|
|
79
|
-
options <- list(need_buffer = FALSE, drop_null = FALSE)
|
|
80
|
-
|
|
81
|
-
catalog_apply(ctg, create_lax_file, .options = options)
|
|
82
|
-
return(invisible())
|
|
83
|
-
}
|
|
84
|
-
|
|
85
|
-
#normalized LAS with pulse info
|
|
86
|
-
print("Indexing LAS Tiles...")
|
|
87
|
-
#lidR:::catalog_laxindex(ctg)
|
|
88
|
-
catalog_laxindex(ctg)
|
|
89
|
-
print("Normalize point cloud using K-nearest neighbour IDW ...")
|
|
90
|
-
normalize_height(ctg, algorithm = knnidw())
|
|
91
|
-
|
|
92
|
-
print("Generating point density (total focal sum) raster ...")
|
|
93
|
-
|
|
94
|
-
pd_total <- function(chunk, radius, cell_size)
|
|
95
|
-
{
|
|
96
|
-
las <- readLAS(chunk)
|
|
97
|
-
if (is.empty(las)) return(NULL)
|
|
98
|
-
|
|
99
|
-
las_1 <- filter_poi(readLAS(chunk), buffer == 0)
|
|
100
|
-
hull <- st_convex_hull(las_1)
|
|
101
|
-
# bbox <- ext(las_1)
|
|
102
|
-
|
|
103
|
-
# convert to SpatialPolygons
|
|
104
|
-
bbox <- vect(hull)
|
|
105
|
-
|
|
106
|
-
las <- filter_poi(las, Classification != 7L)
|
|
107
|
-
#las <- retrieve_pulses(las)
|
|
108
|
-
density_raster_total <- rasterize_density(las, res = cell_size, pkg = "terra")[[1]]
|
|
109
|
-
|
|
110
|
-
tfw <- focalMat(density_raster_total, radius, "circle")
|
|
111
|
-
|
|
112
|
-
tfw[tfw > 0] = 1
|
|
113
|
-
tfw[tfw == 0] = NA
|
|
114
|
-
|
|
115
|
-
Total_focal <- focal(density_raster_total, w = tfw, fun = "sum", na.rm = TRUE, na.policy = "omit", fillvalue = NA, expand = FALSE)
|
|
116
|
-
Total_focal <- crop(Total_focal, bbox)
|
|
117
|
-
}
|
|
118
|
-
|
|
119
|
-
opt <- list(need_output_file = TRUE, autocrop = TRUE)
|
|
120
|
-
opt_chunk_alignment(ctg) <- c(0, 0)
|
|
121
|
-
ctg@output_options$
|
|
122
|
-
drivers$
|
|
123
|
-
SpatRaster$
|
|
124
|
-
param$
|
|
125
|
-
overwrite <- TRUE
|
|
126
|
-
opt_output_files(ctg) <- paste0(PD_Total_folder, "/{*}_PD_Tfocalsum")
|
|
127
|
-
opt_stop_early(ctg) <- FALSE
|
|
128
|
-
catalog_apply(ctg, pd_total, radius = focal_radius, cell_size = cell_size, .options = opt)
|
|
129
|
-
|
|
130
|
-
#load normalized LAS for ground point density
|
|
131
|
-
ht <- paste0("-drop_class 7 -drop_z_above ", cut_ht)
|
|
132
|
-
ctg2 <- readLAScatalog(paste0(cache_folder, "/nlidar"), filter = ht)
|
|
133
|
-
#lidR:::catalog_laxindex(ctg2)
|
|
134
|
-
catalog_laxindex(ctg2)
|
|
135
|
-
|
|
136
|
-
print("Generating point density (ground focal sum) raster ...")
|
|
137
|
-
|
|
138
|
-
pd_ground <- function(chunk, radius, cell_size, cut_ht)
|
|
139
|
-
{
|
|
140
|
-
las <- readLAS(chunk)
|
|
141
|
-
if (is.empty(las)) return(NULL)
|
|
142
|
-
|
|
143
|
-
las_1 <- filter_poi(readLAS(chunk), buffer == 0)
|
|
144
|
-
hull <- st_convex_hull(las_1)
|
|
145
|
-
|
|
146
|
-
# convert to SpatialPolygons
|
|
147
|
-
bbox <- vect(hull)
|
|
148
|
-
# bbox <- ext(las_1)
|
|
149
|
-
|
|
150
|
-
#las <- retrieve_pulses(las)
|
|
151
|
-
density_raster_ground <- rasterize_density(las, res = cell_size, pkg = "terra")[[1]]
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
gfw <- focalMat(density_raster_ground, radius, "circle")
|
|
155
|
-
gfw[gfw > 0] = 1
|
|
156
|
-
gfw[gfw == 0] = NA
|
|
157
|
-
|
|
158
|
-
Ground_focal <- focal(density_raster_ground, w = gfw, fun = "sum", na.policy = "omit", na.rm = TRUE, fillvalue = NA, expand = FALSE)
|
|
159
|
-
ground_focal <- crop(Ground_focal, bbox)
|
|
160
|
-
|
|
161
|
-
}
|
|
162
|
-
|
|
163
|
-
opt <- list(need_output_file = TRUE, autocrop = TRUE)
|
|
164
|
-
opt_chunk_alignment(ctg2) <- c(0, 0)
|
|
165
|
-
ctg2@output_options$
|
|
166
|
-
drivers$
|
|
167
|
-
SpatRaster$
|
|
168
|
-
param$
|
|
169
|
-
overwrite <- TRUE
|
|
170
|
-
opt_output_files(ctg2) <- paste0(PD_Ground_folder, "/{*}_PD_Gfocalsum")
|
|
171
|
-
opt_stop_early(ctg2) <- FALSE
|
|
172
|
-
catalog_apply(ctg2, pd_ground, radius = focal_radius, cell_size = cell_size, cut_ht = cut_ht, .options = opt)
|
|
173
|
-
# reset R mutilsession back to default
|
|
174
|
-
plan(sequential)
|
|
175
|
-
}
|
|
176
|
-
|
|
177
|
-
#########################################################################################################################
|
|
178
|
-
hh_function <- function(in_las_folder, cell_size, Smooth_by, Min_ws, lawn_range, out_folder, rprocesses) {
|
|
179
|
-
# update.packages(list('terra','lidR','future','sf'))
|
|
180
|
-
library(lidR)
|
|
181
|
-
library(terra)
|
|
182
|
-
library(sf)
|
|
183
|
-
library(future)
|
|
184
|
-
|
|
185
|
-
plan(multisession, workers = rprocesses)
|
|
186
|
-
set_lidr_threads(rprocesses)
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
print('Generating Hummock/ Hollow Raster ...')
|
|
190
|
-
ctg <- readLAScatalog(in_las_folder, select = 'xyzc', filter = '-drop_class 7')
|
|
191
|
-
|
|
192
|
-
HH_raster <- function(chunk, radius, cell_size, lawn_range, Smooth_by)
|
|
193
|
-
{
|
|
194
|
-
las <- readLAS(chunk)
|
|
195
|
-
if (is.empty(las)) return(NULL)
|
|
196
|
-
|
|
197
|
-
las_1 <- filter_poi(readLAS(chunk), buffer == 0)
|
|
198
|
-
hull <- st_convex_hull(las_1)
|
|
199
|
-
|
|
200
|
-
# convert to SpatialPolygons
|
|
201
|
-
bbox <- vect(hull)
|
|
202
|
-
# bbox <- ext(las_1)
|
|
203
|
-
|
|
204
|
-
#las to DTM
|
|
205
|
-
dtm <- rasterize_terrain(las, res = cell_size, algorithm = tin())
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
gfw <- focalMat(dtm, radius, "circle")
|
|
209
|
-
gfw[gfw > 0] = 1
|
|
210
|
-
gfw[gfw == 0] = NA
|
|
211
|
-
|
|
212
|
-
rdtm <- focal(dtm, w = gfw, fun = Smooth_by, na.policy = "omit", na.rm = TRUE, fillvalue = NA, expand = TRUE)
|
|
213
|
-
cond_raster <- (rdtm - dtm)
|
|
214
|
-
positive <- abs(lawn_range)
|
|
215
|
-
negative <- positive * -1
|
|
216
|
-
|
|
217
|
-
HH <- ifel(cond_raster < negative, 1, ifel(cond_raster > positive, -1, 0))
|
|
218
|
-
|
|
219
|
-
cont_hh <- (crop(cond_raster, ext(bbox))) * -1
|
|
220
|
-
hh <- crop(HH, ext(bbox))
|
|
221
|
-
|
|
222
|
-
return(list(cont_hh, hh, radius, Smooth_by))
|
|
223
|
-
}
|
|
224
|
-
|
|
225
|
-
MultiWrite = function(output_list, file) {
|
|
226
|
-
chh = output_list[[1]]
|
|
227
|
-
hh = output_list[[2]]
|
|
228
|
-
radius = output_list[[3]]
|
|
229
|
-
Smooth_by = output_list[[4]]
|
|
230
|
-
path1 = gsub("@@@_", "CHH_", file)
|
|
231
|
-
path2 = gsub("@@@_", "HH_", file)
|
|
232
|
-
|
|
233
|
-
path1 = paste0(path1, "_", Smooth_by, "_", radius, "m.tif")
|
|
234
|
-
path2 = paste0(path2, "_", Smooth_by, "_", radius, "m.tif")
|
|
235
|
-
|
|
236
|
-
terra::writeRaster(chh, path1, overwrite = TRUE)
|
|
237
|
-
terra::writeRaster(hh, path2, overwrite = TRUE)
|
|
238
|
-
|
|
239
|
-
}
|
|
240
|
-
|
|
241
|
-
MultiWriteDriver = list(
|
|
242
|
-
write = MultiWrite,
|
|
243
|
-
extension = "",
|
|
244
|
-
object = "output_list",
|
|
245
|
-
path = "file",
|
|
246
|
-
param = list())
|
|
247
|
-
|
|
248
|
-
ctg@output_options$drivers$list <- MultiWriteDriver
|
|
249
|
-
|
|
250
|
-
opt_chunk_alignment(ctg) <- c(0, 0)
|
|
251
|
-
opt_output_files(ctg) <- paste0(out_folder, "/CHH_{*}_", Smooth_by, "_", Min_ws, "m")
|
|
252
|
-
ctg@output_options$
|
|
253
|
-
drivers$
|
|
254
|
-
SpatRaster$
|
|
255
|
-
param$
|
|
256
|
-
overwrite <- TRUE
|
|
257
|
-
opt_stop_early(ctg) <- TRUE
|
|
258
|
-
out <- catalog_apply(ctg, HH_raster, radius = Min_ws, cell_size = cell_size, lawn_range = lawn_range, Smooth_by = Smooth_by)
|
|
259
|
-
|
|
260
|
-
# reset R mutilsession back to default
|
|
261
|
-
plan(sequential)
|
|
262
|
-
|
|
263
|
-
}
|
|
264
|
-
|
|
265
|
-
#########################################################################################################################
|
|
266
|
-
hh_function_byraster <- function(in_raster,cell_size, Min_ws, lawn_range, out_folder,rprocesses){
|
|
267
|
-
# update.packages(list('terra'))
|
|
268
|
-
|
|
269
|
-
library(terra)
|
|
270
|
-
library(utils)
|
|
271
|
-
library(base)
|
|
272
|
-
library(terra)
|
|
273
|
-
|
|
274
|
-
print('Generating Hummock/ Hollow Raster ...')
|
|
275
|
-
in_dtm <- rast(in_raster)
|
|
276
|
-
filename <- substr(basename(in_raster), 1, nchar(basename(in_raster)) - 4)
|
|
277
|
-
|
|
278
|
-
gfw <- focalMat(in_dtm, Min_ws, "circle")
|
|
279
|
-
gfw[gfw > 0] = 1
|
|
280
|
-
gfw[gfw == 0] = NA
|
|
281
|
-
|
|
282
|
-
rdtm <- focal(in_dtm, w = gfw, fun = Smooth_by, na.policy = "omit", na.rm = TRUE, fillvalue = NA, expand = TRUE)
|
|
283
|
-
# writeRaster(rdtm,paste0(out_folder,"/rdtm_",filename,".tif"),overwrite=TRUE)
|
|
284
|
-
cond_raster <- (rdtm - in_dtm)
|
|
285
|
-
writeRaster(cond_raster, paste0(out_folder, "/CHH_", filename, ".tif"), overwrite = TRUE)
|
|
286
|
-
positive <- abs(lawn_range)
|
|
287
|
-
negative <- positive * -1
|
|
288
|
-
|
|
289
|
-
HH <- ifel(cond_raster < negative, 1, ifel(cond_raster > positive, -1, 0))
|
|
290
|
-
writeRaster(HH, paste0(out_folder, "/HH_", filename, ".tif"), overwrite = TRUE)
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
}
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
###################################################################################################################################
|
|
297
|
-
pd2cellsize <- function(in_las_folder, rprocesses) {
|
|
298
|
-
# update.packages(list('lidR','future'))
|
|
299
|
-
library(lidR)
|
|
300
|
-
library(future)
|
|
301
|
-
|
|
302
|
-
plan(multisession, workers = rprocesses)
|
|
303
|
-
set_lidr_threads(rprocesses)
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
print("Calculate output's raster average cell size from point density...")
|
|
307
|
-
if (is(in_las_folder, "LAS") || is(in_las_folder, "LAScatalog"))
|
|
308
|
-
{ ctg <- in_las_folder }
|
|
309
|
-
else { ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7') }
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
point_density <- sum(ctg@data$Number.of.point.records) / st_area(ctg)
|
|
313
|
-
mean_pd = (3 / point_density)^(1 / 2)
|
|
314
|
-
cell_size = round(0.05 * round(mean_pd / 0.05), 2)
|
|
315
|
-
return(cell_size)
|
|
316
|
-
}
|
|
317
|
-
|
|
318
|
-
##################################################################################
|
|
319
|
-
|
|
320
|
-
points2trees <- function(in_folder, is_normalized, hmin, out_folder, rprocesses, CHMcell_size, cell_size)
|
|
321
|
-
{
|
|
322
|
-
# update.packages(list('terra','lidR','future'))
|
|
323
|
-
library(lidR)
|
|
324
|
-
library(terra)
|
|
325
|
-
library(future)
|
|
326
|
-
|
|
327
|
-
plan(multisession, workers = rprocesses)
|
|
328
|
-
set_lidr_threads(rprocesses)
|
|
329
|
-
|
|
330
|
-
#normailize point cloud using K-nearest neighbour IDW
|
|
331
|
-
if (is_normalized) {
|
|
332
|
-
n_las <- readLAScatalog(in_folder, filter = '-drop_class 7 -drop_z_below 0')
|
|
333
|
-
}
|
|
334
|
-
else {
|
|
335
|
-
#read Las file and drop any noise from the point cloud
|
|
336
|
-
ctg <- readLAScatalog(in_folder, filter = '-drop_class 7')
|
|
337
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/normalized/n_{*}")
|
|
338
|
-
print("Normalize lidar data...")
|
|
339
|
-
opt_progress(ctg) <- TRUE
|
|
340
|
-
n_las <- normalize_height(ctg, algorithm = knnidw())
|
|
341
|
-
opt_filter(n_las) <- '-drop_class 7 -drop_z_below 0' }
|
|
342
|
-
|
|
343
|
-
# # create a CHM from point cloud for visualization
|
|
344
|
-
if (CHMcell_size != -999) {
|
|
345
|
-
print("Generating normalized CHM ...")
|
|
346
|
-
opt_output_files(n_las) <- opt_output_files(n_las) <- paste0(out_folder, "/chm/{*}_chm")
|
|
347
|
-
n_las@output_options$
|
|
348
|
-
drivers$
|
|
349
|
-
SpatRaster$
|
|
350
|
-
param$
|
|
351
|
-
overwrite <- TRUE
|
|
352
|
-
n_las@output_options$
|
|
353
|
-
drivers$
|
|
354
|
-
Raster$
|
|
355
|
-
param$
|
|
356
|
-
overwrite <- TRUE
|
|
357
|
-
opt_progress(n_las) <- TRUE
|
|
358
|
-
# chm <- rasterize_canopy(n_las, cell_size, pitfree(thresholds = c(0,3,10,15,22,30,38), max_edge = c(0, 1.5)), pkg = "terra")
|
|
359
|
-
chm <- rasterize_canopy(n_las, CHMcell_size, dsmtin(max_edge = (3 * CHMcell_size)), pkg = "terra") }
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
print("Compute approximate tree positions ...")
