AutoStatLib 0.2.2__py3-none-any.whl → 0.2.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AutoStatLib might be problematic. Click here for more details.
- AutoStatLib/AutoStatLib.py +25 -439
- AutoStatLib/_version.py +1 -1
- AutoStatLib/helpers.py +77 -0
- AutoStatLib/normality_tests.py +85 -0
- AutoStatLib/statistical_tests.py +173 -0
- AutoStatLib/text_formatting.py +98 -0
- {AutoStatLib-0.2.2.dist-info → AutoStatLib-0.2.5.dist-info}/METADATA +7 -4
- AutoStatLib-0.2.5.dist-info/RECORD +13 -0
- AutoStatLib-0.2.2.dist-info/RECORD +0 -9
- {AutoStatLib-0.2.2.dist-info → AutoStatLib-0.2.5.dist-info}/LICENSE +0 -0
- {AutoStatLib-0.2.2.dist-info → AutoStatLib-0.2.5.dist-info}/WHEEL +0 -0
- {AutoStatLib-0.2.2.dist-info → AutoStatLib-0.2.5.dist-info}/top_level.txt +0 -0
AutoStatLib/AutoStatLib.py
CHANGED
|
@@ -1,428 +1,10 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
from
|
|
4
|
-
from
|
|
5
|
-
from scipy.stats import ttest_rel, ttest_ind, ttest_1samp, wilcoxon, mannwhitneyu, f_oneway, kruskal, friedmanchisquare, shapiro, anderson, normaltest
|
|
1
|
+
from AutoStatLib.statistical_tests import StatisticalTests
|
|
2
|
+
from AutoStatLib.normality_tests import NormalityTests
|
|
3
|
+
from AutoStatLib.helpers import Helpers
|
|
4
|
+
from AutoStatLib.text_formatting import TextFormatting
|
|
6
5
|
|
|
7
6
|
|
|
8
|
-
class
|
|
9
|
-
'''
|
|
10
|
-
Statistical tests mixin
|
|
11
|
-
'''
|
|
12
|
-
|
|
13
|
-
def run_test_auto(self):
|
|
14
|
-
|
|
15
|
-
if self.n_groups == 1:
|
|
16
|
-
if self.parametric:
|
|
17
|
-
self.run_test_by_id('t_test_single_sample')
|
|
18
|
-
else:
|
|
19
|
-
self.run_test_by_id('wilcoxon_single_sample')
|
|
20
|
-
|
|
21
|
-
elif self.n_groups == 2:
|
|
22
|
-
if self.paired:
|
|
23
|
-
if self.parametric:
|
|
24
|
-
self.run_test_by_id('t_test_paired')
|
|
25
|
-
else:
|
|
26
|
-
self.run_test_by_id('wilcoxon')
|
|
27
|
-
else:
|
|
28
|
-
if self.parametric:
|
|
29
|
-
self.run_test_by_id('t_test_independent')
|
|
30
|
-
else:
|
|
31
|
-
self.run_test_by_id('mann_whitney')
|
|
32
|
-
|
|
33
|
-
elif self.n_groups >= 3:
|
|
34
|
-
if self.paired:
|
|
35
|
-
if self.parametric:
|
|
36
|
-
self.run_test_by_id('anova_1w_rm')
|
|
37
|
-
else:
|
|
38
|
-
self.run_test_by_id('friedman')
|
|
39
|
-
else:
|
|
40
|
-
if self.parametric:
|
|
41
|
-
self.run_test_by_id('anova_1w_ordinary')
|
|
42
|
-
else:
|
|
43
|
-
self.run_test_by_id('kruskal_wallis')
|
|
44
|
-
|
|
45
|
-
else:
|
|
46
|
-
pass
|
|
47
|
-
|
|
48
|
-
def run_test_by_id(self, test_id):
|
|
49
|
-
|
|
50
|
-
test_names_dict = {
|
|
51
|
-
'anova_1w_ordinary': 'Ordinary One-Way ANOVA',
|
|
52
|
-
'anova_1w_rm': 'Repeated Measures One-Way ANOVA',
|
|
53
|
-
'friedman': 'Friedman test',
|
|
54
|
-
'kruskal_wallis': 'Kruskal-Wallis test',
|
|
55
|
-
'mann_whitney': 'Mann-Whitney U test',
|
|
56
|
-
't_test_independent': 't-test for independent samples',
|
|
57
|
-
't_test_paired': 't-test for paired samples',
|
|
58
|
-
't_test_single_sample': 'Single-sample t-test',
|
|
59
|
-
'wilcoxon': 'Wilcoxon signed-rank test',
|
|
60
|
-
'wilcoxon_single_sample': 'Wilcoxon signed-rank test for single sample',
|
|
61
|
-
}
|
|
62
|
-
|
|
63
|
-
match test_id:
|
|
64
|
-
case 'anova_1w_ordinary': stat, p_value = self.anova_1w_ordinary()
|
|
65
|
-
case 'anova_1w_rm': stat, p_value = self.anova_1w_rm()
|
|
66
|
-
case 'friedman': stat, p_value = self.friedman()
|
|
67
|
-
case 'kruskal_wallis': stat, p_value = self.kruskal_wallis()
|
|
68
|
-
case 'mann_whitney': stat, p_value = self.mann_whitney()
|
|
69
|
-
case 't_test_independent': stat, p_value = self.t_test_independent()
|
|
70
|
-
case 't_test_paired': stat, p_value = self.t_test_paired()
|
|
71
|
-
case 't_test_single_sample': stat, p_value = self.t_test_single_sample()
|
|
72
|
-
case 'wilcoxon': stat, p_value = self.wilcoxon()
|
|
73
|
-
case 'wilcoxon_single_sample': stat, p_value = self.wilcoxon_single_sample()
|
|
74
|
-
|
|
75
|
-
if test_id in self.test_ids_dependent:
|
|
76
|
-
self.paired = True
|
|
77
|
-
else:
|
|
78
|
-
self.paired = False
|
|
79
|
-
|
|
80
|
-
self.test_name = test_names_dict[test_id]
|
|
81
|
-
self.test_id = test_id
|
|
82
|
-
self.test_stat = stat
|
|
83
|
-
self.p_value = p_value
|
|
84
|
-
|
|
85
|
-
def anova_1w_ordinary(self):
|
|
86
|
-
stat, p_value = f_oneway(*self.data)
|
|
87
|
-
self.tails = 2
|
|
88
|
-
# if self.tails == 1 and p_value > 0.5:
|
|
89
|
-
# p_value /= 2
|
|
90
|
-
# if self.tails == 1:
|
|
91
|
-
# p_value /= 2
|
|
92
|
-
return stat, p_value
|
|
93
|
-
|
|
94
|
-
def anova_1w_rm(self):
|
|
95
|
-
"""
|
|
96
|
-
Perform repeated measures one-way ANOVA test.
