AbstractRuntime 0.0.1__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- abstractruntime/__init__.py +7 -2
- abstractruntime/core/__init__.py +9 -2
- abstractruntime/core/config.py +114 -0
- abstractruntime/core/event_keys.py +62 -0
- abstractruntime/core/models.py +55 -1
- abstractruntime/core/runtime.py +2609 -24
- abstractruntime/core/vars.py +189 -0
- abstractruntime/evidence/__init__.py +10 -0
- abstractruntime/evidence/recorder.py +325 -0
- abstractruntime/integrations/abstractcore/__init__.py +9 -2
- abstractruntime/integrations/abstractcore/constants.py +19 -0
- abstractruntime/integrations/abstractcore/default_tools.py +134 -0
- abstractruntime/integrations/abstractcore/effect_handlers.py +288 -9
- abstractruntime/integrations/abstractcore/factory.py +133 -11
- abstractruntime/integrations/abstractcore/llm_client.py +547 -42
- abstractruntime/integrations/abstractcore/mcp_worker.py +586 -0
- abstractruntime/integrations/abstractcore/observability.py +80 -0
- abstractruntime/integrations/abstractcore/summarizer.py +154 -0
- abstractruntime/integrations/abstractcore/tool_executor.py +544 -8
- abstractruntime/memory/__init__.py +21 -0
- abstractruntime/memory/active_context.py +746 -0
- abstractruntime/memory/active_memory.py +452 -0
- abstractruntime/memory/compaction.py +105 -0
- abstractruntime/rendering/__init__.py +17 -0
- abstractruntime/rendering/agent_trace_report.py +256 -0
- abstractruntime/rendering/json_stringify.py +136 -0
- abstractruntime/scheduler/scheduler.py +93 -2
- abstractruntime/storage/__init__.py +3 -1
- abstractruntime/storage/artifacts.py +51 -5
- abstractruntime/storage/json_files.py +16 -3
- abstractruntime/storage/observable.py +99 -0
- {abstractruntime-0.0.1.dist-info → abstractruntime-0.4.0.dist-info}/METADATA +5 -1
- abstractruntime-0.4.0.dist-info/RECORD +49 -0
- abstractruntime-0.4.0.dist-info/entry_points.txt +2 -0
- abstractruntime-0.0.1.dist-info/RECORD +0 -30
- {abstractruntime-0.0.1.dist-info → abstractruntime-0.4.0.dist-info}/WHEEL +0 -0
- {abstractruntime-0.0.1.dist-info → abstractruntime-0.4.0.dist-info}/licenses/LICENSE +0 -0
abstractruntime/core/runtime.py
CHANGED
|
@@ -20,12 +20,18 @@ from __future__ import annotations
|
|
|
20
20
|
|
|
21
21
|
from dataclasses import dataclass
|
|
22
22
|
from datetime import datetime, timezone
|
|
23
|
-
from typing import Any, Callable, Dict, Optional
|
|
23
|
+
from typing import Any, Callable, Dict, Optional, List
|
|
24
|
+
import copy
|
|
24
25
|
import inspect
|
|
26
|
+
import json
|
|
27
|
+
import os
|
|
28
|
+
import re
|
|
25
29
|
|
|
30
|
+
from .config import RuntimeConfig
|
|
26
31
|
from .models import (
|
|
27
32
|
Effect,
|
|
28
33
|
EffectType,
|
|
34
|
+
LimitWarning,
|
|
29
35
|
RunState,
|
|
30
36
|
RunStatus,
|
|
31
37
|
StepPlan,
|
|
@@ -36,13 +42,164 @@ from .models import (
|
|
|
36
42
|
)
|
|
37
43
|
from .spec import WorkflowSpec
|
|
38
44
|
from .policy import DefaultEffectPolicy, EffectPolicy
|
|
39
|
-
from ..storage.base import LedgerStore, RunStore
|
|
45
|
+
from ..storage.base import LedgerStore, RunStore, QueryableRunStore
|
|
46
|
+
from .event_keys import build_event_wait_key