|
|
363
|
-
|
|
364
|
-
ctg_detect_tree <- function(chunk, hmin, out_folder, cell_size) {
|
|
365
|
-
las <- readLAS(chunk) # read the chunk
|
|
366
|
-
if (is.empty(las)) return(NULL) # exit if empty
|
|
367
|
-
# quarter_ht<- ((las@header@PHB$`Max Z` + las@header@PHB$`Min Z`)/4)
|
|
368
|
-
|
|
369
|
-
f <- function(x) {
|
|
370
|
-
# y = 0.4443*(x^0.7874)
|
|
371
|
-
y = 0.478676 * (x^0.695289) #base on Plot4209, 4207 and 4203
|
|
372
|
-
y[x < hmin] <- 0.478676 * (hmin^0.695289) # Min_ws # smallest window
|
|
373
|
-
# y[x > (quarter_ht)] <- 0.478676*(quarter_ht^0.695289) # largest window
|
|
374
|
-
# y= 0.39328*x
|
|
375
|
-
# y[x <hmin ] <- 0.39328*hmin # largest window
|
|
376
|
-
# y[x > (quarter_ht)] <- 0.39328*quarter_ht # smallest window
|
|
377
|
-
|
|
378
|
-
return(y) }
|
|
379
|
-
|
|
380
|
-
# dynamic searching window is based on the function of (tree height x 0.3)
|
|
381
|
-
# dynamic window
|
|
382
|
-
ttop <- locate_trees(las, lmf(ws = f, hmin = hmin, shape = "circular"), uniqueness = "gpstime")
|
|
383
|
-
# Fix searching window (Testing only)
|
|
384
|
-
# ttop <- locate_trees(las, lmf(ws = 3,hmin=hmin,shape="circular"),uniqueness = "gpstime")
|
|
385
|
-
|
|
386
|
-
ttop <- crop(vect(ttop), ext(chunk)) # remove the buffer
|
|
387
|
-
# generating number of trees per ha raster
|
|
388
|
-
# sum_map<-terra::rasterize(ttop,rast(ext(chunk),resolution=cell_size,crs=crs(ttop)),fun=sum)
|
|
389
|
-
# sum_map<- classify(sum_map, cbind(NA, 0))
|
|
390
|
-
|
|
391
|
-
# return(list(ttop,sum_map))
|
|
392
|
-
}
|
|
393
|
-
|
|
394
|
-
options <- list(automerge = TRUE, autocrop = TRUE)
|
|
395
|
-
# opt_output_files(n_las)<-opt_output_files(n_las)<-paste0(out_folder,"/@@@_{*}")
|
|
396
|
-
opt_output_files(n_las) <- paste0(out_folder, "/{*}_tree_min_", hmin, "_m")
|
|
397
|
-
n_las@output_options$drivers$sf$param$append <- FALSE
|
|
398
|
-
n_las@output_options$
|
|
399
|
-
drivers$
|
|
400
|
-
SpatVector$
|
|
401
|
-
param$
|
|
402
|
-
overwrite <- TRUE
|
|
403
|
-
opt_progress(n_las) <- TRUE
|
|
404
|
-
# MultiWrite = function(output_list, file){
|
|
405
|
-
# extent = output_list[[1]]
|
|
406
|
-
# sum_map = output_list[[2]]
|
|
407
|
-
# path1 = gsub("@@@_","", file)
|
|
408
|
-
# path2 = gsub("@@@_","", file)
|
|
409
|
-
#
|
|
410
|
-
# path1 = paste0(path1, "_trees_above",hmin,"m.shp")
|
|
411
|
-
# path2 = paste0(path2, "_Trees_counts_above",hmin,"m.tif")
|
|
412
|
-
#
|
|
413
|
-
# terra::writeVector(extent, path1, overwrite = TRUE)
|
|
414
|
-
# terra::writeRaster(sum_map,path2,overwrite=TRUE)
|
|
415
|
-
#
|
|
416
|
-
# }
|
|
417
|
-
# MultiWriteDriver = list(
|
|
418
|
-
# write = MultiWrite,
|
|
419
|
-
# extension = "",
|
|
420
|
-
# object = "output_list",
|
|
421
|
-
# path = "file",
|
|
422
|
-
# param = list())
|
|
423
|
-
|
|
424
|
-
# n_las@output_options$drivers$list <- MultiWriteDriver
|
|
425
|
-
|
|
426
|
-
out <- catalog_apply(n_las, ctg_detect_tree, hmin, out_folder, cell_size, .options = options)
|
|
427
|
-
shmin <- as.character(hmin)
|
|
428
|
-
shmin <- gsub("\\.", "p", shmin)
|
|
429
|
-
writeVector(out, paste0(out_folder, "/Merged_ApproxTrees_above_", shmin, "m.shp", overwrite = TRUE))
|
|
430
|
-
# reset R mutilsession back to default
|
|
431
|
-
plan(sequential)
|
|
432
|
-
}
|
|
433
|
-
|
|
434
|
-
#########################################################################################################################################
|
|
435
|
-
ht_metrics_lite <- function(in_las_folder, cell_size, out_folder, rprocesses)
|
|
436
|
-
{
|
|
437
|
-
# update.packages(list('terra','lidR','future'))
|
|
438
|
-
library(lidR)
|
|
439
|
-
library(terra)
|
|
440
|
-
library(future)
|
|
441
|
-
|
|
442
|
-
plan(multisession, workers = rprocesses)
|
|
443
|
-
set_lidr_threads(rprocesses)
|
|
444
|
-
|
|
445
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7 -drop_z_below 0')
|
|
446
|
-
opt_output_files(ctg) <- paste0(out_folder, "/{*}_lite_metrics_z")
|
|
447
|
-
ctg@output_options$
|
|
448
|
-
drivers$
|
|
449
|
-
SpatRaster$
|
|
450
|
-
param$
|
|
451
|
-
overwrite <- TRUE
|
|
452
|
-
opt_progress(ctg) <- TRUE
|
|
453
|
-
print('Generating height metrics ...')
|
|
454
|
-
zmetrics_f <- ~list(
|
|
455
|
-
zmax = max(Z),
|
|
456
|
-
zmin = min(Z),
|
|
457
|
-
zsd = sd(Z),
|
|
458
|
-
# zq25 = quantile(Z, probs = 0.25),
|
|
459
|
-
zq30 = quantile(Z, probs = 0.30),
|
|
460
|
-
# zq35 = quantile(Z, probs = 0.35),
|
|
461
|
-
zq40 = quantile(Z, probs = 0.40),
|
|
462
|
-
# zq45 = quantile(Z, probs = 0.45),
|
|
463
|
-
zq50 = quantile(Z, probs = 0.50),
|
|
464
|
-
# zq55 = quantile(Z, probs = 0.55),
|
|
465
|
-
zq60 = quantile(Z, probs = 0.60),
|
|
466
|
-
# zq65 = quantile(Z, probs = 0.65),
|
|
467
|
-
zq70 = quantile(Z, probs = 0.70),
|
|
468
|
-
# zq75 = quantile(Z, probs = 0.75),
|
|
469
|
-
zq80 = quantile(Z, probs = 0.80),
|
|
470
|
-
# zq85 = quantile(Z, probs = 0.85),
|
|
471
|
-
zq90 = quantile(Z, probs = 0.90),
|
|
472
|
-
# zq95 = quantile(Z, probs = 0.95),
|
|
473
|
-
zq99 = quantile(Z, probs = 0.99)
|
|
474
|
-
)
|
|
475
|
-
|
|
476
|
-
m <- pixel_metrics(ctg, func = zmetrics_f, res = cell_size)
|
|
477
|
-
writeRaster(m, paste0(out_folder, "/Merged_metricsZ.tif"), overwrite = TRUE)
|
|
478
|
-
|
|
479
|
-
# reset R mutilsession back to default
|
|
480
|
-
plan(sequential)
|
|
481
|
-
}
|
|
482
|
-
|
|
483
|
-
######################################################################################
|
|
484
|
-
veg_cover_percentage <- function(in_las_folder, is_normalized, out_folder, hmin, hmax, cell_size, rprocesses)
|
|
485
|
-
{
|
|
486
|
-
# update.packages(list('terra','lidR','future'))
|
|
487
|
-
library(lidR)
|
|
488
|
-
library(terra)
|
|
489
|
-
library(future)
|
|
490
|
-
|
|
491
|
-
plan(multisession, workers = rprocesses)
|
|
492
|
-
set_lidr_threads(rprocesses)
|
|
493
|
-
|
|
494
|
-
if (!(is_normalized)) {
|
|
495
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
496
|
-
opt_output_files(ctg) <- paste0(out_folder, '/normalized/n_{*}')
|
|
497
|
-
opt_progress(ctg) <- TRUE
|
|
498
|
-
print('Normalize point cloud...')
|
|
499
|
-
n_ctg <- normalize_height(ctg, algorithm = knnidw()) }
|
|
500
|
-
else {
|
|
501
|
-
n_ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7 -drop_z_below 0')
|
|
502
|
-
}
|
|
503
|
-
|
|
504
|
-
print('Calculating vegetation coverage ...')
|
|
505
|
-
|
|
506
|
-
veg_cover_pmetric <- function(chunk, hmin, hmax, out_folder, cell_size)
|
|
507
|
-
{
|
|
508
|
-
las <- readLAS(chunk)
|
|
509
|
-
|
|
510
|
-
if (is.empty(las)) return(NULL)
|
|
511
|
-
|
|
512
|
-
total_pcount <- pixel_metrics(las, func = ~length(Z), pkg = "terra", res = cell_size, start = c(0, 0))
|
|
513
|
-
# replace NA with 0
|
|
514
|
-
total_pcount <- classify(total_pcount, cbind(NA, 0))
|
|
515
|
-
set.names(total_pcount, "Total_Ncount", index = 1)
|
|
516
|
-
|
|
517
|
-
|
|
518
|
-
Veg_pcount <- pixel_metrics(las, func = ~length(Z), filter = ~Z >= hmin & Z <= hmax, pkg = "terra", res = cell_size, start = c(0, 0))
|
|
519
|
-
# replace NA with 0
|
|
520
|
-
Veg_pcount <- classify(Veg_pcount, cbind(NA, 0))
|
|
521
|
-
set.names(Veg_pcount, "Veg_Ncount", index = 1)
|
|
522
|
-
|
|
523
|
-
veg_percetage <- Veg_pcount / total_pcount
|
|
524
|
-
# replace NA with 0
|
|
525
|
-
veg_percetage <- classify(veg_percetage, cbind(NA, 0))
|
|
526
|
-
set.names(veg_percetage, "Veg_CovPer", index = 1)
|
|
527
|
-
|
|
528
|
-
total_pcount <- crop(total_pcount, ext(chunk))
|
|
529
|
-
Veg_pcount <- crop(Veg_pcount, ext(chunk))
|
|
530
|
-
veg_percetage <- crop(veg_percetage, ext(chunk))
|
|
531
|
-
|
|
532
|
-
x <- c(total_pcount, Veg_pcount, veg_percetage)
|
|
533
|
-
|
|
534
|
-
}
|
|
535
|
-
|
|
536
|
-
#
|
|
537
|
-
# MultiWrite = function(output_list, file)
|
|
538
|
-
# {
|
|
539
|
-
# total_pcount = output_list[[1]]
|
|
540
|
-
# Veg_pcount = output_list[[2]]
|
|
541
|
-
# veg_CovPer=output_list[[3]]
|
|
542
|
-
# path1 = gsub("_@@@","_Total_Ncount", file)
|
|
543
|
-
# path2 = gsub("_@@@","_Veg_Ncount", file)
|
|
544
|
-
# path3 = gsub("_@@@","_Veg_CovPer", file)
|
|
545
|
-
# path1 = paste0(path1, ".tif")
|
|
546
|
-
# path2 = paste0(path2, ".tif")
|
|
547
|
-
# path3 = paste0(path3, ".tif")
|
|
548
|
-
#
|
|
549
|
-
# terra::writeRaster(total_pcount,path1,overwrite=TRUE)
|
|
550
|
-
# terra::writeRaster(Veg_pcount,path2,overwrite=TRUE)
|
|
551
|
-
# terra::writeRaster(veg_CovPer,path3,overwrite=TRUE)
|
|
552
|
-
#
|
|
553
|
-
#
|
|
554
|
-
# }
|
|
555
|
-
# MultiWriteDiver = list(
|
|
556
|
-
# write = MultiWrite,
|
|
557
|
-
# extension = "",
|
|
558
|
-
# object = "output_list",
|
|
559
|
-
# path = "file",
|
|
560
|
-
# param = list())
|
|
561
|
-
|
|
562
|
-
opt_output_files(n_ctg) <- paste0(out_folder, "/result/{*}_veg_cover_percentage")
|
|
563
|
-
n_ctg@output_options$
|
|
564
|
-
drivers$
|
|
565
|
-
SpatRaster$
|
|
566
|
-
param$
|
|
567
|
-
overwrite <- TRUE
|
|
568
|
-
# n_ctg@output_options$drivers$list <- MultiWriteDiver
|
|
569
|
-
out <- catalog_apply(n_ctg, veg_cover_pmetric, hmin, hmax, out_folder, cell_size)
|
|
570
|
-
|
|
571
|
-
# reset R mutilsession back to default
|
|
572
|
-
plan(sequential)
|
|
573
|
-
|
|
574
|
-
}
|
|
575
|
-
|
|
576
|
-
#########################################################################################
|
|
577
|
-
percentage_aboveDBH <- function(in_las_folder, is_normalized, out_folder, DBH, cell_size, rprocesses)
|
|
578
|
-
{
|
|
579
|
-
# update.packages(list('terra','lidR','future'))
|
|
580
|
-
library(lidR)
|
|
581
|
-
library(terra)
|
|
582
|
-
library(future)
|
|
583
|
-
|
|
584
|
-
plan(multisession, workers = rprocesses)
|
|
585
|
-
set_lidr_threads(rprocesses)
|
|
586
|
-
sDBH <- DBH
|
|
587
|
-
if (is_normalized) {
|
|
588
|
-
print('Loading normalize point cloud...')
|
|
589
|
-
n_ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7 -drop_z_below 0') }
|
|
590
|
-
else {
|
|
591
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
592
|
-
opt_output_files(ctg) <- paste0(out_folder, '/normalized/n_{*}')
|
|
593
|
-
opt_progress(ctg) <- TRUE
|
|
594
|
-
print('Normalize point cloud...')
|
|
595
|
-
n_ctg <- normalize_height(ctg, algorithm = knnidw())
|
|
596
|
-
}
|
|
597
|
-
|
|
598
|
-
print('Calculating percentage returns above DBH ...')
|
|
599
|
-
|
|
600
|
-
compute_aboveDBH <- function(chunk, DBH, out_folder, cell_size)
|
|
601
|
-
{
|
|
602
|
-
las <- readLAS(chunk)
|
|
603
|
-
|
|
604
|
-
if (is.empty(las)) return(NULL)
|
|
605
|
-
|
|
606
|
-
total_pcount <- pixel_metrics(las, func = ~length(NumberOfReturns), pkg = "terra", res = cell_size, start = c(0, 0))
|
|
607
|
-
|
|
608
|
-
abvDBH_pcount <- pixel_metrics(las, func = ~length(NumberOfReturns), filter = ~Z >= DBH, pkg = "terra", res = cell_size, start = c(0, 0))
|
|
609
|
-
|
|
610
|
-
abvDBH_percetage <- abvDBH_pcount / total_pcount
|
|
611
|
-
set.names(abvDBH_percetage, "Per_abvDBH", index = 1)
|
|
612
|
-
# replace NA with 0
|
|
613
|
-
abvDBH_percetage <- classify(abvDBH_percetage, cbind(NA, 0))
|
|
614
|
-
abvDBH_percetage <- crop(abvDBH_percetage, ext(chunk))
|
|
615
|
-
}
|
|
616
|
-
|
|
617
|
-
sDBH <- as.character(sDBH)
|
|
618
|
-
sDBH <- gsub("\\.", "p", sDBH)
|
|
619
|
-
|
|
620
|
-
opt_output_files(n_ctg) <- paste0(out_folder, "/{*}_return_above_", sDBH, 'm')
|
|
621
|
-
n_ctg@output_options$
|
|
622
|
-
drivers$
|
|
623
|
-
SpatRaster$
|
|
624
|
-
param$
|
|
625
|
-
overwrite <- TRUE
|
|
626
|
-
out <- catalog_apply(n_ctg, compute_aboveDBH, DBH, out_folder, cell_size)
|
|
627
|
-
in_file_list = list.files(path = out_folder, pattern = ".tif", all.files = TRUE, full.names = TRUE)
|
|
628
|
-
rast_list <- list()
|
|
629
|
-
for (i in 1:length(in_file_list)) {
|
|
630
|
-
rast_obj <- rast(in_file_list[[i]])
|
|
631
|
-
rast_list <- c(rast_list, rast_obj)
|
|
632
|
-
}
|
|
633
|
-
terra::mosaic(terra::sprc(rast_list), fun = "first", filename = paste0(out_folder, "/Merged__return_above_", sDBH, 'm'), overwrite = TRUE)
|
|
634
|
-
|
|
635
|
-
|
|
636
|
-
# reset R mutilsession back to default
|
|
637
|
-
plan(sequential)
|
|
638
|
-
}
|
|
639
|
-
|
|
640
|
-
#########################################################################################
|
|
641
|
-
normalized_lidar_knnidw <- function(in_las_folder, out_folder, rprocesses) {
|
|
642
|
-
# update.packages(list('lidR','future'))
|
|
643
|
-
library(lidR)
|
|
644
|
-
library(future)
|
|
645
|
-
|
|
646
|
-
plan(multisession, workers = rprocesses)
|
|
647
|
-
set_lidr_threads(rprocesses)
|
|
648
|
-
|
|
649
|
-
#read Las file and drop any noise from the point cloud
|
|
650
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
651
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/normalized/n_{*}")
|
|
652
|
-
print("Normalize lidar data...")
