ApiLogicServer 15.0.0__py3-none-any.whl → 15.0.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- api_logic_server_cli/add_cust/add_cust.py +8 -2
- api_logic_server_cli/api_logic_server.py +2 -2
- api_logic_server_cli/api_logic_server_info.yaml +3 -3
- api_logic_server_cli/create_from_model/__pycache__/dbml.cpython-312.pyc +0 -0
- api_logic_server_cli/create_from_model/dbml.py +1 -0
- api_logic_server_cli/genai/genai_svcs.py +5 -2
- api_logic_server_cli/manager.py +1 -0
- api_logic_server_cli/prototypes/base/api/api_discovery/mcp_discovery.py +63 -24
- api_logic_server_cli/prototypes/base/config/logging.yml +5 -0
- api_logic_server_cli/prototypes/base/config/server_setup.py +73 -0
- api_logic_server_cli/prototypes/base/integration/mcp/examples/mcp_discovery_response.json +150 -0
- api_logic_server_cli/prototypes/base/integration/mcp/examples/mcp_request.prompt +46 -0
- api_logic_server_cli/prototypes/base/integration/mcp/examples/mcp_tool_context_response.json +34 -0
- api_logic_server_cli/prototypes/base/integration/mcp/examples/mcp_tool_context_response_get.json +18 -0
- api_logic_server_cli/prototypes/base/integration/mcp/mcp_client_executor.py +395 -203
- api_logic_server_cli/prototypes/basic_demo/customizations/logic/logic_discovery/mcp_client_executor_request.py +11 -282
- api_logic_server_cli/prototypes/basic_demo/customizations/ui/admin/admin.yaml +3 -3
- api_logic_server_cli/prototypes/basic_demo/customizations/ui/admin/home.js +48 -0
- api_logic_server_cli/prototypes/manager/system/genai/mcp_learning/mcp.prompt +12 -0
- {apilogicserver-15.0.0.dist-info → apilogicserver-15.0.10.dist-info}/METADATA +1 -1
- {apilogicserver-15.0.0.dist-info → apilogicserver-15.0.10.dist-info}/RECORD +26 -32
- api_logic_server_cli/prototypes/base/integration/mcp/README_mcp.md +0 -15
- api_logic_server_cli/prototypes/base/integration/mcp/test_notes.txt +0 -37
- api_logic_server_cli/prototypes/basic_demo/customizations/api/api_discovery/mcp_discovery.py +0 -96
- api_logic_server_cli/prototypes/basic_demo/customizations/config/server_setup.py +0 -388
- api_logic_server_cli/prototypes/basic_demo/customizations/integration/mcp/.DS_Store +0 -0
- api_logic_server_cli/prototypes/basic_demo/customizations/integration/mcp/README_mcp.md +0 -15
- api_logic_server_cli/prototypes/basic_demo/customizations/integration/mcp/Zmcp_client_executor.py +0 -294
- api_logic_server_cli/prototypes/basic_demo/customizations/integration/mcp/mcp_schema.txt +0 -47
- api_logic_server_cli/prototypes/basic_demo/customizations/integration/mcp/mcp_server_discovery.json +0 -9
- api_logic_server_cli/prototypes/basic_demo/customizations/integration/mcp/mcp_tool_context.json +0 -25
- api_logic_server_cli/prototypes/basic_demo/customizations/integration/mcp/test_notes.txt +0 -37
- /api_logic_server_cli/prototypes/base/integration/mcp/{mcp_schema.txt → examples/mcp_schema.txt} +0 -0
- {apilogicserver-15.0.0.dist-info → apilogicserver-15.0.10.dist-info}/WHEEL +0 -0
- {apilogicserver-15.0.0.dist-info → apilogicserver-15.0.10.dist-info}/entry_points.txt +0 -0
- {apilogicserver-15.0.0.dist-info → apilogicserver-15.0.10.dist-info}/licenses/LICENSE +0 -0
- {apilogicserver-15.0.0.dist-info → apilogicserver-15.0.10.dist-info}/top_level.txt +0 -0
|
@@ -1,56 +1,83 @@
|
|
|
1
1
|
"""
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
1. Discovers MCP servers (from config)
|
|
6
|
-
2. Queries OpenAI's GPT-4 model to obtain the tool context based on a provided schema and a natural language query
|
|
2
|
+
A basic MCP Client Executor: takes a natural language query and:
|
|
3
|
+
1. Discovers MCP servers (from mcp_server_discovery.json)
|
|
4
|
+
2. Queries OpenAI's GPT-4 model to obtain the tool context, based on a provided schema and a natural language query
|
|
7
5
|
3. Processes the tool context (calls the indicated MCP (als) endpoints)
|
|
8
6
|
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
7
|
+
To run:
|
|
8
|
+
1. Start the server (F5), and:
|
|
9
|
+
2. Run this:
|
|
10
|
+
1. Terminal: python integration/mcp/mcp_client_executor.py
|
|
11
|
+
2. Or, if you have installed SysMcp:
|
|
12
|
+
1. curl -X 'POST' 'http://localhost:5656/api/SysMcp/' -H 'accept: application/vnd.api+json' -H 'Content-Type: application/json' -d '{ "data": { "attributes": {"request": "List the orders date_shipped is null and CreatedOn before 2023-07-14, and send a discount email (subject: '\''Discount Offer'\'') to the customer for each one."}, "type": "SysMcp"}}'
|
|
13
|
+
2. Or, open the Admin App:
|
|
14
|
+
* List the orders date_shipped is null and CreatedOn before 2023-07-14, and send a discount email (subject: 'Discount Offer') to the customer for each one.