|
|
97
|
-
|
|
98
|
-
Parameters:
|
|
99
|
-
data: list of lists, where each sublist represents repeated measures for a subject
|
|
100
|
-
"""
|
|
101
|
-
|
|
102
|
-
df = self.matrix_to_dataframe(self.data)
|
|
103
|
-
res = AnovaRM(df, 'Value', 'Row', within=['Col']).fit()
|
|
104
|
-
stat = res.anova_table['F Value'][0]
|
|
105
|
-
p_value = res.anova_table['Pr > F'][0]
|
|
106
|
-
|
|
107
|
-
self.tails = 2
|
|
108
|
-
return stat, p_value
|
|
109
|
-
|
|
110
|
-
def friedman(self):
|
|
111
|
-
stat, p_value = friedmanchisquare(*self.data)
|
|
112
|
-
self.tails = 2
|
|
113
|
-
return stat, p_value
|
|
114
|
-
|
|
115
|
-
def kruskal_wallis(self):
|
|
116
|
-
stat, p_value = kruskal(*self.data)
|
|
117
|
-
return stat, p_value
|
|
118
|
-
|
|
119
|
-
def mann_whitney(self):
|
|
120
|
-
stat, p_value = mannwhitneyu(
|
|
121
|
-
self.data[0], self.data[1], alternative='two-sided')
|
|
122
|
-
if self.tails == 1:
|
|
123
|
-
p_value /= 2
|
|
124
|
-
# alternative method of one-tailed calculation
|
|
125
|
-
# gives the same result:
|
|
126
|
-
# stat, p_value = mannwhitneyu(
|
|
127
|
-
# self.data[0], self.data[1], alternative='two-sided' if self.tails == 2 else 'less')
|
|
128
|
-
# if self.tails == 1 and p_value > 0.5:
|
|
129
|
-
# p_value = 1-p_value
|
|
130
|
-
return stat, p_value
|
|
131
|
-
|
|
132
|
-
def t_test_independent(self):
|
|
133
|
-
stat, p_value = ttest_ind(
|
|
134
|
-
self.data[0], self.data[1])
|
|
135
|
-
if self.tails == 1:
|
|
136
|
-
p_value /= 2
|
|
137
|
-
return stat, p_value
|
|
138
|
-
|
|
139
|
-
def t_test_paired(self):
|
|
140
|
-
stat, p_value = ttest_rel(
|
|
141
|
-
self.data[0], self.data[1])
|
|
142
|
-
if self.tails == 1:
|
|
143
|
-
p_value /= 2
|
|
144
|
-
return stat, p_value
|
|
145
|
-
|
|
146
|
-
def t_test_single_sample(self):
|
|
147
|
-
if self.popmean == None:
|
|
148
|
-
self.popmean = 0
|
|
149
|
-
self.AddWarning('no_pop_mean_set')
|
|
150
|
-
stat, p_value = ttest_1samp(self.data[0], self.popmean)
|
|
151
|
-
if self.tails == 1:
|
|
152
|
-
p_value /= 2
|
|
153
|
-
return stat, p_value
|
|
154
|
-
|
|
155
|
-
def wilcoxon(self):
|
|
156
|
-
stat, p_value = wilcoxon(self.data[0], self.data[1])
|
|
157
|
-
if self.tails == 1:
|
|
158
|
-
p_value /= 2
|
|
159
|
-
return stat, p_value
|
|
160
|
-
|
|
161
|
-
def wilcoxon_single_sample(self):
|
|
162
|
-
if self.popmean == None:
|
|
163
|
-
self.popmean = 0
|
|
164
|
-
self.AddWarning('no_pop_mean_set')
|
|
165
|
-
data = [i - self.popmean for i in self.data[0]]
|
|
166
|
-
stat, p_value = wilcoxon(data)
|
|
167
|
-
if self.tails == 1:
|
|
168
|
-
p_value /= 2
|
|
169
|
-
return stat, p_value
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
class __NormalityTests():
|
|
173
|
-
'''
|
|
174
|
-
Normality tests mixin
|
|
175
|
-
|
|
176
|
-
see the article about minimal sample size for tests:
|
|
177
|
-
Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov,
|
|
178
|
-
Lilliefors and Anderson-Darling tests, Nornadiah Mohd Razali1, Yap Bee Wah1
|
|
179
|
-
'''
|
|
180
|
-
|
|
181
|
-
def check_normality(self, data):
|
|
182
|
-
sw = None
|
|
183
|
-
lf = None
|
|
184
|
-
ad = None
|
|
185
|
-
ap = None
|
|
186
|
-
n = len(data)
|
|
187
|
-
|
|
188
|
-
# Shapiro-Wilk test
|
|
189
|
-
sw_stat, sw_p_value = shapiro(data)
|
|
190
|
-
if sw_p_value > 0.05:
|
|
191
|
-
sw = True
|
|
192
|
-
else:
|
|
193
|
-
sw = False
|
|
194
|
-
|
|
195
|
-
# Lilliefors test
|
|
196
|
-
lf_stat, lf_p_value = lilliefors(
|
|
197
|
-
data, dist='norm')
|
|
198
|
-
if lf_p_value > 0.05:
|
|
199
|
-
lf = True
|
|
200
|
-
else:
|
|
201
|
-
lf = False
|
|
202
|
-
|
|
203
|
-
# Anderson-Darling test
|
|
204
|
-
if n >= 20:
|
|
205
|
-
ad_stat, ad_p_value = self.anderson_get_p(
|
|
206
|
-
data, dist='norm')
|
|
207
|
-
if ad_p_value > 0.05:
|
|
208
|
-
ad = True
|
|
209
|
-
else:
|
|
210
|
-
ad = False
|
|
211
|
-
|
|
212
|
-
# D'Agostino-Pearson test
|
|
213
|
-
# test result is skewed if n<20
|
|
214
|
-
if n >= 20:
|
|
215
|
-
ap_stat, ap_p_value = normaltest(data)
|
|
216
|
-
if ap_p_value > 0.05:
|
|
217
|
-
ap = True
|
|
218
|
-
else:
|
|
219
|
-
ap = False
|
|
220
|
-
|
|
221
|
-
# print(ap_p_value, ad_p_value, sw_p_value, lf_p_value)
|
|
222
|
-
|
|
223
|
-
return (sw, lf, ad, ap)
|
|
224
|
-
|
|
225
|
-
def anderson_get_p(self, data, dist='norm'):
|
|
226
|
-
'''
|
|
227
|
-
calculating p-value for Anderson-Darling test using the method described here:
|
|
228
|
-
Computation of Probability Associated with Anderson-Darling Statistic
|
|
229
|
-
Lorentz Jantschi and Sorana D. Bolboaca, 2018 - Mathematics
|
|
230
|
-
|
|
231
|
-
'''
|
|
232
|
-
e = 2.718281828459045
|
|
233
|
-
n = len(data)
|
|
234
|
-
|
|
235
|
-
ad, critical_values, significance_levels = anderson(
|
|
236
|
-
data, dist=dist)
|
|
237
|
-
|
|
238
|
-
# adjust ad_stat for small sample sizes:
|
|
239
|
-
s = ad*(1 + 0.75/n + 2.25/(n**2))
|
|
240
|
-
|
|
241
|
-
if s >= 0.6:
|
|
242
|
-
p = e**(1.2937 - 5.709*s + 0.0186*s**2)
|
|
243
|
-
elif s > 0.34:
|
|
244
|
-
p = e**(0.9177 - 4.279*s - 1.38*s**2)
|
|
245
|
-
elif s > 0.2:
|
|
246
|
-
p = 1 - e**(-8.318 + 42.796*s - 59.938*s**2)
|
|
247
|
-
elif s <= 0.2:
|
|
248
|
-
p = 1 - e**(-13.436 + 101.14*s - 223.73*s**2)
|
|
249
|
-
else:
|
|
250
|
-
p = None
|
|
251
|
-
|
|
252
|
-
return ad, p
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