|
|
653
|
-
opt_progress(ctg) <- TRUE
|
|
654
|
-
n_las <- normalize_height(ctg, algorithm = knnidw())
|
|
655
|
-
# reset R mutilsession back to default
|
|
656
|
-
plan(sequential)
|
|
657
|
-
}
|
|
658
|
-
|
|
659
|
-
##########################################################################
|
|
660
|
-
normalized_lidar_tin <- function(in_las_folder, out_folder, rprocesses) {
|
|
661
|
-
# update.packages(list('lidR','future'))
|
|
662
|
-
library(lidR)
|
|
663
|
-
library(future)
|
|
664
|
-
|
|
665
|
-
plan(multisession, workers = rprocesses)
|
|
666
|
-
set_lidr_threads(rprocesses)
|
|
667
|
-
|
|
668
|
-
#read Las file and drop any noise from the point cloud
|
|
669
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
670
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/normalized/n_{*}")
|
|
671
|
-
print("Normalize lidar data...")
|
|
672
|
-
opt_progress(ctg) <- TRUE
|
|
673
|
-
|
|
674
|
-
n_las <- normalize_height(ctg, algorithm = tin())
|
|
675
|
-
# reset R mutilsession back to default
|
|
676
|
-
plan(sequential)
|
|
677
|
-
}
|
|
678
|
-
|
|
679
|
-
##########################################################################
|
|
680
|
-
normalized_lidar_kriging <- function(in_las_folder, out_folder, rprocesses) {
|
|
681
|
-
# update.packages(list('lidR','future'))
|
|
682
|
-
library(lidR)
|
|
683
|
-
library(future)
|
|
684
|
-
|
|
685
|
-
plan(multisession, workers = rprocesses)
|
|
686
|
-
set_lidr_threads(rprocesses)
|
|
687
|
-
|
|
688
|
-
#read Las file and drop any noise from the point cloud
|
|
689
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
690
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/normalized/n_{*}")
|
|
691
|
-
print("Normalize lidar data...")
|
|
692
|
-
opt_progress(ctg) <- TRUE
|
|
693
|
-
n_las <- normalize_height(ctg, algorithm = kriging())
|
|
694
|
-
# reset R mutilsession back to default
|
|
695
|
-
plan(sequential)
|
|
696
|
-
}
|
|
697
|
-
|
|
698
|
-
#########################################################################################
|
|
699
|
-
chm_by_dsmtin <- function(in_las_folder, out_folder, cell_size, is_normalized, rprocesses) {
|
|
700
|
-
# update.packages(list('lidR','future'))
|
|
701
|
-
library(lidR)
|
|
702
|
-
library(future)
|
|
703
|
-
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
704
|
-
plan(multisession, workers = rprocesses)
|
|
705
|
-
set_lidr_threads(rprocesses)
|
|
706
|
-
|
|
707
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
708
|
-
if (is_normalized) {
|
|
709
|
-
print("Generating CHM using TIN...")
|
|
710
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_chm") }
|
|
711
|
-
else {
|
|
712
|
-
print("Generating DSM using TIN...")
|
|
713
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_dsm") }
|
|
714
|
-
|
|
715
|
-
ctg@output_options$
|
|
716
|
-
drivers$
|
|
717
|
-
SpatRaster$
|
|
718
|
-
param$
|
|
719
|
-
overwrite <- TRUE
|
|
720
|
-
ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
721
|
-
opt_progress(ctg) <- TRUE
|
|
722
|
-
chm <- rasterize_canopy(ctg, cell_size, dsmtin(max_edge = (3 * cell_size)), pkg = "terra")
|
|
723
|
-
# reset R mutilsession back to default
|
|
724
|
-
plan(sequential)
|
|
725
|
-
}
|
|
726
|
-
|
|
727
|
-
#########################################################################################
|
|
728
|
-
chm_by_pitfree <- function(in_las_folder, out_folder, cell_size, is_normalized, rprocesses) {
|
|
729
|
-
# update.packages(list('lidR','future'))
|
|
730
|
-
library(lidR)
|
|
731
|
-
library(future)
|
|
732
|
-
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
733
|
-
plan(multisession, workers = rprocesses)
|
|
734
|
-
set_lidr_threads(rprocesses)
|
|
735
|
-
|
|
736
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7 -drop_overlap')
|
|
737
|
-
|
|
738
|
-
if (is_normalized) {
|
|
739
|
-
print("Generate CHM using Pit-free...")
|
|
740
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_chm") }
|
|
741
|
-
else {
|
|
742
|
-
print("Generate DSM using Pit-free...")
|
|
743
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_dsm") }
|
|
744
|
-
|
|
745
|
-
ctg@output_options$
|
|
746
|
-
drivers$
|
|
747
|
-
SpatRaster$
|
|
748
|
-
param$
|
|
749
|
-
overwrite <- TRUE
|
|
750
|
-
ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
751
|
-
opt_progress(ctg) <- TRUE
|
|
752
|
-
chm <- rasterize_canopy(ctg, cell_size, pitfree(thresholds = c(0, 3, 5, 10, 15, 20), max_edge = c(0, 3 * cell_size), subcircle = (cell_size)))
|
|
753
|
-
# reset R mutilsession back to default
|
|
754
|
-
|
|
755
|
-
rast_list <- list()
|
|
756
|
-
for (i in 1:length(chm)) {
|
|
757
|
-
rast_obj <- terra::rast(chm[[i]])
|
|
758
|
-
rast_list <- c(rast_list, rast_obj)
|
|
759
|
-
}
|
|
760
|
-
mosaic(sprc(rast_list), fun = "first", filename = paste0(out_folder, "/Merged_CHM.tif"), overwrite = TRUE)
|
|
761
|
-
|
|
762
|
-
plan(sequential)
|
|
763
|
-
|
|
764
|
-
}
|
|
765
|
-
|
|
766
|
-
#########################################################################################
|
|
767
|
-
dtm_by_knnidw <- function(in_las_folder, out_folder, cell_size, rprocesses) {
|
|
768
|
-
# update.packages(list('lidR','future'))
|
|
769
|
-
library(lidR)
|
|
770
|
-
library(future)
|
|
771
|
-
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
772
|
-
plan(multisession, workers = rprocesses)
|
|
773
|
-
set_lidr_threads(rprocesses)
|
|
774
|
-
|
|
775
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
776
|
-
print("Generate DTM...")
|
|
777
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_DTM")
|
|
778
|
-
ctg@output_options$
|
|
779
|
-
drivers$
|
|
780
|
-
SpatRaster$
|
|
781
|
-
param$
|
|
782
|
-
overwrite <- TRUE
|
|
783
|
-
ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
784
|
-
opt_progress(ctg) <- TRUE
|
|
785
|
-
dtm <- rasterize_terrain(ctg, res = cell_size, algorithm = knnidw())
|
|
786
|
-
# reset R mutilsession back to default
|
|
787
|
-
plan(sequential)
|
|
788
|
-
}
|
|
789
|
-
|
|
790
|
-
#########################################################################################
|
|
791
|
-
dtm_by_kriging <- function(in_las_folder, out_folder, cell_size, rprocesses) {
|
|
792
|
-
# update.packages(list('lidR','future'))
|
|
793
|
-
library(lidR)
|
|
794
|
-
library(future)
|
|
795
|
-
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
796
|
-
plan(multisession, workers = rprocesses)
|
|
797
|
-
set_lidr_threads(rprocesses)
|
|
798
|
-
|
|
799
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
800
|
-
print("Generate DTM...")
|
|
801
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_DTM")
|
|
802
|
-
ctg@output_options$
|
|
803
|
-
drivers$
|
|
804
|
-
SpatRaster$
|
|
805
|
-
param$
|
|
806
|
-
overwrite <- TRUE
|
|
807
|
-
ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
808
|
-
opt_progress(ctg) <- TRUE
|
|
809
|
-
dtm <- rasterize_terrain(ctg, res = cell_size, algorithm = kriging())
|
|
810
|
-
# reset R mutilsession back to default
|
|
811
|
-
plan(sequential)
|
|
812
|
-
}
|
|
813
|
-
|
|
814
|
-
#########################################################################################
|
|
815
|
-
dtm_by_tin <- function(in_las_folder, out_folder, cell_size, rprocesses) {
|
|
816
|
-
# update.packages(list('lidR','future'))
|
|
817
|
-
library(lidR)
|
|
818
|
-
library(future)
|
|
819
|
-
library(terra)
|
|
820
|
-
|
|
821
|
-
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
822
|
-
plan(multisession, workers = rprocesses)
|
|
823
|
-
set_lidr_threads(rprocesses)
|
|
824
|
-
|
|
825
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
826
|
-
print("Generate DTM...")
|
|
827
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_DTM")
|
|
828
|
-
ctg@output_options$
|
|
829
|
-
drivers$
|
|
830
|
-
SpatRaster$
|
|
831
|
-
param$
|
|
832
|
-
overwrite <- TRUE
|
|
833
|
-
# ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
834
|
-
opt_progress(ctg) <- TRUE
|
|
835
|
-
dtm <- rasterize_terrain(ctg, res = cell_size, algorithm = tin())
|
|
836
|
-
# reset R mutilsession back to default
|
|
837
|
-
plan(sequential)
|
|
838
|
-
}
|
|
839
|
-
|
|
840
|
-
###########################################################################################
|
|
841
|
-
laz2las <- function(in_las_folder, out_folder, rprocesses) {
|
|
842
|
-
# update.packages(list('lidR','future'))
|
|
843
|
-
library(lidR)
|
|
844
|
-
library(future)
|
|
845
|
-
|
|
846
|
-
plan(multisession, workers = rprocesses)
|
|
847
|
-
set_lidr_threads(rprocesses)
|
|
848
|
-
|
|
849
|
-
mywriteLAS = function(chunk) {
|
|
850
|
-
las <- readLAS(chunk)
|
|
851
|
-
|
|
852
|
-
if (is.empty(las)) return(NULL)
|
|
853
|
-
las <- filter_poi(las, buffer == 0)
|
|
854
|
-
return(las) }
|
|
855
|
-
|
|
856
|
-
#read Laz file and drop any noise from the point cloud
|
|
857
|
-
ctg <- readLAScatalog(in_las_folder)
|
|
858
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/las/{*}")
|
|
859
|
-
opt_laz_compression(ctg) <- FALSE
|
|
860
|
-
print("Saving zipped lidar data into *.las format...")
|
|
861
|
-
opt_progress(ctg) <- TRUE
|
|
862
|
-
catalog_apply(ctg, mywriteLAS)
|
|
863
|
-
# reset R mutilsession back to default
|
|
864
|
-
plan(sequential)
|
|
865
|
-
}
|
|
866
|
-
|
|
867
|
-
#############################################################
|
|
868
|
-
las_info <- function(in_las_folder, rprocesses) {
|
|
869
|
-
library(lidR)
|
|
870
|
-
library(future)
|
|
871
|
-
# update.packages(list('lidR','future'))
|
|
872
|
-
|
|
873
|
-
plan(multisession, workers = rprocesses)
|
|
874
|
-
set_lidr_threads(rprocesses)
|
|
875
|
-
print("loading LiDAR Data")
|
|
876
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
877
|
-
print(paste0("Data format: v", (ctg@data$Version.Major[1]), ".", (ctg@data$Version.Minor[1])))
|
|
878
|
-
print(paste0("Extent: ", min(ctg@data$Min.X), " ", max(ctg@data$Max.X), " ", min(ctg@data$Min.Y), " ", max(ctg@data$Max.Y)))
|
|
879
|
-
print(paste0("Area: ", round(st_area(ctg) / (1000 * 1000), 2), " units²"))
|
|
880
|
-
print(paste0("Total Pts: ", sum(ctg@data$Number.of.point.records)))
|
|
881
|
-
print(paste0("Density: ", round(sum(ctg@data$Number.of.point.records) / st_area(ctg), 0), " pts/units²"))
|
|
882
|
-
print(paste0("Total num. files: ", length(ctg@data$filename)))
|
|
883
|
-
|
|
884
|
-
|
|
885
|
-
}
|
|
886
|
-
|
|
887
|
-
#######################################################################################################################################
|
|
888
|
-
classify_gnd <- function(in_las_folder, out_folder, slope, class_threshold, cloth_resolution, rigidness) {
|
|
889
|
-
library(lidR)
|
|
890
|
-
library(future)
|
|
891
|
-
library(RCSF)
|
|
892
|
-
|
|
893
|
-
print("loading LiDAR Data")
|
|
894
|
-
plan(multisession, workers = 4)
|
|
895
|
-
set_lidr_threads(4)
|
|
896
|
-
|
|
897
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class_7 -drop_overlap')
|
|
898
|
-
opt_output_files(ctg) <- paste0(out_folder, "/{*}_gnd_classified")
|
|
899
|
-
opt_laz_compression(ctg) <- FALSE
|
|
900
|
-
gnd_csf <- csf(slope, class_threshold = class_threshold, cloth_resolution = cloth_resolution, rigidness = rigidness, iterations = 500, time_step = 0.65)
|
|
901
|
-
print("Classify ground start....")
|
|
902
|
-
c_ctg <- classify_ground(ctg, gnd_csf)
|
|
903
|
-
}
|
|
904
|
-
|
|
905
|
-
#############################################################################################
|
|
906
|
-
conduct_raster <- function(in_las_folder, out_folder, cell_size, rprocesses) {
|
|
907
|
-
|
|
908
|
-
library(terra)
|
|
909
|
-
library(lidR)
|
|
910
|
-
library(future)
|
|
911
|
-
library(sf)
|
|
912
|
-
|
|
913
|
-
plan(multisession, workers = rprocesses)
|
|
914
|
-
set_lidr_threads(rprocesses)
|
|
915
|
-
|
|
916
|
-
#normalized LAS with pulse info
|
|
917
|
-
|
|
918
|
-
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
919
|
-
opt_progress(ctg) <- TRUE
|
|
920
|
-
|
|
921
|
-
print("Generating multiple conductivity raster on:")
|
|
922
|
-
print("CHM, Slope, Roughness, ground point density, intensity raster.")
|
|
923
|
-
print("Idea from Correction, update, and enhancement of vectorial forestry line maps using LiDAR data, a pathfinder, and seven metrics, Jean-Romain Roussel, etl 2022.")
|
|
924
|
-
|
|
925
|
-
Q_raster <- function(chunk, cell_size)
|
|
926
|
-
{
|
|
927
|
-
las <- readLAS(chunk)
|
|
928
|
-
if (is.empty(las)) return(NULL)
|
|
929
|
-
|
|
930
|
-
las_1 <- filter_poi(readLAS(chunk), buffer == 0)
|
|
931
|
-
hull <- st_convex_hull(las_1)
|
|
932
|
-
bbox <- vect(hull)
|
|
933
|
-
|
|
934
|
-
|
|
935
|
-
# message('Generate DTM using Triangulation ...')
|
|
936
|
-
dtm <- rasterize_terrain(las, res = cell_size, algorithm = tin(max_edge = (3 * cell_size)))
|
|
937
|
-
|
|
938
|
-
n_las <- normalize_height(las, dtm)
|
|
939
|
-
|
|
940
|
-
#message("Generating slope conductivity raster...")