|
|
12
15
|
|
|
16
|
+
See: https://apilogicserver.github.io/Docs/Integration-MCP/
|
|
13
17
|
"""
|
|
14
18
|
|
|
15
|
-
|
|
16
|
-
|
|
19
|
+
################
|
|
20
|
+
# debug settings
|
|
21
|
+
################
|
|
22
|
+
|
|
23
|
+
create_tool_context_from_llm = False
|
|
24
|
+
''' set to False to bypass LLM call and save 2-3 secs in testing, no API Key required. '''
|
|
25
|
+
|
|
26
|
+
import os, logging, logging.config, sys
|
|
27
|
+
from pathlib import Path
|
|
17
28
|
from typing import Dict, List
|
|
29
|
+
import yaml
|
|
30
|
+
|
|
31
|
+
mcp_path = Path(os.path.abspath(os.path.dirname(__file__)))
|
|
32
|
+
project_path = mcp_path.parent.parent
|
|
33
|
+
sys.path.append(str(project_path)) # add project root to sys.path
|
|
34
|
+
|
|
35
|
+
import re
|
|
36
|
+
import json
|
|
37
|
+
from openai import OpenAIError
|
|
18
38
|
import openai
|
|
19
39
|
import requests
|
|
20
40
|
from logic_bank.logic_bank import Rule
|
|
41
|
+
from logic_bank.exec_row_logic.logic_row import LogicRow
|
|
42
|
+
from database import models
|
|
21
43
|
from logic_bank.util import ConstraintException
|
|
22
44
|
|
|
23
45
|
# Set your OpenAI API key
|
|
24
46
|
openai.api_key = os.getenv("APILOGICSERVER_CHATGPT_APIKEY")
|
|
25
47
|
|
|
26
|
-
|
|
48
|
+
log = logging.getLogger('integration.mcp')
|
|
27
49
|
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
"""
|
|
39
|
-
global server_url, use_test_schema
|
|
50
|
+
default_query = "List customers with credit_limit > 1000."
|
|
51
|
+
default_query_email = "List the orders date_shipped is null and CreatedOn before 2023-07-14, and send a discount email (subject: 'Discount Offer') to the customer for each one."
|
|
52
|
+
|
|
53
|
+
def discover_mcp_servers() -> str:
|
|
54
|
+
"""Discover MCP servers (aka 'tools'), and retrieve their API learnings and schemas.
|
|
55
|
+
This function performs the following steps:
|
|
56
|
+
1. Reads a configuration file (`integration/mcp/mcp_server_discovery.json`) to obtain a list of available MCP servers.
|
|
57
|
+
2. For each server, calls its `schema_url` endpoint to retrieve the MCP learnings_and_schema.
|
|
58
|
+
See: .well-known/mcp.json (see api/api_discovery/mcp_discovery.py)
|
|
59
|
+
3. Logs the discovered servers and their schemas for informational purposes.
|
|
40
60
|
|
|
41
|
-
|
|
61
|
+
Raises:
|
|
62
|
+
FileNotFoundError: If the discovery configuration file is not found.
|
|
63
|
+
json.JSONDecodeError: If the configuration file contains invalid JSON.
|
|
64
|
+
requests.RequestException: If there is an error making HTTP requests to the schema URLs.
|
|
65
|
+
|
|
66
|
+
Returns:
|
|
67
|
+
learnings_and_schema: str
|
|
68
|
+
"""
|
|
42
69
|
|
|
43
|
-
# find the servers - read the mcp_server_discovery.json file
|
|
44
70
|
discovery_file_path = os.path.join(os.path.dirname(__file__), "../../integration/mcp/mcp_server_discovery.json")
|
|
45
71
|
try:
|
|
46
72
|
with open(discovery_file_path, "r") as discovery_file:
|
|
47
73
|
discovery_data = json.load(discovery_file)
|
|
48
|
-
|
|
74
|
+
log.info(f"\n1. Discovered MCP servers from config file: {discovery_file_path}:" + json.dumps(discovery_data, indent=4))
|
|
49
75
|
except FileNotFoundError:
|
|
50
|
-
|
|
76
|
+
log.info(f"Discovery file not found at {discovery_file_path}.")