|
|
40
47
|
|
|
41
48
|
|
|
42
49
|
def utc_now_iso() -> str:
|
|
43
50
|
return datetime.now(timezone.utc).isoformat()
|
|
44
51
|
|
|
45
52
|
|
|
53
|
+
_DEFAULT_GLOBAL_MEMORY_RUN_ID = "global_memory"
|
|
54
|
+
_SAFE_RUN_ID_PATTERN = re.compile(r"^[a-zA-Z0-9_-]+$")
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def _ensure_runtime_namespace(vars: Dict[str, Any]) -> Dict[str, Any]:
|
|
58
|
+
runtime_ns = vars.get("_runtime")
|
|
59
|
+
if not isinstance(runtime_ns, dict):
|
|
60
|
+
runtime_ns = {}
|
|
61
|
+
vars["_runtime"] = runtime_ns
|
|
62
|
+
return runtime_ns
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def _ensure_control_namespace(vars: Dict[str, Any]) -> Dict[str, Any]:
|
|
66
|
+
runtime_ns = _ensure_runtime_namespace(vars)
|
|
67
|
+
control = runtime_ns.get("control")
|
|
68
|
+
if not isinstance(control, dict):
|
|
69
|
+
control = {}
|
|
70
|
+
runtime_ns["control"] = control
|
|
71
|
+
return control
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def _is_paused_run_vars(vars: Any) -> bool:
|
|
75
|
+
if not isinstance(vars, dict):
|
|
76
|
+
return False
|
|
77
|
+
runtime_ns = vars.get("_runtime")
|
|
78
|
+
if not isinstance(runtime_ns, dict):
|
|
79
|
+
return False
|
|
80
|
+
control = runtime_ns.get("control")
|
|
81
|
+
if not isinstance(control, dict):
|
|
82
|
+
return False
|
|
83
|
+
return bool(control.get("paused") is True)
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def _is_pause_wait(waiting: Any, *, run_id: str) -> bool:
|
|
87
|
+
if waiting is None:
|
|
88
|
+
return False
|
|
89
|
+
try:
|
|
90
|
+
reason = getattr(waiting, "reason", None)
|
|
91
|
+
reason_value = reason.value if hasattr(reason, "value") else str(reason) if reason else None
|
|
92
|
+
except Exception:
|
|
93
|
+
reason_value = None
|
|
94
|
+
if reason_value != WaitReason.USER.value:
|
|
95
|
+
return False
|
|
96
|
+
try:
|
|
97
|
+
wait_key = getattr(waiting, "wait_key", None)
|
|
98
|
+
if isinstance(wait_key, str) and wait_key == f"pause:{run_id}":
|
|
99
|
+
return True
|
|
100
|
+
except Exception:
|
|
101
|
+
pass
|
|
102
|
+
try:
|
|
103
|
+
details = getattr(waiting, "details", None)
|
|
104
|
+
if isinstance(details, dict) and details.get("kind") == "pause":
|
|
105
|
+
return True
|
|
106
|
+
except Exception:
|
|
107
|
+
pass
|
|
108
|
+
return False
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def _record_node_trace(
|
|
112
|
+
*,
|
|
113
|
+
run: RunState,
|
|
114
|
+
node_id: str,
|
|
115
|
+
effect: Effect,
|
|
116
|
+
outcome: "EffectOutcome",
|
|
117
|
+
idempotency_key: Optional[str],
|
|
118
|
+
reused_prior_result: bool,
|
|
119
|
+
duration_ms: Optional[float] = None,
|
|
120
|
+
max_entries_per_node: int = 100,
|
|
121
|
+
) -> None:
|
|
122
|
+
"""Record a JSON-safe per-node execution trace in run.vars["_runtime"].
|
|
123
|
+
|
|
124
|
+
This trace is runtime-owned and durable (stored in RunStore checkpoints).
|
|
125
|
+
It exists to support higher-level hosts (AbstractFlow, AbstractCode, etc.)
|
|
126
|
+
that need structured "scratchpad"/debug information without inventing
|
|
127
|
+
host-specific persistence formats.