|
|
941
|
-
slope <- terrain(dtm, "slope", 8)
|
|
942
|
-
slope_range = slope@ptr$range_max - slope@ptr$range_min
|
|
943
|
-
Qslope <- ifel(slope <= slope_range * 0.1, 1, ifel(slope > slope_range * 0.75, 0, (1 - ((slope - slope@ptr$range_min) / slope_range))))
|
|
944
|
-
Qslope[is.na(Qslope)] = 0
|
|
945
|
-
Qslope <- terra::crop(Qslope, bbox)
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
# message("Generating roughness conductivity raster...")
|
|
949
|
-
roughness <- terrain(dtm, "roughness")
|
|
950
|
-
roughness_range = roughness@ptr$range_max - roughness@ptr$range_min
|
|
951
|
-
Qrough <- ifel(roughness <= roughness_range * 0.1, 1, ifel(roughness > roughness_range * 0.8, 0, (1 - ((roughness - roughness@ptr$range_min) / roughness_range))))
|
|
952
|
-
Qrough[is.na(Qrough)] = 0
|
|
953
|
-
Qrough <- terra::crop(Qrough, bbox)
|
|
954
|
-
|
|
955
|
-
# message("Generating edge conductivity raster...")
|
|
956
|
-
#sobel filter
|
|
957
|
-
fx = matrix(c(-1, -2, -1, 0, 0, 0, 1, 2, 1), nrow = 3)
|
|
958
|
-
fy = matrix(c(1, 0, -1, 2, 0, -2, 1, 0, -1), nrow = 3)
|
|
959
|
-
|
|
960
|
-
dtm_sobelx = focal(dtm, fx, na.policy = "omit")
|
|
961
|
-
dtm_sobely = focal(dtm, fy, na.policy = "omit")
|
|
962
|
-
|
|
963
|
-
dtm_sobel = sqrt(dtm_sobelx**2 + dtm_sobely**2)
|
|
964
|
-
dtm_sobel_range = dtm_sobel@ptr$range_max - dtm_sobel@ptr$range_min
|
|
965
|
-
Qedge <- ifel(dtm_sobel <= dtm_sobel_range * 0.15, 1, ifel(dtm_sobel > dtm_sobel_range * 0.85, 0, (1 - ((dtm_sobel - dtm_sobel@ptr$range_min) / dtm_sobel_range))))
|
|
966
|
-
Qedge[is.na(Qedge)] = 0
|
|
967
|
-
Qedge <- terra::crop(Qedge, bbox)
|
|
968
|
-
|
|
969
|
-
# message('Generate CHM...')
|
|
970
|
-
chm <- rasterize_canopy(n_las, cell_size, dsmtin(max_edge = (3 * cell_size)), pkg = "terra")
|
|
971
|
-
chm_range = chm@ptr$range_max - chm@ptr$range_min
|
|
972
|
-
Qchm <- ifel(chm <= chm_range * 0.1, 1, ifel(chm > chm_range * 0.75, 0, (1 - ((chm - chm@ptr$range_min) / chm_range))))
|
|
973
|
-
Qchm[is.na(Qchm)] = 0
|
|
974
|
-
Qchm <- terra::crop(Qchm, bbox)
|
|
975
|
-
|
|
976
|
-
# message("Generating intensity conductivity raster...")
|
|
977
|
-
# sensor <- track_sensor(las, Roussel2020(pmin=15))
|
|
978
|
-
# las <- normalize_intensity(las, range_correction(sensor,Rs=1800 ))
|
|
979
|
-
int_max <- pixel_metrics(las, (~max(Intensity)), cell_size) #,filter = ~ReturnNumber == 1L)
|
|
980
|
-
int_min <- pixel_metrics(las, (~min(Intensity)), cell_size) #,filter = ~ReturnNumber == 1L)
|
|
981
|
-
irange_map <- int_max - int_min
|
|
982
|
-
irange_map[is.na(irange_map)] = 0
|
|
983
|
-
iq2 <- global(irange_map, quantile, probs = 0.05, na.rm = TRUE)[[1]]
|
|
984
|
-
int_map_range <- irange_map@ptr$range_max - irange_map@ptr$range_min
|
|
985
|
-
Qint <- ifel(irange_map <= iq2, 1, ifel(irange_map > int_map_range * 0.75, 0, (1 - ((irange_map - irange_map@ptr$range_min) / int_map_range))))
|
|
986
|
-
Qint[is.na(Qint)] = 0
|
|
987
|
-
Qint <- terra::crop(Qint, bbox)
|
|
988
|
-
|
|
989
|
-
# message("Generating ground point density conductivity raster...")
|
|
990
|
-
g = filter_poi(las, Classification == 2L)
|
|
991
|
-
gpd <- rasterize_density(g, res = cell_size, pkg = "terra")
|
|
992
|
-
# gpd <- pixel_metrics(las, ~list(length(Z)/0.35**2),res=cell_size,filter=~Classification == 2L)
|
|
993
|
-
gq2 <- global(gpd, quantile, probs = 0.02, na.rm = TRUE)[[1]]
|
|
994
|
-
gpd_range = gpd@ptr$range_max - gpd@ptr$range_min
|
|
995
|
-
Qgpd <- ifel(gpd <= gq2, 0, (gpd - gpd@ptr$range_min) / gpd_range)
|
|
996
|
-
Qgpd[is.na(Qgpd)] = 0
|
|
997
|
-
Qgpd <- terra::crop(Qgpd, bbox)
|
|
998
|
-
|
|
999
|
-
|
|
1000
|
-
# message("Generating low vegetation density conductivity raster...")
|
|
1001
|
-
l = filter_poi(n_las, Z >= 1.0 &
|
|
1002
|
-
Z <= 3 &
|
|
1003
|
-
!(Classification %in% c(LASWATER, LASGROUND, LASBUILDING)))
|
|
1004
|
-
lower_density <- rasterize_density(l, res = cell_size, pkg = "terra")
|
|
1005
|
-
# lower_density <- pixel_metrics(n_las, ~list(length(Z)/0.35**2), cell_size,filter=~(Z>= 0.5 & Z<=3))
|
|
1006
|
-
lq2 <- global(lower_density, quantile, probs = 0.02, na.rm = TRUE)[[1]]
|
|
1007
|
-
lower_range = lower_density@ptr$range_max - lower_density@ptr$range_min
|
|
1008
|
-
Qlower <- ifel(lower_density > lq2, 0, 1)
|
|
1009
|
-
Qlower[is.na(Qlower)] = 0
|
|
1010
|
-
Qlower <- terra::crop(Qlower, bbox)
|
|
1011
|
-
|
|
1012
|
-
# message("Generating combined conductivity raster...")
|
|
1013
|
-
Conduct <- (Qslope * Qlower * Qedge) * (0.25 * Qchm +
|
|
1014
|
-
0.25 * Qgpd +
|
|
1015
|
-
0.25 * Qrough +
|
|
1016
|
-
0.25 * Qint)
|
|
1017
|
-
cost <- Conduct * -1 + Conduct@ptr$range_max
|
|
1018
|
-
cost[is.na(cost)] = 1
|
|
1019
|
-
|
|
1020
|
-
dtm <- terra::crop(dtm, bbox)
|
|
1021
|
-
dtm[is.na(dtm)] = NaN
|
|
1022
|
-
chm <- terra::crop(chm, bbox)
|
|
1023
|
-
chm[is.na(chm)] = NaN
|
|
1024
|
-
|
|
1025
|
-
|
|
1026
|
-
lower_canopy <- -ifel(lower_density > lq2, 1, 0)
|
|
1027
|
-
lower_canopy <- ifel(lower_canopy == -1, 1, lower_canopy)
|
|
1028
|
-
upper_canopy <- ifel(chm > 3, 1, 0)
|
|
1029
|
-
|
|
1030
|
-
lower_canopy <- extend(lower_canopy, ext(bbox))
|
|
1031
|
-
upper_canopy <- extend(upper_canopy, ext(bbox))
|
|
1032
|
-
|
|
1033
|
-
canopy <- ifel(upper_canopy == 1, upper_canopy * lower_canopy, upper_canopy + lower_canopy)
|
|
1034
|
-
canopy[is.na(canopy)] = 0
|
|
1035
|
-
|
|
1036
|
-
|
|
1037
|
-
return(list(Qchm, Qslope, Qrough, Qgpd, Qint, Qedge, Qlower, Conduct, cost, dtm, chm, canopy))
|
|
1038
|
-
|
|
1039
|
-
}
|
|
1040
|
-
|
|
1041
|
-
MultiWrite = function(output_list, file) {
|
|
1042
|
-
Qchm = output_list[[1]]
|
|
1043
|
-
Qslope = output_list[[2]]
|
|
1044
|
-
Qrough = output_list[[3]]
|
|
1045
|
-
Qgpd = output_list[[4]]
|
|
1046
|
-
Qint = output_list[[5]]
|
|
1047
|
-
Qedge = output_list[[6]]
|
|
1048
|
-
Qlower = output_list[[7]]
|
|
1049
|
-
Conductivity = output_list[[8]]
|
|
1050
|
-
Cost = output_list[[9]]
|
|
1051
|
-
dtm = output_list[[10]]
|
|
1052
|
-
chm = output_list[[11]]
|
|
1053
|
-
canopy = output_list[[12]]
|
|
1054
|
-
path1 = gsub("@@@", "Qchm", file)
|
|
1055
|
-
path2 = gsub("@@@", "Qslope", file)
|
|
1056
|
-
path3 = gsub("@@@", "Qrough", file)
|
|
1057
|
-
path4 = gsub("@@@", "Qgpd", file)
|
|
1058
|
-
path5 = gsub("@@@", "Qint", file)
|
|
1059
|
-
path6 = gsub("@@@", "Qedge", file)
|
|
1060
|
-
path7 = gsub("@@@", "Qlower", file)
|
|
1061
|
-
path8 = gsub("@@@", "Conductivity", file)
|
|
1062
|
-
path9 = gsub("@@@", "Cost", file)
|
|
1063
|
-
path10 = gsub("@@@", "DTM", file)
|
|
1064
|
-
path11 = gsub("@@@", "CHM", file)
|
|
1065
|
-
path12 = gsub("@@@", "Canopy", file)
|
|
1066
|
-
|
|
1067
|
-
path1 = paste0(path1, ".tif")
|
|
1068
|
-
path2 = paste0(path2, ".tif")
|
|
1069
|
-
path3 = paste0(path3, ".tif")
|
|
1070
|
-
path4 = paste0(path4, ".tif")
|
|
1071
|
-
path5 = paste0(path5, ".tif")
|
|
1072
|
-
path6 = paste0(path6, ".tif")
|
|
1073
|
-
path7 = paste0(path7, ".tif")
|
|
1074
|
-
path8 = paste0(path8, ".tif")
|
|
1075
|
-
path9 = paste0(path9, ".tif")
|
|
1076
|
-
path10 = paste0(path10, ".tif")
|
|
1077
|
-
path11 = paste0(path11, ".tif")
|
|
1078
|
-
path12 = paste0(path12, ".tif")
|
|
1079
|
-
|
|
1080
|
-
terra::writeRaster(Qchm, path1, overwrite = TRUE)
|
|
1081
|
-
terra::writeRaster(Qslope, path2, overwrite = TRUE)
|
|
1082
|
-
terra::writeRaster(Qrough, path3, overwrite = TRUE)
|
|
1083
|
-
terra::writeRaster(Qgpd, path4, overwrite = TRUE)
|
|
1084
|
-
terra::writeRaster(Qint, path5, overwrite = TRUE)
|
|
1085
|
-
terra::writeRaster(Qedge, path6, overwrite = TRUE)
|
|
1086
|
-
terra::writeRaster(Qlower, path7, overwrite = TRUE)
|
|
1087
|
-
terra::writeRaster(Conductivity, path8, overwrite = TRUE)
|
|
1088
|
-
terra::writeRaster(Cost, path9, overwrite = TRUE)
|
|
1089
|
-
terra::writeRaster(dtm, path10, overwrite = TRUE)
|
|
1090
|
-
terra::writeRaster(chm, path11, overwrite = TRUE)
|
|
1091
|
-
terra::writeRaster(canopy, path12, overwrite = TRUE)
|
|
1092
|
-
|
|
1093
|
-
}
|
|
1094
|
-
|
|
1095
|
-
MultiWriteDriver = list(
|
|
1096
|
-
write = MultiWrite,
|
|
1097
|
-
extension = "",
|
|
1098
|
-
object = "output_list",
|
|
1099
|
-
path = "file",
|
|
1100
|
-
param = list())
|
|
1101
|
-
|
|
1102
|
-
|
|
1103
|
-
ctg@output_options$drivers$list <- MultiWriteDriver
|
|
1104
|
-
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_@@@")
|
|
1105
|
-
opt_laz_compression(ctg) <- FALSE
|
|
1106
|
-
opt_progress(ctg) <- TRUE
|
|
1107
|
-
opt <- list(need_output_file = TRUE, autocrop = TRUE)
|
|
1108
|
-
opt_chunk_alignment(ctg) <- c(0, 0)
|
|
1109
|
-
ctg@output_options$
|
|
1110
|
-
drivers$
|
|
1111
|
-
SpatRaster$
|
|
1112
|
-
param$
|
|
1113
|
-
overwrite <- TRUE
|
|
1114
|
-
opt_stop_early(ctg) <- TRUE
|
|
1115
|
-
catalog_apply(ctg, Q_raster, cell_size = cell_size, .options = opt)
|
|
1116
|
-
# reset R mutilsession back to default
|
|
1117
|
-
plan(sequential)
|
|
1118
|
-
}
|
|
1119
|
-
|
|
1120
|
-
#####################################################################################################
|
|
1
|
+
chm2trees<-function(in_chm,Min_ws,hmin,out_folder,rprocesses)
|
|
2
|
+
{
|
|
3
|
+
# update.packages(list('terra','lidR','future'))
|
|
4
|
+
library(lidR)
|
|
5
|
+
library(terra)
|
|
6
|
+
library(future)
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
plan(multisession, workers = rprocesses)
|
|
10
|
+
set_lidr_threads(rprocesses)
|
|
11
|
+
|
|
12
|
+
#read Las file and drop any noise from the point cloud
|
|
13
|
+
current_chm <- rast(in_chm)
|
|
14
|
+
cell_size <- res(current_chm)[1]
|
|
15
|
+
# find the highest point of CHM
|
|
16
|
+
tallest_ht = minmax(current_chm)[2]
|
|
17
|
+
|
|
18
|
+
#Reforestation Standard of Alberta 2018
|
|
19
|
+
#(https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/formain15749/$FILE/reforestation-standard-alberta-may1-2018.pdf, p.53)
|
|
20
|
+
#Live crown ratio is the proportion of total stem length that is covered by living branches. It is expressed as a percentage or decimal of the total tree height. Live crown ratio is a useful indicator of the status of the tree in relation to vigor, photosynthetic leaf area, and is inversely related to stocking density. It is assumed that live crown ratio must be greater than 0.3 (30%) in order for the tree to release well
|
|
21
|
+
|
|
22
|
+
if (Min_ws >= (0.3 * hmin)) {
|
|
23
|
+
(Min_ws <- Min_ws) }else {
|
|
24
|
+
(Min_ws <- 0.3 * hmin) }
|
|
25
|
+
|
|
26
|
+
f <- function(x) {
|
|
27
|
+
y <- (x * 0.3) + Min_ws
|
|
28
|
+
y[x < hmin] <- (Min_ws) # Smallest Crown
|
|
29
|
+
y[x > tallest_ht] <- (tallest_ht * 0.3) # Largest Crown
|
|
30
|
+
return(y)
|
|
31
|
+
}
|
|
32
|
+
|
|
33
|
+
out_ttop_filename = paste0(out_folder, "/", substr(basename(in_chm), 1, nchar(basename(in_chm)) - 4), ".shp")
|
|
34
|
+
|
|
35
|
+
ttop <- locate_trees(current_chm, lmf(ws = f, hmin = hmin, shape = "circular"), uniqueness = "bitmerge")
|
|
36
|
+
|
|
37
|
+
x <- vect(ttop)
|
|
38
|
+
writeVector(x, out_ttop_filename, overwrite = TRUE)
|
|
39
|
+
#st_write(ttop,out_ttop_filename)
|
|
40
|
+
|
|
41
|
+
}
|
|
42
|
+
|
|
43
|
+
##################################################################################################################
|
|
44
|
+
#create a 'generate_pd' function
|
|
45
|
+
generate_pd <- function(ctg, radius_fr_CHM, focal_radius, cell_size, cache_folder,
|
|
46
|
+
cut_ht, PD_Ground_folder, PD_Total_folder, rprocesses) {
|
|
47
|
+
# update.packages(list('terra','lidR','future'))
|
|
48
|
+
library(terra)
|
|
49
|
+
library(lidR)
|
|
50
|
+
library(future)
|
|
51
|
+
|
|
52
|
+
plan(multisession, workers = rprocesses)
|
|
53
|
+
set_lidr_threads(rprocesses)
|
|
54
|
+
|
|
55
|
+
opts <- paste0("-drop_class 7")
|
|
56
|
+
|
|
57
|
+
print("Processing using R packages.")