|
|
51
77
|
except json.JSONDecodeError as e:
|
|
52
|
-
|
|
78
|
+
log.info(f"Error decoding JSON from {discovery_file_path}: {e}")
|
|
53
79
|
|
|
80
|
+
api_schema = {} # initialize api_schema to an empty dict
|
|
54
81
|
for each_server in discovery_data["servers"]:
|
|
55
82
|
discovery_url = each_server["schema_url"]
|
|
56
83
|
|
|
@@ -58,53 +85,40 @@ def discover_mcp_servers():
|
|
|
58
85
|
try:
|
|
59
86
|
response = requests.get(discovery_url)
|
|
60
87
|
if response.status_code == 200:
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
88
|
+
each_schema = response.json()
|
|
89
|
+
api_schema[discovery_url] = each_schema
|
|
90
|
+
if format_for_print := False:
|
|
91
|
+
each_schema["learning"] = each_schema['learning'].split('\n') # split learning into a list of lines
|
|
92
|
+
request_print = json.dumps(each_schema, indent=4)[0:1200] # limit for readability
|
|
93
|
+
request_print_schema = json.dumps(each_schema.get("resources", {}), indent=4)[0:200] + '\n... etc'
|
|
94
|
+
log.info(f"\n\nLearnings and Schema from discovery schema_url: {discovery_url}:\n" + request_print)
|
|
95
|
+
log.info(f' "resources":\n' + request_print_schema)
|
|
65
96
|
else:
|
|
66
|
-
|
|
97
|
+
log.info(f"Failed to retrieve API schema from {discovery_url}: {response.status_code}")
|
|
67
98
|
except requests.RequestException as e:
|
|
68
|
-
|
|
99
|
+
log.info(f"Error calling OpenAPI URL: {e}")
|
|
100
|
+
pass
|
|
101
|
+
debug_print = json.dumps(api_schema, indent=4)
|
|
69
102
|
return json.dumps(api_schema)
|
|
70
103
|
|
|
71
104
|
|
|
72
|
-
def get_user_nl_query_and_training(query: str):
|
|
73
|
-
""" Get the natural language query from the user.
|
|
74
|
-
Add training for the LLM to generate a tool context block.
|
|
75
|
-
|
|
76
|
-
"""
|
|
77
|
-
|
|
78
|
-
global test_type
|
|
79
|
-
# read file docs/mcp_learning/mcp.prompt
|
|
80
|
-
prompt_file_path = os.path.join(os.path.dirname(__file__), "../../docs/mcp_learning/mcp.prompt")
|
|
81
|
-
if os.path.exists(prompt_file_path):
|
|
82
|
-
with open(prompt_file_path, "r") as prompt_file:
|
|
83
|
-
training_prompt = prompt_file.read()
|
|
84
|
-
# print(f"\nLoaded training prompt from {prompt_file_path}:\n{training_prompt}")
|
|
85
|
-
else:
|
|
86
|
-
training_prompt = ""
|
|
87
|
-
print(f"Prompt file not found at {prompt_file_path}.")
|
|
88
|
-
|
|
89
|
-
# if 1 argument, use it as the query
|
|
90
|
-
query_actual = query
|
|
91
|
-
if len(sys.argv) > 1:
|
|
92
|
-
query_actual = sys.argv[1]
|
|
93
|
-
if query_actual == '':
|
|
94
|
-
query_actual = "list customers with balance over 100."
|
|
95
|
-
return query_actual + ";\n\n" + training_prompt
|
|
96
|
-
|
|
97
105
|
|
|
98
|
-
def query_llm_with_nl(
|
|
106
|
+
def query_llm_with_nl(learnings_and_schema: str, nl_query: str):
|
|
99
107
|
"""
|
|
100
108
|
Query the LLM with a natural language query and schema text to generate a tool context block.
|
|
101
109
|
|
|
110
|
+
This returns a string like:
|
|
111
|
+
Natural language query:
|
|
112
|
+
List the orders date_shipped is null and CreatedOn before 2023-07-14, and send a discount email (subject: 'Discount Offer') to the customer for each one.
|
|
113
|
+
<docs/mcp_learning/mcp.prompt>
|
|
114
|
+
<docs/mcp_learning/mcp_schema.txt>
|
|
115
|
+
|
|
102
116
|
It handles both orchestration and simple GET requests.
|
|
103
117
|
"""
|
|
104
118
|
|
|
105
|
-
global
|
|
119
|
+
global create_tool_context_from_llm
|
|
106
120
|
|
|
107
|
-
content = f"Natural language query:\n {nl_query}\
|
|
121
|
+
content = f"Natural language query:\n {nl_query}\n\nLearnings_and_Schema:\n{learnings_and_schema}"
|
|
108
122
|
messages = [
|
|
109
123
|
{
|
|
110
124
|
"role": "system",
|
|
@@ -116,111 +130,102 @@ def query_llm_with_nl(schema_text, nl_query):
|
|
|
116
130
|
}
|
|
117
131
|
]
|
|
118
132
|
|
|
119
|
-
request_print = content[0:
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
#
|
|
123
|
-
# schema_print = json.dumps(json.loads(schema_text), indent=4)[:400] # limit for readability
|
|
124
|
-
# print(schema_print)
|
|
133
|
+
request_print = content[0:1400] + '\n... etc from step 1' # limit for readability
|
|
134
|
+
log.debug("\n\n\n2a. LLM request:\n\n" + request_print)
|
|
135
|
+
schema_print = json.dumps(json.loads(learnings_and_schema), indent=4)[:400] # limit for readability
|
|
136
|
+
# log.debug(schema_print)
|
|
125
137
|
|
|
126
138
|
if create_tool_context_from_llm: # takes 2-3 seconds...