class __Helpers():
|
|
256
|
-
|
|
257
|
-
def matrix_to_dataframe(self, matrix):
|
|
258
|
-
data = []
|
|
259
|
-
cols = []
|
|
260
|
-
rows = []
|
|
261
|
-
|
|
262
|
-
order_number = 1
|
|
263
|
-
for i, row in enumerate(matrix):
|
|
264
|
-
for j, value in enumerate(row):
|
|
265
|
-
data.append(value)
|
|
266
|
-
cols.append(i)
|
|
267
|
-
rows.append(j)
|
|
268
|
-
order_number += 1
|
|
269
|
-
|
|
270
|
-
df = pd.DataFrame(
|
|
271
|
-
{'Row': rows, 'Col': cols, 'Value': data})
|
|
272
|
-
return df
|
|
273
|
-
|
|
274
|
-
def create_results_dict(self) -> dict:
|
|
275
|
-
|
|
276
|
-
self.stars_int = self.make_stars()
|
|
277
|
-
self.stars_str = '*' * self.stars_int if self.stars_int else 'ns'
|
|
278
|
-
|
|
279
|
-
return {
|
|
280
|
-
'p-value': self.make_p_value_printed(),
|
|
281
|
-
'Significance(p<0.05)': True if self.p_value.item() < 0.05 else False,
|
|
282
|
-
'Stars_Printed': self.stars_str,
|
|
283
|
-
'Test_Name': self.test_name,
|
|
284
|
-
'Groups_Compared': self.n_groups,
|
|
285
|
-
'Population_Mean': self.popmean if self.n_groups == 1 else 'N/A',
|
|
286
|
-
'Data_Normaly_Distributed': self.parametric,
|
|
287
|
-
'Parametric_Test_Applied': True if self.test_id in self.test_ids_parametric else False,
|
|
288
|
-
'Paired_Test_Applied': self.paired,
|
|
289
|
-
'Tails': self.tails,
|
|
290
|
-
'p-value_exact': self.p_value.item(),
|
|
291
|
-
'Stars': self.stars_int,
|
|
292
|
-
# 'Stat_Value': self.test_stat.item(),
|
|
293
|
-
'Warnings': self.warnings,
|
|
294
|
-
'Groups_N': [len(self.data[i]) for i in range(len(self.data))],
|
|
295
|
-
'Groups_Median': [np.median(self.data[i]).item() for i in range(len(self.data))],
|
|
296
|
-
'Groups_Mean': [np.mean(self.data[i]).item() for i in range(len(self.data))],
|
|
297
|
-
'Groups_SD': [np.std(self.data[i]).item() for i in range(len(self.data))],
|
|
298
|
-
'Groups_SE': [np.std(self.data[i]).item() / np.sqrt(len(self.data)).item() for i in range(len(self.data))],
|
|
299
|
-
# actually returns list of lists of numpy dtypes of float64, next make it return regular floats:
|
|
300
|
-
'Samples': self.data,
|
|
301
|
-
}
|
|
302
|
-
|
|
303
|
-
def log(self, *args, **kwargs):
|
|
304
|
-
message = ' '.join(map(str, args))
|
|
305
|
-
# print(message, **kwargs)
|
|
306
|
-
self.summary += '\n' + message
|
|
307
|
-
|
|
308
|
-
def AddWarning(self, warning_id):
|
|
309
|
-
message = self.warning_ids_all[warning_id]
|
|
310
|
-
self.log(message)
|
|
311
|
-
self.warnings.append(message)
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
class __TextFormatting():
|
|
315
|
-
'''
|
|
316
|
-
Text formatting mixin
|
|
317
|
-
'''
|
|
318
|
-
|
|
319
|
-
def autospace(self, elements_list, space, delimiter=' ') -> str:
|
|
320
|
-
output = ''
|
|
321
|
-
for i, element in enumerate(elements_list):
|
|
322
|
-
if i == len(elements_list):
|
|
323
|
-
output += element
|
|
324
|
-
else:
|
|
325
|
-
output += element + (space-len(element))*delimiter
|
|
326
|
-
return output
|
|
327
|
-
|
|
328
|
-
def print_groups(self, space=24, max_length=15):
|
|
329
|
-
self.log('')
|
|
330
|
-
# Get the number of groups (rows) and the maximum length of rows
|
|
331
|
-
data = self.data
|
|
332
|
-
num_groups = len(data)
|
|
333
|
-
group_longest = max(len(row) for row in data)
|
|
334
|
-
|
|
335
|
-
# Print the header
|
|
336
|
-
header = [f'Group {i+1}' for i in range(num_groups)]
|
|
337
|
-
line = [''*7]
|
|
338
|
-
self.log(self.autospace(header, space))
|
|
339
|
-
self.log(self.autospace(line, space))
|
|
340
|
-
|
|
341
|
-
# Print each column with a placeholder if longer than max_length
|
|
342
|
-
for i in range(group_longest):
|
|
343
|
-
row_values = []
|
|
344
|
-
all_values_empty = True
|
|
345
|
-
for row in data:
|
|
346
|
-
if len(row) > max_length:
|
|
347
|
-
if i < max_length:
|
|
348
|
-
row_values.append(str(row[i]))
|
|
349
|
-
all_values_empty = False
|
|
350
|
-
elif i == max_length:
|
|
351
|
-
row_values.append(f'[{len(row) - max_length} more]')
|
|
352
|
-
all_values_empty = False
|
|
353
|
-
else:
|
|
354
|
-
continue
|
|
355
|
-
else:
|
|
356
|
-
if i < len(row):
|
|
357
|
-
row_values.append(str(row[i]))
|
|
358
|
-
all_values_empty = False
|
|
359
|
-
else:
|
|
360
|
-
row_values.append('')
|
|
361
|
-
if all_values_empty:
|
|
362
|
-
break
|
|
363
|
-
self.log(self.autospace(row_values, space))
|
|
364
|
-
|
|
365
|
-
def make_stars(self) -> int:
|
|
366
|
-
p = self.p_value.item()
|
|
367
|
-
if p is not None:
|
|
368
|
-
if p < 0.0001:
|
|
369
|
-
return 4
|
|
370
|
-
if p < 0.001:
|
|
371
|
-
return 3
|
|
372
|
-
elif p < 0.01:
|
|
373
|
-
return 2
|
|
374
|
-
elif p < 0.05:
|
|
375
|
-
return 1
|
|
376
|
-
else:
|
|
377
|
-
return 0
|
|
378
|
-
return 0
|
|
379
|
-
|
|
380
|
-
def make_p_value_printed(self) -> str:
|
|
381
|
-
p = self.p_value.item()
|
|
382
|
-
if p is not None:
|
|
383
|
-
if p > 0.99:
|
|
384
|
-
return 'p>0.99'
|
|
385
|
-
elif p >= 0.01:
|
|
386
|
-
return f'p={p:.2g}'
|
|
387
|
-
elif p >= 0.001:
|
|
388
|
-
return f'p={p:.2g}'
|
|
389
|
-
elif p >= 0.0001:
|
|
390
|
-
return f'p={p:.1g}'
|
|
391
|
-
elif p < 0.0001:
|
|
392
|
-
return 'p<0.0001'
|
|
393
|
-
else:
|
|
394
|
-
return 'N/A'
|
|
395
|
-
return 'N/A'
|
|
396
|
-
|
|
397
|
-
def print_results(self):
|
|
398
|
-
self.log('\n\nResults: \n')
|
|
399
|
-
for i in self.results:
|
|
400
|
-
shift = 27 - len(i)
|
|
401
|
-
if i == 'Warnings':
|
|
402
|
-
self.log(i, ':', ' ' * shift, len(self.results[i]))
|
|
403
|
-
elif i == 'Samples':
|
|
404
|
-
pass
|
|
405
|
-
else:
|
|
406
|
-
self.log(i, ':', ' ' * shift, self.results[i])
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
class __InputFormatting():
|
|
410
|
-
def floatify_recursive(self, data):
|
|
411
|
-
if isinstance(data, list):
|
|
412
|
-
# Recursively process sublists and filter out None values
|
|
413
|
-
processed_list = [self.floatify_recursive(item) for item in data]
|
|
414
|
-
return [item for item in processed_list if item is not None]
|
|
415
|
-
else:
|
|
416
|
-
try:
|
|
417
|
-
# Try to convert the item to float
|
|
418
|
-
return np.float64(data)
|
|
419
|
-
except (ValueError, TypeError):
|
|
420
|
-
# If conversion fails, replace with None
|
|
421
|
-
self.warning_flag_non_numeric_data = True
|
|
422
|
-
return None
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
class StatisticalAnalysis(__StatisticalTests, __NormalityTests, __TextFormatting, __InputFormatting, __Helpers):
|
|
7
|
+
class StatisticalAnalysis(StatisticalTests, NormalityTests, TextFormatting, Helpers):
|
|
426
8
|
'''
|
|
427
9
|
The main class
|
|
428
10
|
*documentation placeholder*
|
|
@@ -434,6 +16,7 @@ class StatisticalAnalysis(__StatisticalTests, __NormalityTests, __TextFormatting
|
|
|
434
16
|
paired=False,
|
|
435
17
|
tails=2,
|
|
436
18
|
popmean=None,
|
|
19
|
+
posthoc=False,
|
|
437
20
|
verbose=True):
|
|
438
21
|
self.results = None
|
|
439
22
|
self.error = False
|
|
@@ -441,6 +24,7 @@ class StatisticalAnalysis(__StatisticalTests, __NormalityTests, __TextFormatting
|
|
|
441
24
|
self.paired = paired
|
|
442
25
|
self.tails = tails
|
|
443
26
|
self.popmean = popmean
|
|
27
|
+
self.posthoc = posthoc
|
|
444
28
|
self.verbose = verbose
|
|
445
29
|
self.n_groups = len(self.groups_list)
|
|
446
30
|
self.warning_flag_non_numeric_data = False
|
|
@@ -495,7 +79,7 @@ class StatisticalAnalysis(__StatisticalTests, __NormalityTests, __TextFormatting
|
|
|
495
79
|
'no_pop_mean_set': '\nWarning: No Population Mean was set up for single-sample test, used default 0 value.\n The results might be skewed. \n Please, set the Population Mean and run the test again.\n',
|
|
496
80
|
}
|
|
497
81
|
|
|
498
|
-
def
|
|
82
|
+
def run_test(self, test='auto'):
|
|
499
83
|
|
|
500
84
|
# reset values from previous tests
|
|
501
85
|
self.results = None
|
|
@@ -506,9 +90,11 @@ class StatisticalAnalysis(__StatisticalTests, __NormalityTests, __TextFormatting
|
|
|
506
90
|
self.test_id = None
|
|
507
91
|
self.test_stat = None
|
|
508
92
|
self.p_value = None
|
|
93
|
+
self.posthoc_matrix_df = None
|
|
94
|
+
self.posthoc_matrix = []
|
|
509
95
|
|
|
510
96
|
self.log('\n' + '-'*67)
|
|
511
|
-
self.log('Statistical analysis
|
|
97
|
+
self.log('Statistical analysis __init__iated for data in {} groups\n'.format(
|
|
512
98
|
len(self.groups_list)))
|
|
513
99
|
|
|
514
100
|
# adjusting input data type
|
|
@@ -604,45 +190,45 @@ class StatisticalAnalysis(__StatisticalTests, __NormalityTests, __TextFormatting
|
|
|
604
190
|
|
|
605
191
|
# public methods:
|
|
606
192
|
def RunAuto(self):
|
|
607
|
-
self.
|
|
193
|
+
self.run_test(test='auto')
|
|
608
194
|
|
|
609
195
|
def RunManual(self, test):
|
|
610
|
-
self.
|
|
196
|
+
self.run_test(test)
|
|
611
197
|
|
|
612
198
|
def RunOnewayAnova(self):
|
|
613
|
-
self.
|
|
199
|
+
self.run_test(test='anova_1w_ordinary')
|
|
614
200
|
|
|
615
201
|
def RunOnewayAnovaRM(self):
|
|
616
|
-
self.
|
|
202
|
+
self.run_test(test='anova_1w_rm')
|
|
617
203
|
|
|
618
204
|
def RunFriedman(self):
|
|
619
|
-
self.
|
|
205
|
+
self.run_test(test='friedman')
|
|
620
206
|
|
|
621
207
|
def RunKruskalWallis(self):
|
|
622
|
-
self.
|
|
208
|
+
self.run_test(test='kruskal_wallis')
|
|
623
209
|
|
|
624
210
|
def RunMannWhitney(self):
|
|
625
|
-
self.
|
|
211
|
+
self.run_test(test='mann_whitney')
|
|
626
212
|
|
|
627
213
|
def RunTtest(self):
|
|
628
|
-
self.
|
|
214
|
+
self.run_test(test='t_test_independent')
|
|
629
215
|
|
|
630
216
|
def RunTtestPaired(self):
|
|
631
|
-
self.
|
|
217
|
+
self.run_test(test='t_test_paired')
|
|
632
218
|
|
|
633
219
|
def RunTtestSingleSample(self):
|
|
634
|
-
self.
|
|
220
|
+
self.run_test(test='t_test_single_sample')
|
|
635
221
|
|
|
636
222
|
def RunWilcoxonSingleSample(self):
|
|
637
|
-
self.
|
|
223
|
+
self.run_test(test='wilcoxon_single_sample')
|
|
638
224
|
|
|
639
225
|
def RunWilcoxon(self):
|
|
640
|
-
self.
|
|
226
|
+
self.run_test(test='wilcoxon')
|
|
641
227
|
|
|
642
228
|
def GetResult(self):
|
|
643
229
|
if not self.results and not self.error:
|
|
644
230
|
print('No test chosen, no results to output')
|
|
645
|
-
# self.
|
|
231
|
+
# self.run_test(test='auto')
|
|
646
232
|
return self.results
|
|
647
233
|
if not self.results and self.error:
|
|
648
234
|
print('Error occured, no results to output')
|
|
@@ -653,7 +239,7 @@ class StatisticalAnalysis(__StatisticalTests, __NormalityTests, __TextFormatting
|
|
|
653
239
|
def GetSummary(self):
|
|
654
240
|
if not self.results and not self.error:
|
|
655
241
|
print('No test chosen, no summary to output')
|
|
656
|
-
# self.
|
|
242
|
+
# self.run_test(test='auto')
|
|
657
243
|
return self.summary
|
|
658
244
|
else:
|
|
659
245
|
return self.summary
|
AutoStatLib/_version.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
|
1
1
|
# AutoStatLib package version:
|
|
2
|
-
__version__ = "0.2.
|
|
2
|
+
__version__ = "0.2.5"
|
AutoStatLib/helpers.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pandas as pd
|
|
3
|
+
|
|
4
|
+
class Helpers():
|
|
5
|
+
|
|
6
|
+
def matrix_to_dataframe(self, matrix):
|
|
7
|
+
data = []
|
|
8
|
+
cols = []
|
|
9
|
+
rows = []
|
|
10
|
+
|
|
11
|
+
order_number = 1
|
|
12
|
+
for i, row in enumerate(matrix):
|
|
13
|
+
for j, value in enumerate(row):
|
|
14
|
+
data.append(value)
|
|
15
|
+
cols.append(i)
|
|
16
|
+
rows.append(j)
|
|
17
|
+
order_number += 1
|
|
18
|
+
|
|
19
|
+
df = pd.DataFrame(
|
|
20
|
+
{'Row': rows, 'Col': cols, 'Value': data})
|
|
21
|
+
return df
|
|
22
|
+
|
|
23
|
+
def floatify_recursive(self, data):
|
|
24
|
+
if isinstance(data, list):
|
|
25
|
+
# Recursively process sublists and filter out None values
|
|
26
|
+
processed_list = [self.floatify_recursive(item) for item in data]
|
|
27
|
+
return [item for item in processed_list if item is not None]
|
|
28
|
+
else:
|
|
29
|
+
try:
|
|
30
|
+
# Try to convert the item to float
|
|
31
|
+
return np.float64(data)
|
|
32
|
+
except (ValueError, TypeError):
|
|
33
|
+
# If conversion fails, replace with None
|
|
34
|
+
self.warning_flag_non_numeric_data = True
|
|
35
|
+
return None
|
|
36
|
+
|
|
37
|
+
def create_results_dict(self) -> dict:
|
|
38
|
+
|
|
39
|
+
self.stars_int = self.make_stars(self.p_value.item())
|
|
40
|
+
self.stars_str = self.make_stars_printed(self.stars_int)
|
|
41
|
+
|
|
42
|
+
return {
|
|
43
|
+
'p-value': self.make_p_value_printed(self.p_value.item()),
|
|
44
|
+
'Significance(p<0.05)': True if self.p_value.item() < 0.05 else False,
|
|
45
|
+
'Stars_Printed': self.stars_str,
|
|
46
|
+
'Test_Name': self.test_name,
|
|
47
|
+
'Groups_Compared': self.n_groups,
|
|
48
|
+
'Population_Mean': self.popmean if self.n_groups == 1 else 'N/A',
|
|
49
|
+
'Data_Normaly_Distributed': self.parametric,
|
|
50
|
+
'Parametric_Test_Applied': True if self.test_id in self.test_ids_parametric else False,
|
|
51
|
+
'Paired_Test_Applied': self.paired,
|
|
52
|
+
'Tails': self.tails,
|
|
53
|
+
'p-value_exact': self.p_value.item(),
|
|
54
|
+
'Stars': self.stars_int,
|
|
55
|
+
# 'Stat_Value': self.test_stat.item(),
|
|
56
|
+
'Warnings': self.warnings,
|
|
57
|
+
'Groups_N': [len(self.data[i]) for i in range(len(self.data))],
|
|
58
|
+
'Groups_Median': [np.median(self.data[i]).item() for i in range(len(self.data))],
|
|
59
|
+
'Groups_Mean': [np.mean(self.data[i]).item() for i in range(len(self.data))],
|
|
60
|
+
'Groups_SD': [np.std(self.data[i]).item() for i in range(len(self.data))],
|
|
61
|
+
'Groups_SE': [np.std(self.data[i]).item() / np.sqrt(len(self.data)).item() for i in range(len(self.data))],
|
|
62
|
+
# actually returns list of lists of numpy dtypes of float64, next make it return regular floats:
|
|
63
|
+
'Samples': self.data,
|
|
64
|
+
'Posthoc_Matrix': self.posthoc_matrix if self.posthoc_matrix else 'N/A',
|
|
65
|
+
'Posthoc_Matrix_printed': [[self.make_p_value_printed(element) for element in row] for row in self.posthoc_matrix] if self.posthoc_matrix else 'N/A',
|
|
66
|
+
'Posthoc_Matrix_stars': [[self.make_stars_printed(self.make_stars(element)) for element in row] for row in self.posthoc_matrix] if self.posthoc_matrix else 'N/A',
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
def log(self, *args, **kwargs):
|
|
70
|
+
message = ' '.join(map(str, args))
|
|
71
|
+
# print(message, **kwargs)
|
|
72
|
+
self.summary += '\n' + message
|
|
73
|
+
|
|
74
|
+
def AddWarning(self, warning_id):
|
|
75
|
+
message = self.warning_ids_all[warning_id]
|
|
76
|
+
self.log(message)
|
|
77
|
+
self.warnings.append(message)
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
from statsmodels.stats.diagnostic import lilliefors
|
|
2
|
+
from scipy.stats import shapiro, normaltest, anderson
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class NormalityTests():
|
|
6
|
+
'''
|
|
7
|
+
Normality tests mixin
|
|
8
|
+
|
|
9
|
+
see the article about minimal sample size for tests:
|
|
10
|
+
Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov,
|
|
11
|
+
Lilliefors and Anderson-Darling tests, Nornadiah Mohd Razali1, Yap Bee Wah1
|
|
12
|
+
'''
|
|
13
|
+
|
|
14
|
+
def check_normality(self, data):
|
|
15
|
+
sw = None
|
|
16
|
+
lf = None
|
|
17
|
+
ad = None
|
|
18
|
+
ap = None
|
|
19
|
+
n = len(data)
|
|
20
|
+
|
|
21
|
+
# Shapiro-Wilk test
|
|
22
|
+
sw_stat, sw_p_value = shapiro(data)
|
|
23
|
+
if sw_p_value > 0.05:
|
|
24
|
+
sw = True
|
|
25
|
+
else:
|
|
26
|
+
sw = False
|
|
27
|
+
|
|
28
|
+
# Lilliefors test
|
|
29
|
+
lf_stat, lf_p_value = lilliefors(
|
|
30
|
+
data, dist='norm')
|
|
31
|
+
if lf_p_value > 0.05:
|
|
32
|
+
lf = True
|
|
33
|
+
else:
|
|
34
|
+
lf = False
|
|
35
|
+
|
|
36
|
+
# Anderson-Darling test
|
|
37
|
+
if n >= 20:
|
|
38
|
+
ad_stat, ad_p_value = self.anderson_get_p(
|
|
39
|
+
data, dist='norm')
|
|
40
|
+
if ad_p_value > 0.05:
|
|
41
|
+
ad = True
|
|
42
|
+
else:
|
|
43
|
+
ad = False
|
|
44
|
+
|
|
45
|
+
# D'Agostino-Pearson test
|
|
46
|
+
# test result is skewed if n<20
|
|
47
|
+
if n >= 20:
|
|
48
|
+
ap_stat, ap_p_value = normaltest(data)
|
|
49
|
+
if ap_p_value > 0.05:
|
|
50
|
+
ap = True
|
|
51
|
+
else:
|
|
52
|
+
ap = False
|
|
53
|
+
|
|
54
|
+
# print(ap_p_value, ad_p_value, sw_p_value, lf_p_value)
|
|
55
|
+
|
|
56
|
+
return (sw, lf, ad, ap)
|
|
57
|
+
|
|
58
|
+
def anderson_get_p(self, data, dist='norm'):
|
|
59
|
+
'''
|
|
60
|
+
calculating p-value for Anderson-Darling test using the method described here:
|
|
61
|
+
Computation of Probability Associated with Anderson-Darling Statistic
|
|
62
|
+
Lorentz Jantschi and Sorana D. Bolboaca, 2018 - Mathematics
|
|
63
|
+
|
|
64
|
+
'''
|
|
65
|
+
e = 2.718281828459045
|
|
66
|
+
n = len(data)
|
|
67
|
+
|
|
68
|
+
ad, critical_values, significance_levels = anderson(
|
|
69
|
+
data, dist=dist)
|
|
70
|
+
|
|
71
|
+
# adjust ad_stat for small sample sizes:
|
|
72
|
+
s = ad*(1 + 0.75/n + 2.25/(n**2))
|
|
73
|
+
|
|
74
|
+
if s >= 0.6:
|
|
75
|
+
p = e**(1.2937 - 5.709*s + 0.0186*s**2)
|
|
76
|
+
elif s > 0.34:
|
|
77
|
+
p = e**(0.9177 - 4.279*s - 1.38*s**2)
|
|
78
|
+
elif s > 0.2:
|
|
79
|
+
p = 1 - e**(-8.318 + 42.796*s - 59.938*s**2)
|
|
80
|
+
elif s <= 0.2:
|
|
81
|
+
p = 1 - e**(-13.436 + 101.14*s - 223.73*s**2)
|
|
82
|
+
else:
|
|
83
|
+
p = None
|
|
84
|
+
|
|
85
|
+
return ad, p
|
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import scikit_posthocs as sp
|
|
3
|
+
from statsmodels.stats.anova import AnovaRM
|
|
4
|
+
from scipy.stats import ttest_rel, ttest_ind, ttest_1samp, wilcoxon, mannwhitneyu, f_oneway, kruskal, friedmanchisquare
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class StatisticalTests():
|
|
9
|
+
'''
|
|
10
|
+
Statistical tests mixin
|
|
11
|
+
'''
|
|
12
|
+
|
|
13
|
+
def run_test_auto(self):
|
|
14
|
+
|
|
15
|
+
if self.n_groups == 1:
|
|
16
|
+
if self.parametric:
|
|
17
|
+
self.run_test_by_id('t_test_single_sample')
|
|
18
|
+
else:
|
|
19
|
+
self.run_test_by_id('wilcoxon_single_sample')
|
|
20
|
+
|
|
21
|
+
elif self.n_groups == 2:
|
|
22
|
+
if self.paired:
|
|
23
|
+
if self.parametric:
|
|
24
|
+
self.run_test_by_id('t_test_paired')
|
|
25
|
+
else:
|
|
26
|
+
self.run_test_by_id('wilcoxon')
|
|
27
|
+
else:
|
|
28
|
+
if self.parametric:
|
|
29
|
+
self.run_test_by_id('t_test_independent')
|
|
30
|
+
else:
|
|
31
|
+
self.run_test_by_id('mann_whitney')
|
|
32
|
+
|
|
33
|
+
elif self.n_groups >= 3:
|
|
34
|
+
if self.paired:
|
|
35
|
+
if self.parametric:
|
|
36
|
+
self.run_test_by_id('anova_1w_rm')
|
|
37
|
+
else:
|
|
38
|
+
self.run_test_by_id('friedman')
|
|
39
|
+
else:
|
|
40
|
+
if self.parametric:
|
|
41
|
+
self.run_test_by_id('anova_1w_ordinary')
|
|
42
|
+
else:
|
|
43
|
+
self.run_test_by_id('kruskal_wallis')
|
|
44
|
+
|
|
45
|
+
else:
|
|
46
|
+
pass
|
|
47
|
+
|
|
48
|
+
def run_test_by_id(self, test_id):
|
|
49
|
+
|
|
50
|
+
test_names_dict = {
|
|
51
|
+
'anova_1w_ordinary': 'Ordinary One-Way ANOVA',
|
|
52
|
+
'anova_1w_rm': 'Repeated Measures One-Way ANOVA',
|
|
53
|
+
'friedman': 'Friedman test',
|
|
54
|
+
'kruskal_wallis': 'Kruskal-Wallis test',
|
|
55
|
+
'mann_whitney': 'Mann-Whitney U test',
|
|
56
|
+
't_test_independent': 't-test for independent samples',
|
|
57
|
+
't_test_paired': 't-test for paired samples',
|
|
58
|
+
't_test_single_sample': 'Single-sample t-test',
|
|
59
|
+
'wilcoxon': 'Wilcoxon signed-rank test',
|
|
60
|
+
'wilcoxon_single_sample': 'Wilcoxon signed-rank test for single sample',
|
|
61
|
+
}
|
|
62
|
+
|
|
63
|
+
match test_id:
|
|
64
|
+
case 'anova_1w_ordinary': stat, p_value = self.anova_1w_ordinary()
|
|
65
|
+
case 'anova_1w_rm': stat, p_value = self.anova_1w_rm()
|
|
66
|
+
case 'friedman': stat, p_value = self.friedman()
|
|
67
|
+
case 'kruskal_wallis': stat, p_value = self.kruskal_wallis()
|
|
68
|
+
case 'mann_whitney': stat, p_value = self.mann_whitney()
|
|
69
|
+
case 't_test_independent': stat, p_value = self.t_test_independent()
|
|
70
|
+
case 't_test_paired': stat, p_value = self.t_test_paired()
|
|
71
|
+
case 't_test_single_sample': stat, p_value = self.t_test_single_sample()
|
|
72
|
+
case 'wilcoxon': stat, p_value = self.wilcoxon()
|
|
73
|
+
case 'wilcoxon_single_sample': stat, p_value = self.wilcoxon_single_sample()
|
|
74
|
+
|
|
75
|
+
if test_id in self.test_ids_dependent:
|
|
76
|
+
self.paired = True
|
|
77
|
+
else:
|
|
78
|
+
self.paired = False
|
|
79
|
+
|
|
80
|
+
self.test_name = test_names_dict[test_id]
|
|
81
|
+
self.test_id = test_id
|
|
82
|
+
self.test_stat = stat
|
|
83
|
+
self.p_value = p_value
|
|
84
|
+
|
|
85
|
+
def anova_1w_ordinary(self):
|
|
86
|
+
stat, p_value = f_oneway(*self.data)
|
|
87
|
+
self.tails = 2
|
|
88
|
+
# if self.tails == 1 and p_value > 0.5:
|
|
89
|
+
# p_value /= 2
|
|
90
|
+
# if self.tails == 1:
|
|
91
|
+
# p_value /= 2
|
|
92
|
+
return stat, p_value
|
|
93
|
+
|
|
94
|
+
def anova_1w_rm(self):
|
|
95
|
+
"""
|
|
96
|
+
Perform repeated measures one-way ANOVA test.