|
|
58
|
+
|
|
59
|
+
folder <- paste0(cache_folder, "/nlidar/n_{*}")
|
|
60
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- folder
|
|
61
|
+
opt_laz_compression(ctg) <- FALSE
|
|
62
|
+
opt_filter(ctg) <- "-drop_class 7"
|
|
63
|
+
opt_chunk_alignment(ctg) <- c(0, 0)
|
|
64
|
+
|
|
65
|
+
catalog_laxindex = function(ctg)
|
|
66
|
+
{
|
|
67
|
+
stopifnot(is(ctg, "LAScatalog"))
|
|
68
|
+
|
|
69
|
+
opt_chunk_size(ctg) <- 0
|
|
70
|
+
opt_chunk_buffer(ctg) <- 0
|
|
71
|
+
opt_wall_to_wall(ctg) <- FALSE
|
|
72
|
+
opt_output_files(ctg) <- ""
|
|
73
|
+
|
|
74
|
+
create_lax_file = function(cluster) {
|
|
75
|
+
rlas::writelax(cluster@files)
|
|
76
|
+
return(0)
|
|
77
|
+
}
|
|
78
|
+
|
|
79
|
+
options <- list(need_buffer = FALSE, drop_null = FALSE)
|
|
80
|
+
|
|
81
|
+
catalog_apply(ctg, create_lax_file, .options = options)
|
|
82
|
+
return(invisible())
|
|
83
|
+
}
|
|
84
|
+
|
|
85
|
+
#normalized LAS with pulse info
|
|
86
|
+
print("Indexing LAS Tiles...")
|
|
87
|
+
#lidR:::catalog_laxindex(ctg)
|
|
88
|
+
catalog_laxindex(ctg)
|
|
89
|
+
print("Normalize point cloud using K-nearest neighbour IDW ...")
|
|
90
|
+
normalize_height(ctg, algorithm = knnidw())
|
|
91
|
+
|
|
92
|
+
print("Generating point density (total focal sum) raster ...")
|
|
93
|
+
|
|
94
|
+
pd_total <- function(chunk, radius, cell_size)
|
|
95
|
+
{
|
|
96
|
+
las <- readLAS(chunk)
|
|
97
|
+
if (is.empty(las)) return(NULL)
|
|
98
|
+
|
|
99
|
+
las_1 <- filter_poi(readLAS(chunk), buffer == 0)
|
|
100
|
+
hull <- st_convex_hull(las_1)
|
|
101
|
+
# bbox <- ext(las_1)
|
|
102
|
+
|
|
103
|
+
# convert to SpatialPolygons
|
|
104
|
+
bbox <- vect(hull)
|
|
105
|
+
|
|
106
|
+
las <- filter_poi(las, Classification != 7L)
|
|
107
|
+
#las <- retrieve_pulses(las)
|
|
108
|
+
density_raster_total <- rasterize_density(las, res = cell_size, pkg = "terra")[[1]]
|
|
109
|
+
|
|
110
|
+
tfw <- focalMat(density_raster_total, radius, "circle")
|
|
111
|
+
|
|
112
|
+
tfw[tfw > 0] = 1
|
|
113
|
+
tfw[tfw == 0] = NA
|
|
114
|
+
|
|
115
|
+
Total_focal <- focal(density_raster_total, w = tfw, fun = "sum", na.rm = TRUE, na.policy = "omit", fillvalue = NA, expand = FALSE)
|
|
116
|
+
Total_focal <- crop(Total_focal, bbox)
|
|
117
|
+
}
|
|
118
|
+
|
|
119
|
+
opt <- list(need_output_file = TRUE, autocrop = TRUE)
|
|
120
|
+
opt_chunk_alignment(ctg) <- c(0, 0)
|
|
121
|
+
ctg@output_options$
|
|
122
|
+
drivers$
|
|
123
|
+
SpatRaster$
|
|
124
|
+
param$
|
|
125
|
+
overwrite <- TRUE
|
|
126
|
+
opt_output_files(ctg) <- paste0(PD_Total_folder, "/{*}_PD_Tfocalsum")
|
|
127
|
+
opt_stop_early(ctg) <- FALSE
|
|
128
|
+
catalog_apply(ctg, pd_total, radius = focal_radius, cell_size = cell_size, .options = opt)
|
|
129
|
+
|
|
130
|
+
#load normalized LAS for ground point density
|
|
131
|
+
ht <- paste0("-drop_class 7 -drop_z_above ", cut_ht)
|
|
132
|
+
ctg2 <- readLAScatalog(paste0(cache_folder, "/nlidar"), filter = ht)
|
|
133
|
+
#lidR:::catalog_laxindex(ctg2)
|
|
134
|
+
catalog_laxindex(ctg2)
|
|
135
|
+
|
|
136
|
+
print("Generating point density (ground focal sum) raster ...")
|
|
137
|
+
|
|
138
|
+
pd_ground <- function(chunk, radius, cell_size, cut_ht)
|
|
139
|
+
{
|
|
140
|
+
las <- readLAS(chunk)
|
|
141
|
+
if (is.empty(las)) return(NULL)
|
|
142
|
+
|
|
143
|
+
las_1 <- filter_poi(readLAS(chunk), buffer == 0)
|
|
144
|
+
hull <- st_convex_hull(las_1)
|
|
145
|
+
|
|
146
|
+
# convert to SpatialPolygons
|
|
147
|
+
bbox <- vect(hull)
|
|
148
|
+
# bbox <- ext(las_1)
|
|
149
|
+
|
|
150
|
+
#las <- retrieve_pulses(las)
|
|
151
|
+
density_raster_ground <- rasterize_density(las, res = cell_size, pkg = "terra")[[1]]
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
gfw <- focalMat(density_raster_ground, radius, "circle")
|
|
155
|
+
gfw[gfw > 0] = 1
|
|
156
|
+
gfw[gfw == 0] = NA
|
|
157
|
+
|
|
158
|
+
Ground_focal <- focal(density_raster_ground, w = gfw, fun = "sum", na.policy = "omit", na.rm = TRUE, fillvalue = NA, expand = FALSE)
|
|
159
|
+
ground_focal <- crop(Ground_focal, bbox)
|
|
160
|
+
|
|
161
|
+
}
|
|
162
|
+
|
|
163
|
+
opt <- list(need_output_file = TRUE, autocrop = TRUE)
|
|
164
|
+
opt_chunk_alignment(ctg2) <- c(0, 0)
|
|
165
|
+
ctg2@output_options$
|
|
166
|
+
drivers$
|
|
167
|
+
SpatRaster$
|
|
168
|
+
param$
|
|
169
|
+
overwrite <- TRUE
|
|
170
|
+
opt_output_files(ctg2) <- paste0(PD_Ground_folder, "/{*}_PD_Gfocalsum")
|
|
171
|
+
opt_stop_early(ctg2) <- FALSE
|
|
172
|
+
catalog_apply(ctg2, pd_ground, radius = focal_radius, cell_size = cell_size, cut_ht = cut_ht, .options = opt)
|
|
173
|
+
# reset R mutilsession back to default
|
|
174
|
+
plan(sequential)
|
|
175
|
+
}
|
|
176
|
+
|
|
177
|
+
#########################################################################################################################
|
|
178
|
+
hh_function <- function(in_las_folder, cell_size, Smooth_by, Min_ws, lawn_range, out_folder, rprocesses) {
|
|
179
|
+
# update.packages(list('terra','lidR','future','sf'))
|
|
180
|
+
library(lidR)
|
|
181
|
+
library(terra)
|
|
182
|
+
library(sf)
|
|
183
|
+
library(future)
|
|
184
|
+
|
|
185
|
+
plan(multisession, workers = rprocesses)
|
|
186
|
+
set_lidr_threads(rprocesses)
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
print('Generating Hummock/ Hollow Raster ...')
|
|
190
|
+
ctg <- readLAScatalog(in_las_folder, select = 'xyzc', filter = '-drop_class 7')
|
|
191
|
+
|
|
192
|
+
HH_raster <- function(chunk, radius, cell_size, lawn_range, Smooth_by)
|
|
193
|
+
{
|
|
194
|
+
las <- readLAS(chunk)
|
|
195
|
+
if (is.empty(las)) return(NULL)
|
|
196
|
+
|
|
197
|
+
las_1 <- filter_poi(readLAS(chunk), buffer == 0)
|
|
198
|
+
hull <- st_convex_hull(las_1)
|
|
199
|
+
|
|
200
|
+
# convert to SpatialPolygons
|
|
201
|
+
bbox <- vect(hull)
|
|
202
|
+
# bbox <- ext(las_1)
|
|
203
|
+
|
|
204
|
+
#las to DTM
|
|
205
|
+
dtm <- rasterize_terrain(las, res = cell_size, algorithm = tin())
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
gfw <- focalMat(dtm, radius, "circle")
|
|
209
|
+
gfw[gfw > 0] = 1
|
|
210
|
+
gfw[gfw == 0] = NA
|
|
211
|
+
|
|
212
|
+
rdtm <- focal(dtm, w = gfw, fun = Smooth_by, na.policy = "omit", na.rm = TRUE, fillvalue = NA, expand = TRUE)
|
|
213
|
+
cond_raster <- (rdtm - dtm)
|
|
214
|
+
positive <- abs(lawn_range)
|
|
215
|
+
negative <- positive * -1
|
|
216
|
+
|
|
217
|
+
HH <- ifel(cond_raster < negative, 1, ifel(cond_raster > positive, -1, 0))
|
|
218
|
+
|
|
219
|
+
cont_hh <- (crop(cond_raster, ext(bbox))) * -1
|
|
220
|
+
hh <- crop(HH, ext(bbox))
|
|
221
|
+
|
|
222
|
+
return(list(cont_hh, hh, radius, Smooth_by))
|
|
223
|
+
}
|
|
224
|
+
|
|
225
|
+
MultiWrite = function(output_list, file) {
|
|
226
|
+
chh = output_list[[1]]
|
|
227
|
+
hh = output_list[[2]]
|
|
228
|
+
radius = output_list[[3]]
|
|
229
|
+
Smooth_by = output_list[[4]]
|
|
230
|
+
path1 = gsub("@@@_", "CHH_", file)
|
|
231
|
+
path2 = gsub("@@@_", "HH_", file)
|
|
232
|
+
|
|
233
|
+
path1 = paste0(path1, "_", Smooth_by, "_", radius, "m.tif")
|
|
234
|
+
path2 = paste0(path2, "_", Smooth_by, "_", radius, "m.tif")
|
|
235
|
+
|
|
236
|
+
terra::writeRaster(chh, path1, overwrite = TRUE)
|
|
237
|
+
terra::writeRaster(hh, path2, overwrite = TRUE)
|
|
238
|
+
|
|
239
|
+
}
|
|
240
|
+
|
|
241
|
+
MultiWriteDriver = list(
|
|
242
|
+
write = MultiWrite,
|
|
243
|
+
extension = "",
|
|
244
|
+
object = "output_list",
|
|
245
|
+
path = "file",
|
|
246
|
+
param = list())
|
|
247
|
+
|
|
248
|
+
ctg@output_options$drivers$list <- MultiWriteDriver
|
|
249
|
+
|
|
250
|
+
opt_chunk_alignment(ctg) <- c(0, 0)
|
|
251
|
+
opt_output_files(ctg) <- paste0(out_folder, "/CHH_{*}_", Smooth_by, "_", Min_ws, "m")
|
|
252
|
+
ctg@output_options$
|
|
253
|
+
drivers$
|
|
254
|
+
SpatRaster$
|
|
255
|
+
param$
|
|
256
|
+
overwrite <- TRUE
|
|
257
|
+
opt_stop_early(ctg) <- TRUE
|
|
258
|
+
out <- catalog_apply(ctg, HH_raster, radius = Min_ws, cell_size = cell_size, lawn_range = lawn_range, Smooth_by = Smooth_by)
|
|
259
|
+
|
|
260
|
+
# reset R mutilsession back to default
|
|
261
|
+
plan(sequential)
|
|
262
|
+
|
|
263
|
+
}
|
|
264
|
+
|
|
265
|
+
#########################################################################################################################
|
|
266
|
+
hh_function_byraster <- function(in_raster,cell_size, Min_ws, lawn_range, out_folder,rprocesses){
|
|
267
|
+
# update.packages(list('terra'))
|
|
268
|
+
|
|
269
|
+
library(terra)
|
|
270
|
+
library(utils)
|
|
271
|
+
library(base)
|
|
272
|
+
library(terra)
|
|
273
|
+
|
|
274
|
+
print('Generating Hummock/ Hollow Raster ...')
|
|
275
|
+
in_dtm <- rast(in_raster)
|
|
276
|
+
filename <- substr(basename(in_raster), 1, nchar(basename(in_raster)) - 4)
|
|
277
|
+
|
|
278
|
+
gfw <- focalMat(in_dtm, Min_ws, "circle")
|
|
279
|
+
gfw[gfw > 0] = 1
|
|
280
|
+
gfw[gfw == 0] = NA
|
|
281
|
+
|
|
282
|
+
rdtm <- focal(in_dtm, w = gfw, fun = Smooth_by, na.policy = "omit", na.rm = TRUE, fillvalue = NA, expand = TRUE)
|
|
283
|
+
# writeRaster(rdtm,paste0(out_folder,"/rdtm_",filename,".tif"),overwrite=TRUE)
|
|
284
|
+
cond_raster <- (rdtm - in_dtm)
|
|
285
|
+
writeRaster(cond_raster, paste0(out_folder, "/CHH_", filename, ".tif"), overwrite = TRUE)
|
|
286
|
+
positive <- abs(lawn_range)
|
|
287
|
+
negative <- positive * -1
|
|
288
|
+
|
|
289
|
+
HH <- ifel(cond_raster < negative, 1, ifel(cond_raster > positive, -1, 0))
|
|
290
|
+
writeRaster(HH, paste0(out_folder, "/HH_", filename, ".tif"), overwrite = TRUE)
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
}
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
###################################################################################################################################
|
|
297
|
+
pd2cellsize <- function(in_las_folder, rprocesses) {
|
|
298
|
+
# update.packages(list('lidR','future'))
|
|
299
|
+
library(lidR)
|
|
300
|
+
library(future)
|
|
301
|
+
|
|
302
|
+
plan(multisession, workers = rprocesses)
|
|
303
|
+
set_lidr_threads(rprocesses)
|
|
304
|
+
|
|
305
|
+
|
|
306
|
+
print("Calculate output's raster average cell size from point density...")
|
|
307
|
+
if (is(in_las_folder, "LAS") || is(in_las_folder, "LAScatalog"))
|
|
308
|
+
{ ctg <- in_las_folder }
|
|
309
|
+
else { ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7') }
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
point_density <- sum(ctg@data$Number.of.point.records) / st_area(ctg)
|
|
313
|
+
mean_pd = (3 / point_density)^(1 / 2)
|
|
314
|
+
cell_size = round(0.05 * round(mean_pd / 0.05), 2)
|
|
315
|
+
return(cell_size)
|
|
316
|
+
}
|
|
317
|
+
|
|
318
|
+
##################################################################################
|
|
319
|
+
|
|
320
|
+
points2trees <- function(in_folder, is_normalized, hmin, out_folder, rprocesses, CHMcell_size, cell_size)
|
|
321
|
+
{
|
|
322
|
+
# update.packages(list('terra','lidR','future'))
|
|
323
|
+
library(lidR)
|
|
324
|
+
library(terra)
|
|
325
|
+
library(future)
|
|
326
|
+
|
|
327
|
+
plan(multisession, workers = rprocesses)
|
|
328
|
+
set_lidr_threads(rprocesses)
|
|
329
|
+
|
|
330
|
+
#normailize point cloud using K-nearest neighbour IDW
|
|
331
|
+
if (is_normalized) {
|
|
332
|
+
n_las <- readLAScatalog(in_folder, filter = '-drop_class 7 -drop_z_below 0')
|
|
333
|
+
}
|
|
334
|
+
else {
|
|
335
|
+
#read Las file and drop any noise from the point cloud
|
|
336
|
+
ctg <- readLAScatalog(in_folder, filter = '-drop_class 7')
|
|
337
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/normalized/n_{*}")
|
|
338
|
+
print("Normalize lidar data...")