|
|
128
|
+
"""
|
|
129
|
+
|
|
130
|
+
runtime_ns = _ensure_runtime_namespace(run.vars)
|
|
131
|
+
traces = runtime_ns.get("node_traces")
|
|
132
|
+
if not isinstance(traces, dict):
|
|
133
|
+
traces = {}
|
|
134
|
+
runtime_ns["node_traces"] = traces
|
|
135
|
+
|
|
136
|
+
node_trace = traces.get(node_id)
|
|
137
|
+
if not isinstance(node_trace, dict):
|
|
138
|
+
node_trace = {"node_id": node_id, "steps": []}
|
|
139
|
+
traces[node_id] = node_trace
|
|
140
|
+
|
|
141
|
+
steps = node_trace.get("steps")
|
|
142
|
+
if not isinstance(steps, list):
|
|
143
|
+
steps = []
|
|
144
|
+
node_trace["steps"] = steps
|
|
145
|
+
|
|
146
|
+
wait_dict: Optional[Dict[str, Any]] = None
|
|
147
|
+
if outcome.status == "waiting" and outcome.wait is not None:
|
|
148
|
+
w = outcome.wait
|
|
149
|
+
wait_dict = {
|
|
150
|
+
"reason": w.reason.value if hasattr(w.reason, "value") else str(w.reason),
|
|
151
|
+
"wait_key": w.wait_key,
|
|
152
|
+
"until": w.until,
|
|
153
|
+
"resume_to_node": w.resume_to_node,
|
|
154
|
+
"result_key": w.result_key,
|
|
155
|
+
"prompt": w.prompt,
|
|
156
|
+
"choices": w.choices,
|
|
157
|
+
"allow_free_text": w.allow_free_text,
|
|
158
|
+
"details": w.details,
|
|
159
|
+
}
|
|
160
|
+
|
|
161
|
+
entry: Dict[str, Any] = {
|
|
162
|
+
"ts": utc_now_iso(),
|
|
163
|
+
"node_id": node_id,
|
|
164
|
+
"status": outcome.status,
|
|
165
|
+
"idempotency_key": idempotency_key,
|
|
166
|
+
"reused_prior_result": reused_prior_result,
|
|
167
|
+
"effect": {
|
|
168
|
+
"type": effect.type.value,
|
|
169
|
+
"payload": effect.payload,
|
|
170
|
+
"result_key": effect.result_key,
|
|
171
|
+
},
|
|
172
|
+
}
|
|
173
|
+
if isinstance(duration_ms, (int, float)) and duration_ms >= 0:
|
|
174
|
+
# UI/UX consumers use this for per-step timing badges (kept JSON-safe).
|
|
175
|
+
entry["duration_ms"] = float(duration_ms)
|
|
176
|
+
if outcome.status == "completed":
|
|
177
|
+
entry["result"] = outcome.result
|
|
178
|
+
elif outcome.status == "failed":
|
|
179
|
+
entry["error"] = outcome.error
|
|
180
|
+
elif wait_dict is not None:
|
|
181
|
+
entry["wait"] = wait_dict
|
|
182
|
+
|
|
183
|
+
# Ensure the trace remains JSON-safe even if a handler violates the contract.
|
|
184
|
+
try:
|
|
185
|
+
json.dumps(entry)
|
|
186
|
+
except TypeError:
|
|
187
|
+
entry = {
|
|
188
|
+
"ts": entry.get("ts"),
|
|
189
|
+
"node_id": node_id,
|
|
190
|
+
"status": outcome.status,
|
|
191
|
+
"idempotency_key": idempotency_key,
|
|
192
|
+
"reused_prior_result": reused_prior_result,
|
|
193
|
+
"effect": {"type": effect.type.value, "result_key": effect.result_key},
|
|
194
|
+
"error": "non_json_safe_trace_entry",
|
|
195
|
+
}
|
|
196
|
+
|
|
197
|
+
steps.append(entry)
|
|
198
|
+
if max_entries_per_node > 0 and len(steps) > max_entries_per_node:
|
|
199
|
+
del steps[: max(0, len(steps) - max_entries_per_node)]
|
|
200
|
+
node_trace["updated_at"] = utc_now_iso()
|
|
201
|
+
|
|
202
|
+
|
|
46
203
|
@dataclass
|
|
47
204
|
class DefaultRunContext:
|
|
48
205
|
def now_iso(self) -> str:
|
|
@@ -92,6 +249,8 @@ class Runtime:
|
|
|
92
249
|
workflow_registry: Optional[Any] = None,
|
|
93
250
|
artifact_store: Optional[Any] = None,
|
|
94
251
|
effect_policy: Optional[EffectPolicy] = None,
|
|
252
|
+
config: Optional[RuntimeConfig] = None,
|
|
253
|
+
chat_summarizer: Optional[Any] = None,
|
|
95
254
|
):
|
|
96
255
|
self._run_store = run_store
|
|
97
256
|
self._ledger_store = ledger_store
|
|
@@ -99,6 +258,8 @@ class Runtime:
|
|
|
99
258
|
self._workflow_registry = workflow_registry
|
|
100
259
|
self._artifact_store = artifact_store
|
|
101
260
|
self._effect_policy: EffectPolicy = effect_policy or DefaultEffectPolicy()
|
|
261
|
+
self._config: RuntimeConfig = config or RuntimeConfig()
|
|
262
|
+
self._chat_summarizer = chat_summarizer
|
|
102
263
|
|
|
103
264
|
self._handlers: Dict[EffectType, EffectHandler] = {}
|
|
104
265
|
self._register_builtin_handlers()
|
|
@@ -146,8 +307,70 @@ class Runtime:
|
|
|
146
307
|
"""Set the effect policy for retry and idempotency."""