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
139
|
+
response = openai.chat.completions.create(
|
|
140
|
+
model="gpt-4",
|
|
141
|
+
messages=messages,
|
|
142
|
+
temperature=0.2
|
|
143
|
+
)
|
|
144
|
+
tool_context_str = response.choices[0].message.content
|
|
145
|
+
else:
|
|
146
|
+
# read integration/mcp/mcp_tool_context.json
|
|
147
|
+
tool_context_file_path = os.path.join(os.path.dirname(__file__), "../../integration/mcp/examples/mcp_tool_context_response_get.json")
|
|
148
|
+
if nl_query == default_query_email:
|
|
149
|
+
tool_context_file_path = os.path.join(os.path.dirname(__file__), "../../integration/mcp/examples/mcp_tool_context_response.json")
|
|
150
|
+
try:
|
|
151
|
+
with open(tool_context_file_path, "r") as tool_context_file:
|
|
152
|
+
tool_context_str = tool_context_file.read()
|
|
153
|
+
# log.info(f"\n\n2c. Tool context from file {tool_context_file_path}:\n" + tool_context_str)
|
|
154
|
+
except FileNotFoundError:
|
|
155
|
+
raise ConstraintException(f"Tool context file not found at {tool_context_file_path}.")
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
tool_context_str_no_cr = tool_context_str.replace("\n", '') # convert single quotes to double quotes
|
|
159
|
+
try:
|
|
160
|
+
tool_context = json.loads(tool_context_str_no_cr)
|
|
161
|
+
except json.JSONDecodeError:
|
|
162
|
+
print("Failed to decode JSON from response:\n" + tool_context_str)
|
|
163
|
+
return None
|
|
164
|
+
|
|
165
|
+
log.info(f"\n2b. generated tool context from LLM:\n" + json.dumps(tool_context, indent=4))
|
|
142
166
|
|
|
143
167
|
if "resources" not in tool_context:
|
|
144
168
|
raise ConstraintException("GenAI Error - LLM response does not contain 'resources'.")
|
|
145
169
|
return tool_context
|
|
146
170
|
|
|
147
171
|
|
|
148
|
-
def process_tool_context(tool_context):
|
|
149
|
-
""" Process the orchestration request by executing multiple tool context blocks.
|
|
150
|
-
This executes the tool context blocks against a live JSON:API server.
|
|
151
|
-
It handles both GET and POST requests, and it can
|
|
152
|
-
orchestrate multiple requests based on the provided tool context.
|
|
153
172
|
|
|
154
|
-
|
|
173
|
+
def process_tool_context(tool_context):
|
|
155
174
|
|
|
156
|
-
|
|
175
|
+
log.info("\n3. MCP Client Executor – Starting Tool Context Execution\n")
|
|
176
|
+
context_results = []
|
|
177
|
+
''' results from each step are appended to this list,
|
|
178
|
+
which is used to resolve variables in subsequent steps. '''
|
|
157
179
|
|
|
158
|
-
1. How is this a "USB", since the request was specific about JSON:API?
|
|
159
|
-
2. How is it clear to loop through the tool_context[0] and call tool_context[1]?
|
|
160
|
-
"""
|
|
161
|
-
global server_url
|
|
162
180
|
|
|
163
181
|
def get_query_param_filter(query_params):
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
def move_fields(src: dict, dest: dict, context_data: dict):
|
|
208
|
-
""" Move fields from src to dest, replacing any variables with their values from context_data."""
|
|
209
|
-
for variable_name, value in src.items():
|
|
210
|
-
move_value = value
|
|
211
|
-
if move_value.startswith("{") and move_value.endswith("}"):
|
|
212
|
-
# strip the braces, and get the name after the first dot, # eg: "{Order.customer_id}" ==> "customer_id"``
|
|
213
|
-
move_name = move_value[1:-1] # strip the braces
|
|
214
|
-
if '.' in move_value:
|
|
215
|
-
move_name = move_name.split('.', 1)[1]
|
|
216
|
-
move_value = context_data['attributes'][move_name]
|
|
217
|
-
dest[variable_name] = move_value
|
|
218
|
-
return dest
|
|
182
|
+
""" return json:api filter
|
|
183
|
+
|
|
184
|
+
eg
|
|
185
|
+
curl -qg 'http://localhost:5656/api/Order?filter=[{"name":"date_shipped","op":"eq","val":null},{"name":"CreatedOn","op":"lt","val":"2023-07-14"}]'
|
|
186
|
+
|
|
187
|
+
curl -qg 'http://localhost:5656/api/Order?filter=[{"name":"date_shipped","op":"gt","val":"2023-07-14"}]'
|
|
188
|
+
curl -qg 'http://localhost:5656/api/Order?filter=[{"name":"date_shipped","op":"eq","val":null}]'
|
|
189
|
+
curl -qg 'http://localhost:5656/api/Customer?filter=[{"name":"credit_limit","op":"gt","val":"1000"}]'
|
|
190
|
+
|
|
191
|
+
query_params might be simple:
|
|
192
|
+
"query_params": [ {"name": "credit_limit", "op": "gt", "val": "1000"} ]
|
|
193
|
+
==> ?filter=[{"name":"credit_limit","op":"gt","val":"1000"}]
|
|
194
|
+
|
|
195
|
+
or a list:
|
|
196
|
+
"query_params": [
|
|
197
|
+
{
|
|
198
|
+
"name": "date_shipped",
|
|
199
|
+
"op": "eq",
|
|
200
|
+
"val": None
|
|
201
|
+
},
|
|
202
|
+
{
|
|
203
|
+
"name": "date_created",
|
|
204
|
+
"op": "lt",
|
|
205
|
+
"val": "2023-07-14"
|
|
206
|
+
}
|
|
207
|
+
],
|
|
208
|
+
|
|
209
|
+
"""
|
|
210
|
+
|
|
211
|
+
added_rows = 0
|
|
212
|
+
|
|
213
|
+
query_param_filter = ''
|
|
214
|
+
assert isinstance(query_params, list), "Query Params filter expected to be a list"
|
|
215
|
+
query_param_filter = 'filter=' + str(query_params)