|
|
339
|
+
opt_progress(ctg) <- TRUE
|
|
340
|
+
n_las <- normalize_height(ctg, algorithm = knnidw())
|
|
341
|
+
opt_filter(n_las) <- '-drop_class 7 -drop_z_below 0' }
|
|
342
|
+
|
|
343
|
+
# # create a CHM from point cloud for visualization
|
|
344
|
+
if (CHMcell_size != -999) {
|
|
345
|
+
print("Generating normalized CHM ...")
|
|
346
|
+
opt_output_files(n_las) <- opt_output_files(n_las) <- paste0(out_folder, "/chm/{*}_chm")
|
|
347
|
+
n_las@output_options$
|
|
348
|
+
drivers$
|
|
349
|
+
SpatRaster$
|
|
350
|
+
param$
|
|
351
|
+
overwrite <- TRUE
|
|
352
|
+
n_las@output_options$
|
|
353
|
+
drivers$
|
|
354
|
+
Raster$
|
|
355
|
+
param$
|
|
356
|
+
overwrite <- TRUE
|
|
357
|
+
opt_progress(n_las) <- TRUE
|
|
358
|
+
# chm <- rasterize_canopy(n_las, cell_size, pitfree(thresholds = c(0,3,10,15,22,30,38), max_edge = c(0, 1.5)), pkg = "terra")
|
|
359
|
+
chm <- rasterize_canopy(n_las, CHMcell_size, dsmtin(max_edge = (3 * CHMcell_size)), pkg = "terra") }
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
print("Compute approximate tree positions ...")
|
|
363
|
+
|
|
364
|
+
ctg_detect_tree <- function(chunk, hmin, out_folder, cell_size) {
|
|
365
|
+
las <- readLAS(chunk) # read the chunk
|
|
366
|
+
if (is.empty(las)) return(NULL) # exit if empty
|
|
367
|
+
# quarter_ht<- ((las@header@PHB$`Max Z` + las@header@PHB$`Min Z`)/4)
|
|
368
|
+
|
|
369
|
+
f <- function(x) {
|
|
370
|
+
# y = 0.4443*(x^0.7874)
|
|
371
|
+
y = 0.478676 * (x^0.695289) #base on Plot4209, 4207 and 4203
|
|
372
|
+
y[x < hmin] <- 0.478676 * (hmin^0.695289) # Min_ws # smallest window
|
|
373
|
+
# y[x > (quarter_ht)] <- 0.478676*(quarter_ht^0.695289) # largest window
|
|
374
|
+
# y= 0.39328*x
|
|
375
|
+
# y[x <hmin ] <- 0.39328*hmin # largest window
|
|
376
|
+
# y[x > (quarter_ht)] <- 0.39328*quarter_ht # smallest window
|
|
377
|
+
|
|
378
|
+
return(y) }
|
|
379
|
+
|
|
380
|
+
# dynamic searching window is based on the function of (tree height x 0.3)
|
|
381
|
+
# dynamic window
|
|
382
|
+
ttop <- locate_trees(las, lmf(ws = f, hmin = hmin, shape = "circular"), uniqueness = "gpstime")
|
|
383
|
+
# Fix searching window (Testing only)
|
|
384
|
+
# ttop <- locate_trees(las, lmf(ws = 3,hmin=hmin,shape="circular"),uniqueness = "gpstime")
|
|
385
|
+
|
|
386
|
+
ttop <- crop(vect(ttop), ext(chunk)) # remove the buffer
|
|
387
|
+
# generating number of trees per ha raster
|
|
388
|
+
# sum_map<-terra::rasterize(ttop,rast(ext(chunk),resolution=cell_size,crs=crs(ttop)),fun=sum)
|
|
389
|
+
# sum_map<- classify(sum_map, cbind(NA, 0))
|
|
390
|
+
|
|
391
|
+
# return(list(ttop,sum_map))
|
|
392
|
+
}
|
|
393
|
+
|
|
394
|
+
options <- list(automerge = TRUE, autocrop = TRUE)
|
|
395
|
+
# opt_output_files(n_las)<-opt_output_files(n_las)<-paste0(out_folder,"/@@@_{*}")
|
|
396
|
+
opt_output_files(n_las) <- paste0(out_folder, "/{*}_tree_min_", hmin, "_m")
|
|
397
|
+
n_las@output_options$drivers$sf$param$append <- FALSE
|
|
398
|
+
n_las@output_options$
|
|
399
|
+
drivers$
|
|
400
|
+
SpatVector$
|
|
401
|
+
param$
|
|
402
|
+
overwrite <- TRUE
|
|
403
|
+
opt_progress(n_las) <- TRUE
|
|
404
|
+
# MultiWrite = function(output_list, file){
|
|
405
|
+
# extent = output_list[[1]]
|
|
406
|
+
# sum_map = output_list[[2]]
|
|
407
|
+
# path1 = gsub("@@@_","", file)
|
|
408
|
+
# path2 = gsub("@@@_","", file)
|
|
409
|
+
#
|
|
410
|
+
# path1 = paste0(path1, "_trees_above",hmin,"m.shp")
|
|
411
|
+
# path2 = paste0(path2, "_Trees_counts_above",hmin,"m.tif")
|
|
412
|
+
#
|
|
413
|
+
# terra::writeVector(extent, path1, overwrite = TRUE)
|
|
414
|
+
# terra::writeRaster(sum_map,path2,overwrite=TRUE)
|
|
415
|
+
#
|
|
416
|
+
# }
|
|
417
|
+
# MultiWriteDriver = list(
|
|
418
|
+
# write = MultiWrite,
|
|
419
|
+
# extension = "",
|
|
420
|
+
# object = "output_list",
|
|
421
|
+
# path = "file",
|
|
422
|
+
# param = list())
|
|
423
|
+
|
|
424
|
+
# n_las@output_options$drivers$list <- MultiWriteDriver
|
|
425
|
+
|
|
426
|
+
out <- catalog_apply(n_las, ctg_detect_tree, hmin, out_folder, cell_size, .options = options)
|
|
427
|
+
shmin <- as.character(hmin)
|
|
428
|
+
shmin <- gsub("\\.", "p", shmin)
|
|
429
|
+
writeVector(out, paste0(out_folder, "/Merged_ApproxTrees_above_", shmin, "m.shp", overwrite = TRUE))
|
|
430
|
+
# reset R mutilsession back to default
|
|
431
|
+
plan(sequential)
|
|
432
|
+
}
|
|
433
|
+
|
|
434
|
+
#########################################################################################################################################
|
|
435
|
+
ht_metrics_lite <- function(in_las_folder, cell_size, out_folder, rprocesses)
|
|
436
|
+
{
|
|
437
|
+
# update.packages(list('terra','lidR','future'))
|
|
438
|
+
library(lidR)
|
|
439
|
+
library(terra)
|
|
440
|
+
library(future)
|
|
441
|
+
|
|
442
|
+
plan(multisession, workers = rprocesses)
|
|
443
|
+
set_lidr_threads(rprocesses)
|
|
444
|
+
|
|
445
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7 -drop_z_below 0')
|
|
446
|
+
opt_output_files(ctg) <- paste0(out_folder, "/{*}_lite_metrics_z")
|
|
447
|
+
ctg@output_options$
|
|
448
|
+
drivers$
|
|
449
|
+
SpatRaster$
|
|
450
|
+
param$
|
|
451
|
+
overwrite <- TRUE
|
|
452
|
+
opt_progress(ctg) <- TRUE
|
|
453
|
+
print('Generating height metrics ...')
|
|
454
|
+
zmetrics_f <- ~list(
|
|
455
|
+
zmax = max(Z),
|
|
456
|
+
zmin = min(Z),
|
|
457
|
+
zsd = sd(Z),
|
|
458
|
+
# zq25 = quantile(Z, probs = 0.25),
|
|
459
|
+
zq30 = quantile(Z, probs = 0.30),
|
|
460
|
+
# zq35 = quantile(Z, probs = 0.35),
|
|
461
|
+
zq40 = quantile(Z, probs = 0.40),
|
|
462
|
+
# zq45 = quantile(Z, probs = 0.45),
|
|
463
|
+
zq50 = quantile(Z, probs = 0.50),
|
|
464
|
+
# zq55 = quantile(Z, probs = 0.55),
|
|
465
|
+
zq60 = quantile(Z, probs = 0.60),
|
|
466
|
+
# zq65 = quantile(Z, probs = 0.65),
|
|
467
|
+
zq70 = quantile(Z, probs = 0.70),
|
|
468
|
+
# zq75 = quantile(Z, probs = 0.75),
|
|
469
|
+
zq80 = quantile(Z, probs = 0.80),
|
|
470
|
+
# zq85 = quantile(Z, probs = 0.85),
|
|
471
|
+
zq90 = quantile(Z, probs = 0.90),
|
|
472
|
+
# zq95 = quantile(Z, probs = 0.95),
|
|
473
|
+
zq99 = quantile(Z, probs = 0.99)
|
|
474
|
+
)
|
|
475
|
+
|
|
476
|
+
m <- pixel_metrics(ctg, func = zmetrics_f, res = cell_size)
|
|
477
|
+
writeRaster(m, paste0(out_folder, "/Merged_metricsZ.tif"), overwrite = TRUE)
|
|
478
|
+
|
|
479
|
+
# reset R mutilsession back to default
|
|
480
|
+
plan(sequential)
|
|
481
|
+
}
|
|
482
|
+
|
|
483
|
+
######################################################################################
|
|
484
|
+
veg_cover_percentage <- function(in_las_folder, is_normalized, out_folder, hmin, hmax, cell_size, rprocesses)
|
|
485
|
+
{
|
|
486
|
+
# update.packages(list('terra','lidR','future'))
|
|
487
|
+
library(lidR)
|
|
488
|
+
library(terra)
|
|
489
|
+
library(future)
|
|
490
|
+
|
|
491
|
+
plan(multisession, workers = rprocesses)
|
|
492
|
+
set_lidr_threads(rprocesses)
|
|
493
|
+
|
|
494
|
+
if (!(is_normalized)) {
|
|
495
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
496
|
+
opt_output_files(ctg) <- paste0(out_folder, '/normalized/n_{*}')
|
|
497
|
+
opt_progress(ctg) <- TRUE
|
|
498
|
+
print('Normalize point cloud...')
|
|
499
|
+
n_ctg <- normalize_height(ctg, algorithm = knnidw()) }
|
|
500
|
+
else {
|
|
501
|
+
n_ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7 -drop_z_below 0')
|
|
502
|
+
}
|
|
503
|
+
|
|
504
|
+
print('Calculating vegetation coverage ...')
|
|
505
|
+
|
|
506
|
+
veg_cover_pmetric <- function(chunk, hmin, hmax, out_folder, cell_size)
|
|
507
|
+
{
|
|
508
|
+
las <- readLAS(chunk)
|
|
509
|
+
|
|
510
|
+
if (is.empty(las)) return(NULL)
|
|
511
|
+
|
|
512
|
+
total_pcount <- pixel_metrics(las, func = ~length(Z), pkg = "terra", res = cell_size, start = c(0, 0))
|
|
513
|
+
# replace NA with 0
|
|
514
|
+
total_pcount <- classify(total_pcount, cbind(NA, 0))
|
|
515
|
+
set.names(total_pcount, "Total_Ncount", index = 1)
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
Veg_pcount <- pixel_metrics(las, func = ~length(Z), filter = ~Z >= hmin & Z <= hmax, pkg = "terra", res = cell_size, start = c(0, 0))
|
|
519
|
+
# replace NA with 0
|
|
520
|
+
Veg_pcount <- classify(Veg_pcount, cbind(NA, 0))
|
|
521
|
+
set.names(Veg_pcount, "Veg_Ncount", index = 1)
|
|
522
|
+
|
|
523
|
+
veg_percetage <- Veg_pcount / total_pcount
|
|
524
|
+
# replace NA with 0
|
|
525
|
+
veg_percetage <- classify(veg_percetage, cbind(NA, 0))
|
|
526
|
+
set.names(veg_percetage, "Veg_CovPer", index = 1)
|
|
527
|
+
|
|
528
|
+
total_pcount <- crop(total_pcount, ext(chunk))
|
|
529
|
+
Veg_pcount <- crop(Veg_pcount, ext(chunk))
|
|
530
|
+
veg_percetage <- crop(veg_percetage, ext(chunk))
|
|
531
|
+
|
|
532
|
+
x <- c(total_pcount, Veg_pcount, veg_percetage)
|
|
533
|
+
|
|
534
|
+
}
|
|
535
|
+
|
|
536
|
+
#
|
|
537
|
+
# MultiWrite = function(output_list, file)
|
|
538
|
+
# {
|
|
539
|
+
# total_pcount = output_list[[1]]
|
|
540
|
+
# Veg_pcount = output_list[[2]]
|
|
541
|
+
# veg_CovPer=output_list[[3]]
|
|
542
|
+
# path1 = gsub("_@@@","_Total_Ncount", file)
|
|
543
|
+
# path2 = gsub("_@@@","_Veg_Ncount", file)
|
|
544
|
+
# path3 = gsub("_@@@","_Veg_CovPer", file)
|
|
545
|
+
# path1 = paste0(path1, ".tif")
|
|
546
|
+
# path2 = paste0(path2, ".tif")
|
|
547
|
+
# path3 = paste0(path3, ".tif")
|
|
548
|
+
#
|
|
549
|
+
# terra::writeRaster(total_pcount,path1,overwrite=TRUE)
|
|
550
|
+
# terra::writeRaster(Veg_pcount,path2,overwrite=TRUE)
|
|
551
|
+
# terra::writeRaster(veg_CovPer,path3,overwrite=TRUE)
|
|
552
|
+
#
|
|
553
|
+
#
|
|
554
|
+
# }
|
|
555
|
+
# MultiWriteDiver = list(
|
|
556
|
+
# write = MultiWrite,
|
|
557
|
+
# extension = "",
|
|
558
|
+
# object = "output_list",
|
|
559
|
+
# path = "file",
|
|
560
|
+
# param = list())
|
|
561
|
+
|
|
562
|
+
opt_output_files(n_ctg) <- paste0(out_folder, "/result/{*}_veg_cover_percentage")
|
|
563
|
+
n_ctg@output_options$
|
|
564
|
+
drivers$
|
|
565
|
+
SpatRaster$
|
|
566
|
+
param$
|
|
567
|
+
overwrite <- TRUE
|
|
568
|
+
# n_ctg@output_options$drivers$list <- MultiWriteDiver
|
|
569
|
+
out <- catalog_apply(n_ctg, veg_cover_pmetric, hmin, hmax, out_folder, cell_size)
|
|
570
|
+
|
|
571
|
+
# reset R mutilsession back to default
|
|
572
|
+
plan(sequential)
|
|
573
|
+
|
|
574
|
+
}
|
|
575
|
+
|
|
576
|
+
#########################################################################################
|
|
577
|
+
percentage_aboveDBH <- function(in_las_folder, is_normalized, out_folder, DBH, cell_size, rprocesses)
|
|
578
|
+
{
|
|
579
|
+
# update.packages(list('terra','lidR','future'))
|
|
580
|
+
library(lidR)
|
|
581
|
+
library(terra)
|
|
582
|
+
library(future)
|
|
583
|
+
|
|
584
|
+
plan(multisession, workers = rprocesses)
|
|
585
|
+
set_lidr_threads(rprocesses)
|
|
586
|
+
sDBH <- DBH
|
|
587
|
+
if (is_normalized) {
|
|
588
|
+
print('Loading normalize point cloud...')
|
|
589
|
+
n_ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7 -drop_z_below 0') }
|
|
590
|
+
else {
|
|
591
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
592
|
+
opt_output_files(ctg) <- paste0(out_folder, '/normalized/n_{*}')
|
|
593
|
+
opt_progress(ctg) <- TRUE
|
|
594
|
+
print('Normalize point cloud...')