|
|
97
|
+
|
|
98
|
+
Parameters:
|
|
99
|
+
data: list of lists, where each sublist represents repeated measures for a subject
|
|
100
|
+
"""
|
|
101
|
+
|
|
102
|
+
df = self.matrix_to_dataframe(self.data)
|
|
103
|
+
res = AnovaRM(df, 'Value', 'Row', within=['Col']).fit()
|
|
104
|
+
stat = res.anova_table['F Value'][0]
|
|
105
|
+
p_value = res.anova_table['Pr > F'][0]
|
|
106
|
+
|
|
107
|
+
self.tails = 2
|
|
108
|
+
return stat, p_value
|
|
109
|
+
|
|
110
|
+
def friedman(self):
|
|
111
|
+
stat, p_value = friedmanchisquare(*self.data)
|
|
112
|
+
self.tails = 2
|
|
113
|
+
return stat, p_value
|
|
114
|
+
|
|
115
|
+
def kruskal_wallis(self):
|
|
116
|
+
stat, p_value = kruskal(*self.data)
|
|
117
|
+
|
|
118
|
+
# Perform Dunn's multiple comparisons if Kruskal-Wallis is significant
|
|
119
|
+
if p_value < 0.05 and self.posthoc:
|
|
120
|
+
self.posthoc_matrix = sp.posthoc_dunn(self.data, p_adjust='bonferroni').values.tolist()
|
|
121
|
+
return stat, p_value
|
|
122
|
+
|
|
123
|
+
def mann_whitney(self):
|
|
124
|
+
stat, p_value = mannwhitneyu(
|
|
125
|
+
self.data[0], self.data[1], alternative='two-sided')
|
|
126
|
+
if self.tails == 1:
|
|
127
|
+
p_value /= 2
|
|
128
|
+
# alternative method of one-tailed calculation
|
|
129
|
+
# gives the same result:
|
|
130
|
+
# stat, p_value = mannwhitneyu(
|
|
131
|
+
# self.data[0], self.data[1], alternative='two-sided' if self.tails == 2 else 'less')
|
|
132
|
+
# if self.tails == 1 and p_value > 0.5:
|
|
133
|
+
# p_value = 1-p_value
|
|
134
|
+
return stat, p_value
|
|
135
|
+
|
|
136
|
+
def t_test_independent(self):
|
|
137
|
+
stat, p_value = ttest_ind(
|
|
138
|
+
self.data[0], self.data[1])
|
|
139
|
+
if self.tails == 1:
|
|
140
|
+
p_value /= 2
|
|
141
|
+
return stat, p_value
|
|
142
|
+
|
|
143
|
+
def t_test_paired(self):
|
|
144
|
+
stat, p_value = ttest_rel(
|
|
145
|
+
self.data[0], self.data[1])
|
|
146
|
+
if self.tails == 1:
|
|
147
|
+
p_value /= 2
|
|
148
|
+
return stat, p_value
|
|
149
|
+
|
|
150
|
+
def t_test_single_sample(self):
|
|
151
|
+
if self.popmean == None:
|
|
152
|
+
self.popmean = 0
|
|
153
|
+
self.AddWarning('no_pop_mean_set')
|
|
154
|
+
stat, p_value = ttest_1samp(self.data[0], self.popmean)
|
|
155
|
+
if self.tails == 1:
|
|
156
|
+
p_value /= 2
|
|
157
|
+
return stat, p_value
|
|
158
|
+
|
|
159
|
+
def wilcoxon(self):
|
|
160
|
+
stat, p_value = wilcoxon(self.data[0], self.data[1])
|
|
161
|
+
if self.tails == 1:
|
|
162
|
+
p_value /= 2
|
|
163
|
+
return stat, p_value
|
|
164
|
+
|
|
165
|
+
def wilcoxon_single_sample(self):
|
|
166
|
+
if self.popmean == None:
|
|
167
|
+
self.popmean = 0
|
|
168
|
+
self.AddWarning('no_pop_mean_set')
|
|
169
|
+
data = [i - self.popmean for i in self.data[0]]
|
|
170
|
+
stat, p_value = wilcoxon(data)
|
|
171
|
+
if self.tails == 1:
|
|
172
|
+
p_value /= 2
|
|
173
|
+
return stat, p_value
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
|
|
2
|
+
|
|
3
|
+
class TextFormatting():
|
|
4
|
+
'''
|
|
5
|
+
Text formatting mixin
|
|
6
|
+
'''
|
|
7
|
+
|
|
8
|
+
def autospace(self, elements_list, space, delimiter=' ') -> str:
|
|
9
|
+
output = ''
|
|
10
|
+
for i, element in enumerate(elements_list):
|
|
11
|
+
if i == len(elements_list):
|
|
12
|
+
output += element
|
|
13
|
+
else:
|
|
14
|
+
output += element + (space-len(element))*delimiter
|
|
15
|
+
return output
|
|
16
|
+
|
|
17
|
+
def print_groups(self, space=24, max_length=15):
|
|
18
|
+
self.log('')
|
|
19
|
+
# Get the number of groups (rows) and the maximum length of rows
|
|
20
|
+
data = self.data
|
|
21
|
+
num_groups = len(data)
|
|
22
|
+
group_longest = max(len(row) for row in data)
|
|
23
|
+
|
|
24
|
+
# Print the header
|
|
25
|
+
header = [f'Group {i+1}' for i in range(num_groups)]
|
|
26
|
+
line = [''*7]
|
|
27
|
+
self.log(self.autospace(header, space))
|
|
28
|
+
self.log(self.autospace(line, space))
|
|
29
|
+
|
|
30
|
+
# Print each column with a placeholder if longer than max_length
|
|
31
|
+
for i in range(group_longest):
|
|
32
|
+
row_values = []
|
|
33
|
+
all_values_empty = True
|
|
34
|
+
for row in data:
|
|
35
|
+
if len(row) > max_length:
|
|
36
|
+
if i < max_length:
|
|
37
|
+
row_values.append(str(row[i]))
|
|
38
|
+
all_values_empty = False
|
|
39
|
+
elif i == max_length:
|
|
40
|
+
row_values.append(f'[{len(row) - max_length} more]')
|
|
41
|
+
all_values_empty = False
|
|
42
|
+
else:
|
|
43
|
+
continue
|
|
44
|
+
else:
|
|
45
|
+
if i < len(row):
|
|
46
|
+
row_values.append(str(row[i]))
|
|
47
|
+
all_values_empty = False
|
|
48
|
+
else:
|
|
49
|
+
row_values.append('')
|
|
50
|
+
if all_values_empty:
|
|
51
|
+
break
|
|
52
|
+
self.log(self.autospace(row_values, space))
|
|
53
|
+
|
|
54
|
+
def make_stars(self, p) -> int:
|
|
55
|
+
if p is not None:
|
|
56
|
+
if p < 0.0001:
|
|
57
|
+
return 4
|
|
58
|
+
if p < 0.001:
|
|
59
|
+
return 3
|
|
60
|
+
elif p < 0.01:
|
|
61
|
+
return 2
|
|
62
|
+
elif p < 0.05:
|
|
63
|
+
return 1
|
|
64
|
+
else:
|
|
65
|
+
return 0
|
|
66
|
+
return 0
|
|
67
|
+
|
|
68
|
+