|
|
216
|
+
# use urlencode to convert to JSON:API format...
|
|
217
|
+
# val urllib.parse.quote() or urllib.parse.urlencode()
|
|
218
|
+
# tool instructions... filtering, email etc "null"
|
|
219
|
+
query_param_filter = query_param_filter.replace("'", '"') # convert single quotes to double quotes
|
|
220
|
+
query_param_filter = query_param_filter.replace("None", 'null')
|
|
221
|
+
query_param_filter = query_param_filter.replace('"null"', 'null')
|
|
222
|
+
# query_param_filter = query_param_filter.replace("date_created", 'CreatedOn') # TODO - why this name?
|
|
223
|
+
return query_param_filter # end get_query_param_filter
|
|
219
224
|
|
|
220
225
|
def print_get_response(query_param_filter, mcp_response):
|
|
221
226
|
""" Print the response from the GET request. """
|
|
222
|
-
|
|
223
|
-
|
|
227
|
+
log.info("\n3. MCP Server (als) GET filter(query_param_filter):\n" + query_param_filter)
|
|
228
|
+
log.info(" GET Response:\n" + mcp_response.text)
|
|
224
229
|
results : List[Dict] = mcp_response.json()['data']
|
|
225
230
|
# print results in a table format
|
|
226
231
|
if results:
|
|
@@ -231,66 +236,253 @@ def process_tool_context(tool_context):
|
|
|
231
236
|
keys.update(row.keys())
|
|
232
237
|
keys = list(keys)
|
|
233
238
|
# Print header
|
|
234
|
-
|
|
235
|
-
|
|
239
|
+
log.info("\n| " + " | ".join(keys) + " |")
|
|
240
|
+
log.info("|" + "|".join(["---"] * len(keys)) + "|")
|
|
236
241
|
# Print rows
|
|
237
242
|
for row in results:
|
|
238
|
-
|
|
243
|
+
log.info("| " + " | ".join(str(row.get(k, "")) for k in keys) + " |")
|
|
239
244
|
else:
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
assert isinstance(tool_context, (dict, list)), "Tool context expected to be a dictionary"
|
|
243
|
-
context_data = {}
|
|
244
|
-
added_rows = 0
|
|
245
|
-
|
|
246
|
-
for each_block in tool_context["resources"]:
|
|
247
|
-
if process_tool_context := True:
|
|
248
|
-
if each_block["method"] == "GET":
|
|
249
|
-
query_param_filter = get_query_param_filter(each_block["query_params"])
|
|
250
|
-
headers = {"Content-Type": "application/vnd.api+json"}
|
|
251
|
-
if "headers" in each_block:
|
|
252
|
-
headers.update(each_block["headers"])
|
|
253
|
-
mcp_response = requests.get(
|
|
254
|
-
url = each_block["base_url"] + each_block["path"],
|
|
255
|
-
headers=headers,
|
|
256
|
-
params=query_param_filter
|
|
257
|
-
)
|
|
258
|
-
context_data = mcp_response.json()['data'] # result rows...
|
|
259
|
-
print_get_response(query_param_filter, mcp_response)
|
|
260
|
-
elif each_block["method"] in ["POST"]:
|
|
261
|
-
for each_order in context_data:
|
|
262
|
-
url = each_block["base_url"] + each_block["path"]
|
|
263
|
-
json_update_data = { 'data': {"type": "Email", 'attributes': {} } }
|
|
264
|
-
json_update_data_attributes = json_update_data["data"]["attributes"]
|
|
265
|
-
move_fields( src= each_block["body"], dest=json_update_data_attributes, context_data=each_order)
|
|
266
|
-
# eg: POST http://localhost:5656/api/Email {'data': {'type': 'Email', 'attributes': {'customer_id': 5, 'message': {'to': '{{ order.customer_id }}', 'subject': 'Discount for your order', 'body': 'Dear customer, you have a discount for your recent order. Thank you for shopping with us.'}}}}
|
|
267
|
-
headers = {"Content-Type": "application/vnd.api+json"}
|
|
268
|
-
if "headers" in each_block:
|
|
269
|
-
headers.update(each_block["headers"])
|
|
270
|
-
mcp_response = requests.post(
|
|
271
|
-
url=url,
|
|
272
|
-
headers=headers,
|
|
273
|
-
json=json_update_data
|
|
274
|
-
)
|
|
275
|
-
added_rows += 1
|
|
276
|
-
pass
|
|
277
|
-
print("\n3. MCP Server (als) POST Response:\n", mcp_response.text)
|
|
278
|
-
if added_rows > 0:
|
|
279
|
-
print(f"...Added {added_rows} rows to the database; last row (only) shown above.")
|
|
280
|
-
return mcp_response
|
|
245
|
+
log.info("No results found.")
|
|
281
246
|
|
|
247
|
+
def substitute_vars(val, context, row=None, ref_index=None):
|
|
248
|
+
"""
|
|
249
|
+
Substitutes variable references in a value using a provided context.