|
|
595
|
+
n_ctg <- normalize_height(ctg, algorithm = knnidw())
|
|
596
|
+
}
|
|
597
|
+
|
|
598
|
+
print('Calculating percentage returns above DBH ...')
|
|
599
|
+
|
|
600
|
+
compute_aboveDBH <- function(chunk, DBH, out_folder, cell_size)
|
|
601
|
+
{
|
|
602
|
+
las <- readLAS(chunk)
|
|
603
|
+
|
|
604
|
+
if (is.empty(las)) return(NULL)
|
|
605
|
+
|
|
606
|
+
total_pcount <- pixel_metrics(las, func = ~length(NumberOfReturns), pkg = "terra", res = cell_size, start = c(0, 0))
|
|
607
|
+
|
|
608
|
+
abvDBH_pcount <- pixel_metrics(las, func = ~length(NumberOfReturns), filter = ~Z >= DBH, pkg = "terra", res = cell_size, start = c(0, 0))
|
|
609
|
+
|
|
610
|
+
abvDBH_percetage <- abvDBH_pcount / total_pcount
|
|
611
|
+
set.names(abvDBH_percetage, "Per_abvDBH", index = 1)
|
|
612
|
+
# replace NA with 0
|
|
613
|
+
abvDBH_percetage <- classify(abvDBH_percetage, cbind(NA, 0))
|
|
614
|
+
abvDBH_percetage <- crop(abvDBH_percetage, ext(chunk))
|
|
615
|
+
}
|
|
616
|
+
|
|
617
|
+
sDBH <- as.character(sDBH)
|
|
618
|
+
sDBH <- gsub("\\.", "p", sDBH)
|
|
619
|
+
|
|
620
|
+
opt_output_files(n_ctg) <- paste0(out_folder, "/{*}_return_above_", sDBH, 'm')
|
|
621
|
+
n_ctg@output_options$
|
|
622
|
+
drivers$
|
|
623
|
+
SpatRaster$
|
|
624
|
+
param$
|
|
625
|
+
overwrite <- TRUE
|
|
626
|
+
out <- catalog_apply(n_ctg, compute_aboveDBH, DBH, out_folder, cell_size)
|
|
627
|
+
in_file_list = list.files(path = out_folder, pattern = ".tif", all.files = TRUE, full.names = TRUE)
|
|
628
|
+
rast_list <- list()
|
|
629
|
+
for (i in 1:length(in_file_list)) {
|
|
630
|
+
rast_obj <- rast(in_file_list[[i]])
|
|
631
|
+
rast_list <- c(rast_list, rast_obj)
|
|
632
|
+
}
|
|
633
|
+
terra::mosaic(terra::sprc(rast_list), fun = "first", filename = paste0(out_folder, "/Merged__return_above_", sDBH, 'm'), overwrite = TRUE)
|
|
634
|
+
|
|
635
|
+
|
|
636
|
+
# reset R mutilsession back to default
|
|
637
|
+
plan(sequential)
|
|
638
|
+
}
|
|
639
|
+
|
|
640
|
+
#########################################################################################
|
|
641
|
+
normalized_lidar_knnidw <- function(in_las_folder, out_folder, rprocesses) {
|
|
642
|
+
# update.packages(list('lidR','future'))
|
|
643
|
+
library(lidR)
|
|
644
|
+
library(future)
|
|
645
|
+
|
|
646
|
+
plan(multisession, workers = rprocesses)
|
|
647
|
+
set_lidr_threads(rprocesses)
|
|
648
|
+
|
|
649
|
+
#read Las file and drop any noise from the point cloud
|
|
650
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
651
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/normalized/n_{*}")
|
|
652
|
+
print("Normalize lidar data...")
|
|
653
|
+
opt_progress(ctg) <- TRUE
|
|
654
|
+
n_las <- normalize_height(ctg, algorithm = knnidw())
|
|
655
|
+
# reset R mutilsession back to default
|
|
656
|
+
plan(sequential)
|
|
657
|
+
}
|
|
658
|
+
|
|
659
|
+
##########################################################################
|
|
660
|
+
normalized_lidar_tin <- function(in_las_folder, out_folder, rprocesses) {
|
|
661
|
+
# update.packages(list('lidR','future'))
|
|
662
|
+
library(lidR)
|
|
663
|
+
library(future)
|
|
664
|
+
|
|
665
|
+
plan(multisession, workers = rprocesses)
|
|
666
|
+
set_lidr_threads(rprocesses)
|
|
667
|
+
|
|
668
|
+
#read Las file and drop any noise from the point cloud
|
|
669
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
670
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/normalized/n_{*}")
|
|
671
|
+
print("Normalize lidar data...")
|
|
672
|
+
opt_progress(ctg) <- TRUE
|
|
673
|
+
|
|
674
|
+
n_las <- normalize_height(ctg, algorithm = tin())
|
|
675
|
+
# reset R mutilsession back to default
|
|
676
|
+
plan(sequential)
|
|
677
|
+
}
|
|
678
|
+
|
|
679
|
+
##########################################################################
|
|
680
|
+
normalized_lidar_kriging <- function(in_las_folder, out_folder, rprocesses) {
|
|
681
|
+
# update.packages(list('lidR','future'))
|
|
682
|
+
library(lidR)
|
|
683
|
+
library(future)
|
|
684
|
+
|
|
685
|
+
plan(multisession, workers = rprocesses)
|
|
686
|
+
set_lidr_threads(rprocesses)
|
|
687
|
+
|
|
688
|
+
#read Las file and drop any noise from the point cloud
|
|
689
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
690
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/normalized/n_{*}")
|
|
691
|
+
print("Normalize lidar data...")
|
|
692
|
+
opt_progress(ctg) <- TRUE
|
|
693
|
+
n_las <- normalize_height(ctg, algorithm = kriging())
|
|
694
|
+
# reset R mutilsession back to default
|
|
695
|
+
plan(sequential)
|
|
696
|
+
}
|
|
697
|
+
|
|
698
|
+
#########################################################################################
|
|
699
|
+
chm_by_dsmtin <- function(in_las_folder, out_folder, cell_size, is_normalized, rprocesses) {
|
|
700
|
+
# update.packages(list('lidR','future'))
|
|
701
|
+
library(lidR)
|
|
702
|
+
library(future)
|
|
703
|
+
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
704
|
+
plan(multisession, workers = rprocesses)
|
|
705
|
+
set_lidr_threads(rprocesses)
|
|
706
|
+
|
|
707
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
708
|
+
if (is_normalized) {
|
|
709
|
+
print("Generating CHM using TIN...")
|
|
710
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_chm") }
|
|
711
|
+
else {
|
|
712
|
+
print("Generating DSM using TIN...")
|
|
713
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_dsm") }
|
|
714
|
+
|
|
715
|
+
ctg@output_options$
|
|
716
|
+
drivers$
|
|
717
|
+
SpatRaster$
|
|
718
|
+
param$
|
|
719
|
+
overwrite <- TRUE
|
|
720
|
+
ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
721
|
+
opt_progress(ctg) <- TRUE
|
|
722
|
+
chm <- rasterize_canopy(ctg, cell_size, dsmtin(max_edge = (3 * cell_size)), pkg = "terra")
|
|
723
|
+
# reset R mutilsession back to default
|
|
724
|
+
plan(sequential)
|
|
725
|
+
}
|
|
726
|
+
|
|
727
|
+
#########################################################################################
|
|
728
|
+
chm_by_pitfree <- function(in_las_folder, out_folder, cell_size, is_normalized, rprocesses) {
|
|
729
|
+
# update.packages(list('lidR','future'))
|
|
730
|
+
library(lidR)
|
|
731
|
+
library(future)
|
|
732
|
+
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
733
|
+
plan(multisession, workers = rprocesses)
|
|
734
|
+
set_lidr_threads(rprocesses)
|
|
735
|
+
|
|
736
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7 -drop_overlap')
|
|
737
|
+
|
|
738
|
+
if (is_normalized) {
|
|
739
|
+
print("Generate CHM using Pit-free...")
|
|
740
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_chm") }
|
|
741
|
+
else {
|
|
742
|
+
print("Generate DSM using Pit-free...")
|
|
743
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_dsm") }
|
|
744
|
+
|
|
745
|
+
ctg@output_options$
|
|
746
|
+
drivers$
|
|
747
|
+
SpatRaster$
|
|
748
|
+
param$
|
|
749
|
+
overwrite <- TRUE
|
|
750
|
+
ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
751
|
+
opt_progress(ctg) <- TRUE
|
|
752
|
+
chm <- rasterize_canopy(ctg, cell_size, pitfree(thresholds = c(0, 3, 5, 10, 15, 20), max_edge = c(0, 3 * cell_size), subcircle = (cell_size)))
|
|
753
|
+
# reset R mutilsession back to default
|
|
754
|
+
|
|
755
|
+
rast_list <- list()
|
|
756
|
+
for (i in 1:length(chm)) {
|
|
757
|
+
rast_obj <- terra::rast(chm[[i]])
|
|
758
|
+
rast_list <- c(rast_list, rast_obj)
|
|
759
|
+
}
|
|
760
|
+
mosaic(sprc(rast_list), fun = "first", filename = paste0(out_folder, "/Merged_CHM.tif"), overwrite = TRUE)
|
|
761
|
+
|
|
762
|
+
plan(sequential)
|
|
763
|
+
|
|
764
|
+
}
|
|
765
|
+
|
|
766
|
+
#########################################################################################
|
|
767
|
+
dtm_by_knnidw <- function(in_las_folder, out_folder, cell_size, rprocesses) {
|
|
768
|
+
# update.packages(list('lidR','future'))
|
|
769
|
+
library(lidR)
|
|
770
|
+
library(future)
|
|
771
|
+
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
772
|
+
plan(multisession, workers = rprocesses)
|
|
773
|
+
set_lidr_threads(rprocesses)
|
|
774
|
+
|
|
775
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
776
|
+
print("Generate DTM...")
|
|
777
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_DTM")
|
|
778
|
+
ctg@output_options$
|
|
779
|
+
drivers$
|
|
780
|
+
SpatRaster$
|
|
781
|
+
param$
|
|
782
|
+
overwrite <- TRUE
|
|
783
|
+
ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
784
|
+
opt_progress(ctg) <- TRUE
|
|
785
|
+
dtm <- rasterize_terrain(ctg, res = cell_size, algorithm = knnidw())
|
|
786
|
+
# reset R mutilsession back to default
|
|
787
|
+
plan(sequential)
|
|
788
|
+
}
|
|
789
|
+
|
|
790
|
+
#########################################################################################
|
|
791
|
+
dtm_by_kriging <- function(in_las_folder, out_folder, cell_size, rprocesses) {
|
|
792
|
+
# update.packages(list('lidR','future'))
|
|
793
|
+
library(lidR)
|
|
794
|
+
library(future)
|
|
795
|
+
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
796
|
+
plan(multisession, workers = rprocesses)
|
|
797
|
+
set_lidr_threads(rprocesses)
|
|
798
|
+
|
|
799
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
800
|
+
print("Generate DTM...")
|
|
801
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_DTM")
|
|
802
|
+
ctg@output_options$
|
|
803
|
+
drivers$
|
|
804
|
+
SpatRaster$
|
|
805
|
+
param$
|
|
806
|
+
overwrite <- TRUE
|
|
807
|
+
ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
808
|
+
opt_progress(ctg) <- TRUE
|
|
809
|
+
dtm <- rasterize_terrain(ctg, res = cell_size, algorithm = kriging())
|
|
810
|
+
# reset R mutilsession back to default
|
|
811
|
+
plan(sequential)
|
|
812
|
+
}
|
|
813
|
+
|
|
814
|
+
#########################################################################################
|
|
815
|
+
dtm_by_tin <- function(in_las_folder, out_folder, cell_size, rprocesses) {
|
|
816
|
+
# update.packages(list('lidR','future'))
|
|
817
|
+
library(lidR)
|
|
818
|
+
library(future)
|
|
819
|
+
library(terra)
|
|
820
|
+
|
|
821
|
+
if (cell_size < 1.0) { rprocesses = rprocesses / 2 }
|
|
822
|
+
plan(multisession, workers = rprocesses)
|
|
823
|
+
set_lidr_threads(rprocesses)
|
|
824
|
+
|
|
825
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
826
|
+
print("Generate DTM...")
|
|
827
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_DTM")
|
|
828
|
+
ctg@output_options$
|
|
829
|
+
drivers$
|
|
830
|
+
SpatRaster$
|
|
831
|
+
param$
|
|
832
|
+
overwrite <- TRUE
|
|
833
|
+
# ctg@output_options$drivers$Raster$param$overwrite <- TRUE
|
|
834
|
+
opt_progress(ctg) <- TRUE
|
|
835
|
+
dtm <- rasterize_terrain(ctg, res = cell_size, algorithm = tin())
|
|
836
|
+
# reset R mutilsession back to default
|
|
837
|
+
plan(sequential)
|
|
838
|
+
}
|
|
839
|
+
|
|
840
|
+
###########################################################################################
|
|
841
|
+
laz2las <- function(in_las_folder, out_folder, rprocesses) {
|
|
842
|
+
# update.packages(list('lidR','future'))
|
|
843
|
+
library(lidR)
|
|
844
|
+
library(future)
|
|
845
|
+
|
|
846
|
+
plan(multisession, workers = rprocesses)
|
|
847
|
+
set_lidr_threads(rprocesses)
|
|
848
|
+
|
|
849
|
+
mywriteLAS = function(chunk) {
|
|
850
|
+
las <- readLAS(chunk)
|
|
851
|
+
|
|
852
|
+
if (is.empty(las)) return(NULL)
|
|
853
|
+
las <- filter_poi(las, buffer == 0)
|
|
854
|
+
return(las) }
|
|
855
|
+
|
|
856
|
+
#read Laz file and drop any noise from the point cloud
|
|
857
|
+
ctg <- readLAScatalog(in_las_folder)
|
|
858
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/las/{*}")
|
|
859
|
+
opt_laz_compression(ctg) <- FALSE
|
|
860
|
+
print("Saving zipped lidar data into *.las format...")
|
|
861
|
+
opt_progress(ctg) <- TRUE
|
|
862
|
+
catalog_apply(ctg, mywriteLAS)
|
|
863
|
+
# reset R mutilsession back to default
|
|
864
|
+
plan(sequential)
|
|
865
|
+
}
|
|
866
|
+
|
|
867
|
+
#############################################################
|
|
868
|
+
las_info <- function(in_las_folder, rprocesses) {
|
|
869
|
+
library(lidR)
|
|
870
|
+
library(future)
|
|
871
|
+
# update.packages(list('lidR','future'))
|
|
872
|
+
|
|
873
|
+
plan(multisession, workers = rprocesses)
|
|
874
|
+
set_lidr_threads(rprocesses)
|
|
875
|
+
print("loading LiDAR Data")
|
|
876
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
877
|
+
print(paste0("Data format: v", (ctg@data$Version.Major[1]), ".", (ctg@data$Version.Minor[1])))
|
|
878
|
+
print(paste0("Extent: ", min(ctg@data$Min.X), " ", max(ctg@data$Max.X), " ", min(ctg@data$Min.Y), " ", max(ctg@data$Max.Y)))
|
|
879
|
+
print(paste0("Area: ", round(st_area(ctg) / (1000 * 1000), 2), " units²"))
|
|
880
|
+
print(paste0("Total Pts: ", sum(ctg@data$Number.of.point.records)))
|
|
881
|
+
print(paste0("Density: ", round(sum(ctg@data$Number.of.point.records) / st_area(ctg), 0), " pts/units²"))
|
|
882
|
+
print(paste0("Total num. files: ", length(ctg@data$filename)))
|
|
883
|
+
|
|
884
|
+
|
|
885
|
+
}
|
|
886
|
+
|
|
887
|
+
#######################################################################################################################################
|
|
888
|
+
classify_gnd <- function(in_las_folder, out_folder, slope, class_threshold, cloth_resolution, rigidness) {
|
|
889
|
+
library(lidR)
|
|
890
|
+
library(future)
|
|
891
|
+
library(RCSF)
|
|
892
|
+
|
|
893
|
+
print("loading LiDAR Data")
|
|
894
|
+
plan(multisession, workers = 4)
|
|
895
|
+
set_lidr_threads(4)
|
|
896
|
+
|
|
897
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class_7 -drop_overlap')
|
|
898
|
+
opt_output_files(ctg) <- paste0(out_folder, "/{*}_gnd_classified")
|
|
899
|
+
opt_laz_compression(ctg) <- FALSE
|
|
900
|
+
gnd_csf <- csf(slope, class_threshold = class_threshold, cloth_resolution = cloth_resolution, rigidness = rigidness, iterations = 500, time_step = 0.65)
|
|
901
|
+
print("Classify ground start....")