|
|
147
308
|
self._effect_policy = policy
|
|
148
309
|
|
|
149
|
-
|
|
150
|
-
|
|
310
|
+
@property
|
|
311
|
+
def config(self) -> RuntimeConfig:
|
|
312
|
+
"""Access the runtime configuration."""
|
|
313
|
+
return self._config
|
|
314
|
+
|
|
315
|
+
def start(
|
|
316
|
+
self,
|
|
317
|
+
*,
|
|
318
|
+
workflow: WorkflowSpec,
|
|
319
|
+
vars: Optional[Dict[str, Any]] = None,
|
|
320
|
+
actor_id: Optional[str] = None,
|
|
321
|
+
session_id: Optional[str] = None,
|
|
322
|
+
parent_run_id: Optional[str] = None,
|
|
323
|
+
) -> str:
|
|
324
|
+
# Initialize vars with _limits from config if not already set
|
|
325
|
+
vars = dict(vars or {})
|
|
326
|
+
if "_limits" not in vars:
|
|
327
|
+
vars["_limits"] = self._config.to_limits_dict()
|
|
328
|
+
|
|
329
|
+
# Ensure a durable `_runtime` namespace exists and seed default provider/model metadata
|
|
330
|
+
# from the Runtime config (best-effort).
|
|
331
|
+
#
|
|
332
|
+
# Rationale:
|
|
333
|
+
# - The Runtime is the orchestration authority (ADR-0001/0014), and `start()` is the
|
|
334
|
+
# choke point where durable run state is initialized.
|
|
335
|
+
# - Agents/workflows should not have to guess/duplicate routing metadata to make prompt
|
|
336
|
+
# composition decisions (e.g. native-tools => omit Tools(session) prompt catalogs).
|
|
337
|
+
runtime_ns = vars.get("_runtime")
|
|
338
|
+
if not isinstance(runtime_ns, dict):
|
|
339
|
+
runtime_ns = {}
|
|
340
|
+
vars["_runtime"] = runtime_ns
|
|
341
|
+
try:
|
|
342
|
+
provider_id = getattr(self._config, "provider", None)
|
|
343
|
+
model_id = getattr(self._config, "model", None)
|
|
344
|
+
if isinstance(provider_id, str) and provider_id.strip():
|
|
345
|
+
runtime_ns.setdefault("provider", provider_id.strip())
|
|
346
|
+
if isinstance(model_id, str) and model_id.strip():
|
|
347
|
+
runtime_ns.setdefault("model", model_id.strip())
|
|
348
|
+
except Exception:
|
|
349
|
+
pass
|
|
350
|
+
|
|
351
|
+
# Seed tool-support metadata from model capabilities (best-effort).
|
|
352
|
+
#
|
|
353
|
+
# This makes the native-vs-prompted tools decision explicit and durable in run state,
|
|
354
|
+
# so adapters/UI helpers don't have to guess or re-run AbstractCore detection logic.
|
|
355
|
+
try:
|
|
356
|
+
caps = getattr(self._config, "model_capabilities", None)
|
|
357
|
+
if isinstance(caps, dict):
|
|
358
|
+
tool_support = caps.get("tool_support")
|
|
359
|
+
if isinstance(tool_support, str) and tool_support.strip():
|
|
360
|
+
ts = tool_support.strip()
|
|
361
|
+
runtime_ns.setdefault("tool_support", ts)
|
|
362
|
+
runtime_ns.setdefault("supports_native_tools", ts == "native")
|
|
363
|
+
except Exception:
|
|
364
|
+
pass
|
|
365
|
+
|
|
366
|
+
run = RunState.new(
|
|
367
|
+
workflow_id=workflow.workflow_id,
|
|
368
|
+
entry_node=workflow.entry_node,
|
|
369
|
+
vars=vars,
|
|
370
|
+
actor_id=actor_id,
|
|
371
|
+
session_id=session_id,
|
|
372
|
+
parent_run_id=parent_run_id,
|
|
373
|
+
)
|
|
151
374
|
self._run_store.save(run)
|
|
152
375
|
return run.run_id
|
|
153
376
|
|
|
@@ -176,6 +399,87 @@ class Runtime:
|
|
|
176
399
|
run.status = RunStatus.CANCELLED
|
|
177
400
|
run.error = reason or "Cancelled"
|
|
178
401
|
run.waiting = None
|
|
402
|
+
try:
|
|
403
|
+
control = _ensure_control_namespace(run.vars)
|
|
404
|
+
control.pop("paused", None)
|
|
405
|
+
except Exception:
|
|
406
|
+
pass
|
|
407
|
+
run.updated_at = utc_now_iso()
|
|
408
|
+
self._run_store.save(run)
|
|
409
|
+
return run
|
|
410
|
+
|
|
411
|
+
def pause_run(self, run_id: str, *, reason: Optional[str] = None) -> RunState:
|
|
412
|
+
"""Pause a run (durably) until it is explicitly resumed.