|
|
250
|
+
|
|
251
|
+
If `val` is a string starting with '$', attempts to parse it as a variable reference
|
|
252
|
+
of the form '$<step_idx>[*].<attr>' or '$<step_idx>.<attr>'. Retrieves the corresponding
|
|
253
|
+
value from the `context` list or from the `row` dictionary if the reference index matches.
|
|
254
|
+
|
|
255
|
+
Args:
|
|
256
|
+
val (Any): The value to substitute. If not a string or not a variable reference, returned as-is.
|
|
257
|
+
reference example: '$0[*].customer_id' or '$1.email'
|
|
258
|
+
context (list): A list of dictionaries or objects used for variable substitution.
|
|
259
|
+
The result list from prior step
|
|
260
|
+
Each item in the list is expected to be a dictionary with attributes that can be accessed.
|
|
261
|
+
row (dict, optional): A dictionary representing the current row, used if the reference index matches `ref_index`.
|
|
262
|
+
The current row (eg, order) dictionary for variable substitution.
|
|
263
|
+
ref_index (int, optional): The index to compare against the variable reference for row substitution.
|
|
264
|
+
|
|
265
|
+
Returns:
|
|
266
|
+
Any: The substituted value if a variable reference is found and resolved, otherwise the original value.
|
|
267
|
+
"""
|
|
268
|
+
if isinstance(val, str) and val.startswith("$"):
|
|
269
|
+
match = re.match(r"\$(\d+)(\[\*\])?\.(\w+)", val)
|
|
270
|
+
if not match:
|
|
271
|
+
return val
|
|
272
|
+
step_idx, star, attr = match.groups()
|
|
273
|
+
step_idx = int(step_idx)
|
|
274
|
+
if enabled_fix_me := False and star: # TODO: fix this disabled code
|
|
275
|
+
return context[step_idx]
|
|
276
|
+
if row is not None and step_idx == ref_index:
|
|
277
|
+
return row['attributes'][attr] if attr in row['attributes'] else row.get(attr)
|
|
278
|
+
return context[step_idx].get(attr)
|
|
279
|
+
return val
|
|
280
|
+
|
|
281
|
+
def resolve_step(step, context, row=None, ref_index=None):
|
|
282
|
+
"""
|
|
283
|
+
Resolves variables in the 'body' and 'query_params' fields of a step dictionary using the provided context, row, and ref_index.
|
|
284
|
+
|
|
285
|
+
Args:
|
|
286
|
+
step (dict): The step dictionary containing 'body' and 'query_params' fields, each as a list of field dictionaries.
|
|
287
|
+
context (dict): The context dictionary used for variable substitution. eg, the orders
|
|
288
|
+
row (dict, optional): An optional source row (eg, order) dictionary for variable substitution.
|
|
289
|
+
ref_index (int, optional): An optional reference index for variable substitution. Defaults to None.
|
|
290
|
+
|
|
291
|
+
Returns:
|
|
292
|
+
dict: A copy of the step dictionary with variables in 'body' and 'query_params' fields resolved.
|
|
293
|
+
"""
|
|
294
|
+
|
|
295
|
+
def resolve_field_list(field_list):
|
|
296
|
+
"""
|
|
297
|
+
Resolves a list of field dictionaries by substituting variables in their 'value' fields.
|
|
298
|
+
|
|
299
|
+
Each field in the input list is expected to be a dictionary containing a 'value' key.
|
|
300
|
+
The function applies the substitute_vars function to the 'value' of each field,
|
|
301
|
+
using the provided context, row, and ref_index, and returns a new list of fields
|
|
302
|
+
with the substituted values.
|
|
303
|
+
|
|
304
|
+
Args:
|
|
305
|
+
field_list (list of dict): A list of field dictionaries (eg, email post row), each containing at least a 'value' key, eg
|
|
306
|
+
{'subject': 'Discount Offer', 'message': 'You have a new discount offer', 'customer_id': '$0[*].customer_id'}
|
|
307
|
+
|
|
308
|
+
Returns:
|
|
309
|
+
list of dict: A new list of field dictionaries with the 'value' field updated after variable substitution.
|
|
310
|
+
"""
|
|
311
|
+
|
|
312
|
+
# return dict(f, value=substitute_vars(f.get("value"), context, row, ref_index)) for f in field_list
|
|
313
|
+
resolved_fields = []
|
|
314
|
+
for field_name, field_value in field_list.items():
|
|
315
|
+
resolved_field = {}
|
|
316
|
+
resolved_field[field_name] = substitute_vars(field_value, context, row, ref_index)
|
|
317
|
+
resolved_fields.append(resolved_field)
|
|
318
|
+
return resolved_fields
|
|
319
|
+
|
|
320
|
+
step_copy = {**step}
|
|
321
|
+
step_copy["body"] = resolve_field_list(step.get("body", []))
|
|
322
|
+
if "query_params" in step_copy:
|
|
323
|
+
step_copy["query_params"] = resolve_field_list(step.get("query_params", []))
|
|
324
|
+
return step_copy
|
|
325
|
+
|
|
326
|
+
def find_fan_out_key(step):
|
|
327
|
+
"""
|
|
328
|
+
Fan-out means that the step has a key pattern like '$<number>[*].<field_name>',
|
|
329
|
+
so the action (eg, send mail) is repeated for each item (eg, order) in the list at 'context[<number>]'.