|
|
902
|
+
c_ctg <- classify_ground(ctg, gnd_csf)
|
|
903
|
+
}
|
|
904
|
+
|
|
905
|
+
#############################################################################################
|
|
906
|
+
conduct_raster <- function(in_las_folder, out_folder, cell_size, rprocesses) {
|
|
907
|
+
|
|
908
|
+
library(terra)
|
|
909
|
+
library(lidR)
|
|
910
|
+
library(future)
|
|
911
|
+
library(sf)
|
|
912
|
+
|
|
913
|
+
plan(multisession, workers = rprocesses)
|
|
914
|
+
set_lidr_threads(rprocesses)
|
|
915
|
+
|
|
916
|
+
#normalized LAS with pulse info
|
|
917
|
+
|
|
918
|
+
ctg <- readLAScatalog(in_las_folder, filter = '-drop_class 7')
|
|
919
|
+
opt_progress(ctg) <- TRUE
|
|
920
|
+
|
|
921
|
+
print("Generating multiple conductivity raster on:")
|
|
922
|
+
print("CHM, Slope, Roughness, ground point density, intensity raster.")
|
|
923
|
+
print("Idea from Correction, update, and enhancement of vectorial forestry line maps using LiDAR data, a pathfinder, and seven metrics, Jean-Romain Roussel, etl 2022.")
|
|
924
|
+
|
|
925
|
+
Q_raster <- function(chunk, cell_size)
|
|
926
|
+
{
|
|
927
|
+
las <- readLAS(chunk)
|
|
928
|
+
if (is.empty(las)) return(NULL)
|
|
929
|
+
|
|
930
|
+
las_1 <- filter_poi(readLAS(chunk), buffer == 0)
|
|
931
|
+
hull <- st_convex_hull(las_1)
|
|
932
|
+
bbox <- vect(hull)
|
|
933
|
+
|
|
934
|
+
|
|
935
|
+
# message('Generate DTM using Triangulation ...')
|
|
936
|
+
dtm <- rasterize_terrain(las, res = cell_size, algorithm = tin(max_edge = (3 * cell_size)))
|
|
937
|
+
|
|
938
|
+
n_las <- normalize_height(las, dtm)
|
|
939
|
+
|
|
940
|
+
#message("Generating slope conductivity raster...")
|
|
941
|
+
slope <- terrain(dtm, "slope", 8)
|
|
942
|
+
slope_range = slope@ptr$range_max - slope@ptr$range_min
|
|
943
|
+
Qslope <- ifel(slope <= slope_range * 0.1, 1, ifel(slope > slope_range * 0.75, 0, (1 - ((slope - slope@ptr$range_min) / slope_range))))
|
|
944
|
+
Qslope[is.na(Qslope)] = 0
|
|
945
|
+
Qslope <- terra::crop(Qslope, bbox)
|
|
946
|
+
|
|
947
|
+
|
|
948
|
+
# message("Generating roughness conductivity raster...")
|
|
949
|
+
roughness <- terrain(dtm, "roughness")
|
|
950
|
+
roughness_range = roughness@ptr$range_max - roughness@ptr$range_min
|
|
951
|
+
Qrough <- ifel(roughness <= roughness_range * 0.1, 1, ifel(roughness > roughness_range * 0.8, 0, (1 - ((roughness - roughness@ptr$range_min) / roughness_range))))
|
|
952
|
+
Qrough[is.na(Qrough)] = 0
|
|
953
|
+
Qrough <- terra::crop(Qrough, bbox)
|
|
954
|
+
|
|
955
|
+
# message("Generating edge conductivity raster...")
|
|
956
|
+
#sobel filter
|
|
957
|
+
fx = matrix(c(-1, -2, -1, 0, 0, 0, 1, 2, 1), nrow = 3)
|
|
958
|
+
fy = matrix(c(1, 0, -1, 2, 0, -2, 1, 0, -1), nrow = 3)
|
|
959
|
+
|
|
960
|
+
dtm_sobelx = focal(dtm, fx, na.policy = "omit")
|
|
961
|
+
dtm_sobely = focal(dtm, fy, na.policy = "omit")
|
|
962
|
+
|
|
963
|
+
dtm_sobel = sqrt(dtm_sobelx**2 + dtm_sobely**2)
|
|
964
|
+
dtm_sobel_range = dtm_sobel@ptr$range_max - dtm_sobel@ptr$range_min
|
|
965
|
+
Qedge <- ifel(dtm_sobel <= dtm_sobel_range * 0.15, 1, ifel(dtm_sobel > dtm_sobel_range * 0.85, 0, (1 - ((dtm_sobel - dtm_sobel@ptr$range_min) / dtm_sobel_range))))
|
|
966
|
+
Qedge[is.na(Qedge)] = 0
|
|
967
|
+
Qedge <- terra::crop(Qedge, bbox)
|
|
968
|
+
|
|
969
|
+
# message('Generate CHM...')
|
|
970
|
+
chm <- rasterize_canopy(n_las, cell_size, dsmtin(max_edge = (3 * cell_size)), pkg = "terra")
|
|
971
|
+
chm_range = chm@ptr$range_max - chm@ptr$range_min
|
|
972
|
+
Qchm <- ifel(chm <= chm_range * 0.1, 1, ifel(chm > chm_range * 0.75, 0, (1 - ((chm - chm@ptr$range_min) / chm_range))))
|
|
973
|
+
Qchm[is.na(Qchm)] = 0
|
|
974
|
+
Qchm <- terra::crop(Qchm, bbox)
|
|
975
|
+
|
|
976
|
+
# message("Generating intensity conductivity raster...")
|
|
977
|
+
# sensor <- track_sensor(las, Roussel2020(pmin=15))
|
|
978
|
+
# las <- normalize_intensity(las, range_correction(sensor,Rs=1800 ))
|
|
979
|
+
int_max <- pixel_metrics(las, (~max(Intensity)), cell_size) #,filter = ~ReturnNumber == 1L)
|
|
980
|
+
int_min <- pixel_metrics(las, (~min(Intensity)), cell_size) #,filter = ~ReturnNumber == 1L)
|
|
981
|
+
irange_map <- int_max - int_min
|
|
982
|
+
irange_map[is.na(irange_map)] = 0
|
|
983
|
+
iq2 <- global(irange_map, quantile, probs = 0.05, na.rm = TRUE)[[1]]
|
|
984
|
+
int_map_range <- irange_map@ptr$range_max - irange_map@ptr$range_min
|
|
985
|
+
Qint <- ifel(irange_map <= iq2, 1, ifel(irange_map > int_map_range * 0.75, 0, (1 - ((irange_map - irange_map@ptr$range_min) / int_map_range))))
|
|
986
|
+
Qint[is.na(Qint)] = 0
|
|
987
|
+
Qint <- terra::crop(Qint, bbox)
|
|
988
|
+
|
|
989
|
+
# message("Generating ground point density conductivity raster...")
|
|
990
|
+
g = filter_poi(las, Classification == 2L)
|
|
991
|
+
gpd <- rasterize_density(g, res = cell_size, pkg = "terra")
|
|
992
|
+
# gpd <- pixel_metrics(las, ~list(length(Z)/0.35**2),res=cell_size,filter=~Classification == 2L)
|
|
993
|
+
gq2 <- global(gpd, quantile, probs = 0.02, na.rm = TRUE)[[1]]
|
|
994
|
+
gpd_range = gpd@ptr$range_max - gpd@ptr$range_min
|
|
995
|
+
Qgpd <- ifel(gpd <= gq2, 0, (gpd - gpd@ptr$range_min) / gpd_range)
|
|
996
|
+
Qgpd[is.na(Qgpd)] = 0
|
|
997
|
+
Qgpd <- terra::crop(Qgpd, bbox)
|
|
998
|
+
|
|
999
|
+
|
|
1000
|
+
# message("Generating low vegetation density conductivity raster...")
|
|
1001
|
+
l = filter_poi(n_las, Z >= 1.0 &
|
|
1002
|
+
Z <= 3 &
|
|
1003
|
+
!(Classification %in% c(LASWATER, LASGROUND, LASBUILDING)))
|
|
1004
|
+
lower_density <- rasterize_density(l, res = cell_size, pkg = "terra")
|
|
1005
|
+
# lower_density <- pixel_metrics(n_las, ~list(length(Z)/0.35**2), cell_size,filter=~(Z>= 0.5 & Z<=3))
|
|
1006
|
+
lq2 <- global(lower_density, quantile, probs = 0.02, na.rm = TRUE)[[1]]
|
|
1007
|
+
lower_range = lower_density@ptr$range_max - lower_density@ptr$range_min
|
|
1008
|
+
Qlower <- ifel(lower_density > lq2, 0, 1)
|
|
1009
|
+
Qlower[is.na(Qlower)] = 0
|
|
1010
|
+
Qlower <- terra::crop(Qlower, bbox)
|
|
1011
|
+
|
|
1012
|
+
# message("Generating combined conductivity raster...")
|
|
1013
|
+
Conduct <- (Qslope * Qlower * Qedge) * (0.25 * Qchm +
|
|
1014
|
+
0.25 * Qgpd +
|
|
1015
|
+
0.25 * Qrough +
|
|
1016
|
+
0.25 * Qint)
|
|
1017
|
+
cost <- Conduct * -1 + Conduct@ptr$range_max
|
|
1018
|
+
cost[is.na(cost)] = 1
|
|
1019
|
+
|
|
1020
|
+
dtm <- terra::crop(dtm, bbox)
|
|
1021
|
+
dtm[is.na(dtm)] = NaN
|
|
1022
|
+
chm <- terra::crop(chm, bbox)
|
|
1023
|
+
chm[is.na(chm)] = NaN
|
|
1024
|
+
|
|
1025
|
+
|
|
1026
|
+
lower_canopy <- -ifel(lower_density > lq2, 1, 0)
|
|
1027
|
+
lower_canopy <- ifel(lower_canopy == -1, 1, lower_canopy)
|
|
1028
|
+
upper_canopy <- ifel(chm > 3, 1, 0)
|
|
1029
|
+
|
|
1030
|
+
lower_canopy <- extend(lower_canopy, ext(bbox))
|
|
1031
|
+
upper_canopy <- extend(upper_canopy, ext(bbox))
|
|
1032
|
+
|
|
1033
|
+
canopy <- ifel(upper_canopy == 1, upper_canopy * lower_canopy, upper_canopy + lower_canopy)
|
|
1034
|
+
canopy[is.na(canopy)] = 0
|
|
1035
|
+
|
|
1036
|
+
|
|
1037
|
+
return(list(Qchm, Qslope, Qrough, Qgpd, Qint, Qedge, Qlower, Conduct, cost, dtm, chm, canopy))
|
|
1038
|
+
|
|
1039
|
+
}
|
|
1040
|
+
|
|
1041
|
+
MultiWrite = function(output_list, file) {
|
|
1042
|
+
Qchm = output_list[[1]]
|
|
1043
|
+
Qslope = output_list[[2]]
|
|
1044
|
+
Qrough = output_list[[3]]
|
|
1045
|
+
Qgpd = output_list[[4]]
|
|
1046
|
+
Qint = output_list[[5]]
|
|
1047
|
+
Qedge = output_list[[6]]
|
|
1048
|
+
Qlower = output_list[[7]]
|
|
1049
|
+
Conductivity = output_list[[8]]
|
|
1050
|
+
Cost = output_list[[9]]
|
|
1051
|
+
dtm = output_list[[10]]
|
|
1052
|
+
chm = output_list[[11]]
|
|
1053
|
+
canopy = output_list[[12]]
|
|
1054
|
+
path1 = gsub("@@@", "Qchm", file)
|
|
1055
|
+
path2 = gsub("@@@", "Qslope", file)
|
|
1056
|
+
path3 = gsub("@@@", "Qrough", file)
|
|
1057
|
+
path4 = gsub("@@@", "Qgpd", file)
|
|
1058
|
+
path5 = gsub("@@@", "Qint", file)
|
|
1059
|
+
path6 = gsub("@@@", "Qedge", file)
|
|
1060
|
+
path7 = gsub("@@@", "Qlower", file)
|
|
1061
|
+
path8 = gsub("@@@", "Conductivity", file)
|
|
1062
|
+
path9 = gsub("@@@", "Cost", file)
|
|
1063
|
+
path10 = gsub("@@@", "DTM", file)
|
|
1064
|
+
path11 = gsub("@@@", "CHM", file)
|
|
1065
|
+
path12 = gsub("@@@", "Canopy", file)
|
|
1066
|
+
|
|
1067
|
+
path1 = paste0(path1, ".tif")
|
|
1068
|
+
path2 = paste0(path2, ".tif")
|
|
1069
|
+
path3 = paste0(path3, ".tif")
|
|
1070
|
+
path4 = paste0(path4, ".tif")
|
|
1071
|
+
path5 = paste0(path5, ".tif")
|
|
1072
|
+
path6 = paste0(path6, ".tif")
|
|
1073
|
+
path7 = paste0(path7, ".tif")
|
|
1074
|
+
path8 = paste0(path8, ".tif")
|
|
1075
|
+
path9 = paste0(path9, ".tif")
|
|
1076
|
+
path10 = paste0(path10, ".tif")
|
|
1077
|
+
path11 = paste0(path11, ".tif")
|
|
1078
|
+
path12 = paste0(path12, ".tif")
|
|
1079
|
+
|
|
1080
|
+
terra::writeRaster(Qchm, path1, overwrite = TRUE)
|
|
1081
|
+
terra::writeRaster(Qslope, path2, overwrite = TRUE)
|
|
1082
|
+
terra::writeRaster(Qrough, path3, overwrite = TRUE)
|
|
1083
|
+
terra::writeRaster(Qgpd, path4, overwrite = TRUE)
|
|
1084
|
+
terra::writeRaster(Qint, path5, overwrite = TRUE)
|
|
1085
|
+
terra::writeRaster(Qedge, path6, overwrite = TRUE)
|
|
1086
|
+
terra::writeRaster(Qlower, path7, overwrite = TRUE)
|
|
1087
|
+
terra::writeRaster(Conductivity, path8, overwrite = TRUE)
|
|
1088
|
+
terra::writeRaster(Cost, path9, overwrite = TRUE)
|
|
1089
|
+
terra::writeRaster(dtm, path10, overwrite = TRUE)
|
|
1090
|
+
terra::writeRaster(chm, path11, overwrite = TRUE)
|
|
1091
|
+
terra::writeRaster(canopy, path12, overwrite = TRUE)
|
|
1092
|
+
|
|
1093
|
+
}
|
|
1094
|
+
|
|
1095
|
+
MultiWriteDriver = list(
|
|
1096
|
+
write = MultiWrite,
|
|
1097
|
+
extension = "",
|
|
1098
|
+
object = "output_list",
|
|
1099
|
+
path = "file",
|
|
1100
|
+
param = list())
|
|
1101
|
+
|
|
1102
|
+
|
|
1103
|
+
ctg@output_options$drivers$list <- MultiWriteDriver
|
|
1104
|
+
opt_output_files(ctg) <- opt_output_files(ctg) <- paste0(out_folder, "/{*}_@@@")
|
|
1105
|
+
opt_laz_compression(ctg) <- FALSE
|
|
1106
|
+
opt_progress(ctg) <- TRUE
|
|
1107
|
+
opt <- list(need_output_file = TRUE, autocrop = TRUE)
|
|
1108
|
+
opt_chunk_alignment(ctg) <- c(0, 0)
|
|
1109
|
+
ctg@output_options$
|
|
1110
|
+
drivers$
|
|
1111
|
+
SpatRaster$
|
|
1112
|
+
param$
|
|
1113
|
+
overwrite <- TRUE
|
|
1114
|
+
opt_stop_early(ctg) <- TRUE
|
|
1115
|
+
catalog_apply(ctg, Q_raster, cell_size = cell_size, .options = opt)
|
|
1116
|
+
# reset R mutilsession back to default
|
|
1117
|
+
plan(sequential)
|
|
1118
|
+
}
|
|
1119
|
+
|
|
1120
|
+
#####################################################################################################
|