|
|
413
|
+
|
|
414
|
+
Semantics:
|
|
415
|
+
- Pausing a RUNNING run transitions it to WAITING with a synthetic USER wait.
|
|
416
|
+
- Pausing a WAITING run (non-USER waits such as UNTIL/EVENT/SUBWORKFLOW) sets a
|
|
417
|
+
runtime-owned `paused` flag so schedulers/event emitters can skip it.
|
|
418
|
+
- Pausing an ASK_USER wait is a no-op (already blocked by user input).
|
|
419
|
+
"""
|
|
420
|
+
run = self.get_state(run_id)
|
|
421
|
+
|
|
422
|
+
if run.status in (RunStatus.COMPLETED, RunStatus.FAILED, RunStatus.CANCELLED):
|
|
423
|
+
return run
|
|
424
|
+
|
|
425
|
+
# If already paused, keep as-is.
|
|
426
|
+
if _is_paused_run_vars(run.vars):
|
|
427
|
+
return run
|
|
428
|
+
|
|
429
|
+
# Don't interfere with real user prompts (ASK_USER).
|
|
430
|
+
if run.status == RunStatus.WAITING and run.waiting is not None:
|
|
431
|
+
if getattr(run.waiting, "reason", None) == WaitReason.USER and not _is_pause_wait(run.waiting, run_id=run_id):
|
|
432
|
+
return run
|
|
433
|
+
|
|
434
|
+
control = _ensure_control_namespace(run.vars)
|
|
435
|
+
control["paused"] = True
|
|
436
|
+
control["paused_at"] = utc_now_iso()
|
|
437
|
+
if isinstance(reason, str) and reason.strip():
|
|
438
|
+
control["pause_reason"] = reason.strip()
|
|
439
|
+
|
|
440
|
+
if run.status == RunStatus.RUNNING:
|
|
441
|
+
run.status = RunStatus.WAITING
|
|
442
|
+
run.waiting = WaitState(
|
|
443
|
+
reason=WaitReason.USER,
|
|
444
|
+
wait_key=f"pause:{run.run_id}",
|
|
445
|
+
resume_to_node=run.current_node,
|
|
446
|
+
prompt="Paused",
|
|
447
|
+
choices=None,
|
|
448
|
+
allow_free_text=False,
|
|
449
|
+
details={"kind": "pause"},
|
|
450
|
+
)
|
|
451
|
+
|
|
452
|
+
run.updated_at = utc_now_iso()
|
|
453
|
+
self._run_store.save(run)
|
|
454
|
+
return run
|
|
455
|
+
|
|
456
|
+
def resume_run(self, run_id: str) -> RunState:
|
|
457
|
+
"""Resume a previously paused run (durably).
|
|
458
|
+
|
|
459
|
+
If the run was paused while RUNNING, this clears the synthetic pause wait
|
|
460
|
+
and returns the run to RUNNING. If the run was paused while WAITING
|
|
461
|
+
(UNTIL/EVENT/SUBWORKFLOW), this only clears the paused flag.