|
|
330
|
+
|
|
331
|
+
Searches for a fan-out key pattern in the 'body' of the given step.
|
|
282
332
|
|
|
283
|
-
|
|
333
|
+
The function iterates over the fields in the 'body' of the step dictionary,
|
|
334
|
+
looking for a field whose 'value' is a string containing the pattern '[*]'.
|
|
335
|
+
If such a pattern is found and matches the format '$<number>[*].<field_name>',
|
|
336
|
+
it extracts and returns the number and field name as a tuple.
|
|
284
337
|
|
|
285
|
-
|
|
338
|
+
Args:
|
|
339
|
+
step (dict): A dictionary representing a step, expected to have a 'body' key
|
|
340
|
+
containing a list of field dictionaries with a 'value' key.
|
|
286
341
|
|
|
287
|
-
|
|
342
|
+
{.. 'body': {'subject': 'Discount Offer', 'message': 'You have a new discount offer', 'customer_id': '$0[*].customer_id'}
|
|
343
|
+
|
|
344
|
+
Returns:
|
|
345
|
+
tuple[int, str] or None: A tuple containing the integer index and the field name
|
|
346
|
+
if a matching pattern is found, otherwise None.
|
|
347
|
+
"""
|
|
348
|
+
if 'body' in step:
|
|
349
|
+
body = step.get("body", [])
|
|
350
|
+
# iterate the body fields / values
|
|
351
|
+
# This loop checks each field in the body for a fan-out pattern
|
|
352
|
+
for attr_name, attr_value in body.items():
|
|
353
|
+
if isinstance(attr_value, str) and "[*]" in attr_value:
|
|
354
|
+
match = re.match(r"\$(\d+)\[\*\]\.(\w+)", attr_value)
|
|
355
|
+
if match:
|
|
356
|
+
return int(match.group(1)), match.group(2)
|
|
357
|
+
# If the body is a list, iterate through each field
|
|
358
|
+
for field in body:
|
|
359
|
+
if isinstance(field["value"], str) and "[*]" in field["value"]: # string indices must be integers, not 'str'
|
|
360
|
+
match = re.match(r"\$(\d+)\[\*\]\.(\w+)", field["value"])
|
|
361
|
+
if match:
|
|
362
|
+
return int(match.group(1)), match.group(2)
|
|
363
|
+
return None
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
def call_llm(step, context, tool_context):
|
|
367
|
+
prompt = f"""
|
|
368
|
+
User Goal: {step.get('llm_goal')}
|
|
369
|
+
Step Result: {json.dumps(context[-1], indent=2)}
|
|
370
|
+
|
|
371
|
+
Based on this, generate the next tool_context step(s) as a JSON list.
|
|
372
|
+
"""
|
|
373
|
+
try:
|
|
374
|
+
import openai
|
|
375
|
+
response = openai.chat.completions.create(
|
|
376
|
+
model="gpt-4",
|
|
377
|
+
messages=[{"role": "user", "content": prompt}],
|
|
378
|
+
temperature=0.0
|
|
379
|
+
)
|
|
380
|
+
return json.loads(response.choices[0].message.content)
|
|
381
|
+
except OpenAIError as e:
|
|
382
|
+
log.info(f"OpenAI error: {e}")
|
|
383
|
+
return []
|
|
384
|
+
except Exception as e:
|
|
385
|
+
log.info(f"Failed LLM call: {e}")
|
|
386
|
+
return []
|
|
387
|
+
|
|
388
|
+
def execute_api_step(step, step_num):
|
|
389
|
+
url = step["base_url"].rstrip("/") + "/" + step["path"].lstrip("/")
|
|
390
|
+
method = step["method"].upper()
|
|
391
|
+
# params = {p["name"]: p["val"] for p in step.get("query_params", [])}
|
|
392
|
+
params = get_query_param_filter(step.get("query_params", []))