def make_stars_printed(self, n) -> str:
|
|
69
|
+
return '*' * n if n else 'ns'
|
|
70
|
+
|
|
71
|
+
def make_p_value_printed(self, p) -> str:
|
|
72
|
+
if p is not None:
|
|
73
|
+
if p > 0.99:
|
|
74
|
+
return 'p>0.99'
|
|
75
|
+
elif p >= 0.01:
|
|
76
|
+
return f'p={p:.2g}'
|
|
77
|
+
elif p >= 0.001:
|
|
78
|
+
return f'p={p:.2g}'
|
|
79
|
+
elif p >= 0.0001:
|
|
80
|
+
return f'p={p:.1g}'
|
|
81
|
+
elif p < 0.0001:
|
|
82
|
+
return 'p<0.0001'
|
|
83
|
+
else:
|
|
84
|
+
return 'N/A'
|
|
85
|
+
return 'N/A'
|
|
86
|
+
|
|
87
|
+
def print_results(self):
|
|
88
|
+
self.log('\n\nResults: \n')
|
|
89
|
+
for i in self.results:
|
|
90
|
+
shift = 27 - len(i)
|
|
91
|
+
if i == 'Warnings':
|
|
92
|
+
self.log(i, ':', ' ' * shift, len(self.results[i]))
|
|
93
|
+
if i == 'Posthoc_Matrix':
|
|
94
|
+
self.log(i, ':', ' ' * shift, '{0}x{0} matrix'.format(len(self.results[i])))
|
|
95
|
+
elif i == 'Samples' or i == 'Posthoc_Matrix_printed' or i == 'Posthoc_Matrix_stars':
|
|
96
|
+
pass
|
|
97
|
+
else:
|
|
98
|
+
self.log(i, ':', ' ' * shift, self.results[i])
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: AutoStatLib
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.5
|
|
4
4
|
Summary: AutoStatLib - a simple statistical analysis tool
|
|
5
5
|
Author: Stemonitis, SciWare LLC
|
|
6
6
|
Author-email: konung-yaropolk <yaropolk1995@gmail.com>
|
|
@@ -531,6 +531,7 @@ License-File: LICENSE
|
|
|
531
531
|
Requires-Dist: numpy
|
|
532
532
|
Requires-Dist: scipy
|
|
533
533
|
Requires-Dist: statsmodels
|
|
534
|
+
Requires-Dist: scikit-posthocs
|
|
534
535
|
Requires-Dist: pandas
|
|
535
536
|
|
|
536
537
|
# AutoStatLib - python library for automated statistical analysis
|
|
@@ -653,7 +654,7 @@ If errors occured, *GetResult()* returns an empty dictionary
|
|
|
653
654
|
|
|
654
655
|
### TODO:
|
|
655
656
|
|
|
656
|
-
--
|
|
657
|
+
-- Anova: posthocs
|
|
657
658
|
-- Anova: add 2-way anova and 3-way anova
|
|
658
659
|
-- onevay Anova: add repeated measures (for normal dependent values) with and without Gaisser-Greenhouse correction
|
|
659
660
|
-- onevay Anova: add Brown-Forsithe and Welch (for normal independent values with unequal SDs between groups)
|
|
@@ -666,10 +667,11 @@ If errors occured, *GetResult()* returns an empty dictionary
|
|
|
666
667
|
-- add QQ plot
|
|
667
668
|
-- n-sample tests: add onetail option
|
|
668
669
|
|
|
669
|
-
✅ done -- detailed normality test results
|
|
670
|
+
✅ done -- detailed normality test results
|
|
671
|
+
✅ done -- added posthoc: Kruskal-Wallis Dunn's multiple comparisons
|
|
670
672
|
|
|
671
673
|
|
|
672
|
-
|
|
674
|
+
tests check:
|
|
673
675
|
1-sample:
|
|
674
676
|
--Wilcoxon 2,1 tails - ok
|
|
675
677
|
--t-tests 2,1 tails -ok
|
|
@@ -681,6 +683,7 @@ checked tests:
|
|
|
681
683
|
|
|
682
684
|
n-sample:
|
|
683
685
|
--Kruskal-Wallis 2 tail - ok
|
|
686
|
+
--Dunn's multiple comparisons - ??
|
|
684
687
|
--Friedman 2 tail - ok
|
|
685
688
|
--one-way ANOWA 2 tail - ok
|
|
686
689
|
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
AutoStatLib/AutoStatLib.py,sha256=yPNnwCvHSSlEKQvtnoaLFDq6znPlXCz-CrzGInG-1Ys,9647
|
|
2
|
+
AutoStatLib/__init__.py,sha256=0wHYnglzKRPqSHtZlfbMEA2Bj5rDR4LLaXbOrJi-sqM,101
|
|
3
|
+
AutoStatLib/__main__.py,sha256=ROKWensrxDh3Gl-yhexJ-BYFohDSh9y-CuMkaLpmnnQ,247
|
|
4
|
+
AutoStatLib/_version.py,sha256=-QrGYOb9bx4vC_twSInOBJoijtj78lvUzV19y4-tH38,53
|
|
5
|
+
AutoStatLib/helpers.py,sha256=9Fj9pHlXSM3tGHF5L0-i6DilA9VZk6Re93ob_IRxsYg,3424
|
|
6
|
+
AutoStatLib/normality_tests.py,sha256=wvOmo6F7drnhhikoGltyQJC4OBk3PLCszY6ItJk1e0M,2385
|
|
7
|
+
AutoStatLib/statistical_tests.py,sha256=LDcBRkq56hepR23RZtbBnZOs9k9frVjmiB2EKiEkCYs,5990
|
|
8
|
+
AutoStatLib/text_formatting.py,sha256=ShE4BRO69lsC1VT3SsYrmPkuvW7QnyfHVPZEbjNQ_hI,3250
|
|
9
|
+
AutoStatLib-0.2.5.dist-info/LICENSE,sha256=IMF9i4xIpgCADf0U-V1cuf9HBmqWQd3qtI3FSuyW4zE,26526
|
|
10
|
+
AutoStatLib-0.2.5.dist-info/METADATA,sha256=qJxSrqHlL0wsqaH-ah6MAJa15ikH4NCco1dyVxuNlWs,36572
|
|
11
|
+
AutoStatLib-0.2.5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
12
|
+
AutoStatLib-0.2.5.dist-info/top_level.txt,sha256=BuHzVyE2andc7RwD_UPmDjLl9CUAyBH6WHZGjaIReUI,12
|
|
13
|
+
AutoStatLib-0.2.5.dist-info/RECORD,,
|
|
@@ -1,9 +0,0 @@
|
|
|
1
|
-
AutoStatLib/AutoStatLib.py,sha256=lUDNdzH2NdsyGm1jgLvQ1b-PXIyo8SfMApEK4uOQxSg,23479
|
|
2
|
-
AutoStatLib/__init__.py,sha256=0wHYnglzKRPqSHtZlfbMEA2Bj5rDR4LLaXbOrJi-sqM,101
|
|
3
|
-
AutoStatLib/__main__.py,sha256=ROKWensrxDh3Gl-yhexJ-BYFohDSh9y-CuMkaLpmnnQ,247
|
|
4
|
-
AutoStatLib/_version.py,sha256=WbLB15iApm4FvkoTxz3n4t20nHfs58LNdIBr1m1YbxU,53
|
|
5
|
-
AutoStatLib-0.2.2.dist-info/LICENSE,sha256=IMF9i4xIpgCADf0U-V1cuf9HBmqWQd3qtI3FSuyW4zE,26526
|
|
6
|
-
AutoStatLib-0.2.2.dist-info/METADATA,sha256=4Ro1Bo6FsklfwMo-G5N9C--n-7HJA4nMNns6qivu90k,36473
|
|
7
|
-
AutoStatLib-0.2.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
8
|
-
AutoStatLib-0.2.2.dist-info/top_level.txt,sha256=BuHzVyE2andc7RwD_UPmDjLl9CUAyBH6WHZGjaIReUI,12
|
|
9
|
-
AutoStatLib-0.2.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|