|
|
393
|
+
# body = {p["name"]: p["value"] for p in step.get("body", [])} if step.get("body", []) else None # fixme: name?
|
|
394
|
+
body = {}
|
|
395
|
+
if step.get("body", []):
|
|
396
|
+
# eg: POST http://localhost:5656/api/SysEmail {'data': {'type': 'SysEmail', 'attributes': {'customer_id': 5, 'message': {'to': '{{ order.customer_id }}', 'subject': 'Discount for your order', 'body': 'Dear customer, you have a discount for your recent order. Thank you for shopping with us.'}}}}
|
|
397
|
+
body = {'data': {"type": step["path"].split("/")[-1], 'attributes': {}}} # eg: SysEmail
|
|
398
|
+
for each_field in step["body"]:
|
|
399
|
+
body['data']['attributes'].update(each_field) # each_field is a dict, eg: {'subject': 'Discount Offer', 'message': 'You have a new discount offer', 'customer_id': '$0[*].customer_id'}
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
log.info(f"\n\n➡️ MCP execute_api_step[{step_num}]:")
|
|
403
|
+
log.info(f" Method: {method} {url}")
|
|
404
|
+
log.info(f" Query: {params}")
|
|
405
|
+
log.info(f" Body: {body}\n")
|
|
406
|
+
try:
|
|
407
|
+
resp = requests.request(method, url, json=body if method in ["POST", "PATCH"] else None, params=params)
|
|
408
|
+
resp.raise_for_status()
|
|
409
|
+
return resp.json()
|
|
410
|
+
except requests.RequestException as e:
|
|
411
|
+
log.info(f"❌ Request failed: {e}")
|
|
412
|
+
return {}
|
|
413
|
+
|
|
414
|
+
step_num = 0
|
|
415
|
+
steps = tool_context["resources"]
|
|
416
|
+
for each_step in steps:
|
|
417
|
+
|
|
418
|
+
if each_step.get("llm_call"):
|
|
419
|
+
log.info(f"\n🔁 LLM Call triggered at step {i}")
|
|
420
|
+
new_steps = call_llm(each_step, context_results, tool_context)
|
|
421
|
+
tool_context[i+1:i+1] = new_steps
|
|
422
|
+
i += 1
|
|
423
|
+
continue
|
|
424
|
+
|
|
425
|
+
fan_out = find_fan_out_key(each_step)
|
|
426
|
+
if fan_out:
|
|
427
|
+
ref_idx, attr = fan_out
|
|
428
|
+
fan_out_list = context_results[ref_idx]
|
|
429
|
+
if isinstance(fan_out_list, dict) and "data" in fan_out_list:
|
|
430
|
+
fan_out_list = fan_out_list["data"]
|
|
431
|
+
for row in fan_out_list:
|
|
432
|
+
resolved = resolve_step(each_step, context_results, row, ref_idx)
|
|
433
|
+
result = execute_api_step(resolved, step_num)
|
|
434
|
+
context_results.append(result)
|
|
435
|
+
else:
|
|
436
|
+
resolved = each_step if len(context_results) == 0 else resolve_step(each_step, context_results)
|
|
437
|
+
result = execute_api_step(resolved, step_num)
|
|
438
|
+
context_results.append(result)
|
|
439
|
+
step_num += 1
|
|
288
440
|
|
|
289
|
-
|
|
290
|
-
prompt = get_user_nl_query_and_training(query) # set breakpoint here, view log, then step
|
|
441
|
+
log.info("\n✅ MCP Client Executor – All Steps Executed\n")
|
|
291
442
|
|
|
292
|
-
|
|
443
|
+
return context_results
|
|
293
444
|
|
|
294
|
-
mcp_response = process_tool_context(tool_context) # see: 3-MCP-server response
|
|
295
445
|
|
|
296
|
-
|
|
446
|
+
|
|
447
|
+
def mcp_client_executor(query: str):
|
|
448
|
+
"""
|
|
449
|
+
|
|
450
|
+
#als: create an MCP request. See https://apilogicserver.github.io/Docs/Integration-MCP/
|
|
451
|
+
|
|
452
|
+
Test:
|
|
453
|
+
* curl -X 'POST' 'http://localhost:5656/api/SysMcp/' -H 'accept: application/vnd.api+json' -H 'Content-Type: application/json' -d '{ "data": { "attributes": {"request": "List the orders date_shipped is null and CreatedOn before 2023-07-14, and send a discount email (subject: '\''Discount Offer'\'') to the customer for each one."}, "type": "SysMcp"}}'
|
|
454
|
+
* Or, use the Admin App and insert a row into SysMCP (see default `query`, below)
|
|
455
|
+
|
|
456
|
+
Args:
|
|
457
|
+
query (str): The natural language query to process.
|
|
458
|
+
"""
|
|
459
|
+
|
|
460
|
+
learnings_and_schema = discover_mcp_servers() # see: 1-discovery-from-als
|
|
461
|
+
|
|
462
|
+
tool_context = query_llm_with_nl(learnings_and_schema, query) # see: 2-tool-context-from-LLM
|
|
463
|
+
|
|
464
|
+
mcp_response = process_tool_context(tool_context) # see: 3-MCP-server response
|
|
465
|
+
|
|
466
|
+
log.info("\nTest complete.\n")
|
|
467
|
+
|
|
468
|
+
return tool_context, mcp_response
|
|
469
|
+
|
|
470
|
+
|
|
471
|
+
if __name__ == "__main__": # F5 to start API Logic Server
|
|
472
|
+
|
|
473
|
+
logging_config = f'{project_path}/config/logging.yml'
|
|
474
|
+
if os.getenv('APILOGICPROJECT_LOGGING_CONFIG'):
|
|
475
|
+
logging_config = project_path.joinpath(os.getenv("APILOGICPROJECT_LOGGING_CONFIG"))
|
|
476
|
+
with open(logging_config,'rt') as f: # see also logic/declare_logic.py
|
|
477
|
+
config=yaml.safe_load(f.read())
|
|
478
|
+
f.close()
|
|
479
|
+
logging.config.dictConfig(config) # log levels: notset 0, debug 10, info 20, warn 30, error 40, critical 50
|
|
480
|
+
|
|
481
|
+
query = default_query # default query if no argument is provided
|
|
482
|
+
|
|
483
|
+
if len(sys.argv) > 1: # if 1 non-blank argument, use it as the query
|
|
484
|
+
query = sys.argv[1]
|
|
485
|
+
if query == 'mcp':
|
|
486
|
+
query = default_query_email
|
|
487
|
+
|
|
488
|
+
mcp_client_executor(query)
|