|
|
462
|
+
"""
|
|
463
|
+
run = self.get_state(run_id)
|
|
464
|
+
|
|
465
|
+
if run.status in (RunStatus.COMPLETED, RunStatus.FAILED, RunStatus.CANCELLED):
|
|
466
|
+
return run
|
|
467
|
+
|
|
468
|
+
if not _is_paused_run_vars(run.vars):
|
|
469
|
+
return run
|
|
470
|
+
|
|
471
|
+
try:
|
|
472
|
+
control = _ensure_control_namespace(run.vars)
|
|
473
|
+
control.pop("paused", None)
|
|
474
|
+
control.pop("pause_reason", None)
|
|
475
|
+
control["resumed_at"] = utc_now_iso()
|
|
476
|
+
except Exception:
|
|
477
|
+
pass
|
|
478
|
+
|
|
479
|
+
if run.status == RunStatus.WAITING and _is_pause_wait(run.waiting, run_id=run_id):
|
|
480
|
+
resume_to = getattr(run.waiting, "resume_to_node", None)
|
|
481
|
+
self._apply_resume_payload(run, payload={}, override_node=resume_to)
|
|
482
|
+
|
|
179
483
|
run.updated_at = utc_now_iso()
|
|
180
484
|
self._run_store.save(run)
|
|
181
485
|
return run
|
|
@@ -189,9 +493,209 @@ class Runtime:
|
|
|
189
493
|
def get_ledger(self, run_id: str) -> list[dict[str, Any]]:
|
|
190
494
|
return self._ledger_store.list(run_id)
|
|
191
495
|
|
|
496
|
+
def subscribe_ledger(
|
|
497
|
+
self,
|
|
498
|
+
callback: Callable[[Dict[str, Any]], None],
|
|
499
|
+
*,
|
|
500
|
+
run_id: Optional[str] = None,
|
|
501
|
+
) -> Callable[[], None]:
|
|
502
|
+
"""Subscribe to ledger append events (in-process only).
|
|
503
|
+
|
|
504
|
+
This is an optional capability: not all LedgerStore implementations
|
|
505
|
+
support subscriptions. When unavailable, wrap the configured store with
|
|
506
|
+
`abstractruntime.storage.observable.ObservableLedgerStore`.
|
|
507
|
+
"""
|
|
508
|
+
subscribe = getattr(self._ledger_store, "subscribe", None)
|
|
509
|
+
if not callable(subscribe):
|
|
510
|
+
raise RuntimeError(
|
|
511
|
+
"Configured LedgerStore does not support subscriptions. "
|
|
512
|
+
"Wrap it with ObservableLedgerStore to enable `subscribe_ledger()`."
|
|
513
|
+
)
|
|
514
|
+
return subscribe(callback, run_id=run_id)
|
|
515
|
+
|
|
516
|
+
# ---------------------------------------------------------------------
|
|
517
|
+
# Trace Helpers (Runtime-Owned)
|
|
518
|
+
# ---------------------------------------------------------------------
|
|
519
|
+
|
|
520
|
+
def get_node_traces(self, run_id: str) -> Dict[str, Any]:
|
|
521
|
+
"""Return runtime-owned per-node traces for a run.
|
|
522
|
+
|
|
523
|
+
Traces are stored in `RunState.vars["_runtime"]["node_traces"]`.
|
|
524
|
+
Returns a deep copy so callers can safely inspect without mutating the run.
|
|
525
|
+
"""
|
|
526
|
+
run = self.get_state(run_id)
|
|
527
|
+
runtime_ns = run.vars.get("_runtime")
|
|
528
|
+
traces = runtime_ns.get("node_traces") if isinstance(runtime_ns, dict) else None
|
|
529
|
+
return copy.deepcopy(traces) if isinstance(traces, dict) else {}
|
|
530
|
+
|
|
531
|
+
def get_node_trace(self, run_id: str, node_id: str) -> Dict[str, Any]:
|
|
532
|
+
"""Return a single node trace object for a run.
|
|
533
|
+
|
|
534
|
+
Returns an empty `{node_id, steps: []}` object when missing.
|
|
535
|
+
"""
|
|
536
|
+
traces = self.get_node_traces(run_id)
|
|
537
|
+
trace = traces.get(node_id)
|
|
538
|
+
if isinstance(trace, dict):
|
|
539
|
+
return trace
|
|
540
|
+
return {"node_id": node_id, "steps": []}
|
|
541
|
+
|
|
542
|
+
# ---------------------------------------------------------------------
|
|
543
|
+
# Evidence Helpers (Runtime-Owned)
|
|
544
|
+
# ---------------------------------------------------------------------
|
|
545
|
+
|
|
546
|
+
def list_evidence(self, run_id: str) -> list[dict[str, Any]]:
|
|
547
|
+
"""List evidence records for a run (index entries only).
|
|
548
|
+
|
|
549
|
+
Evidence is indexed as `kind="evidence"` items inside `vars["_runtime"]["memory_spans"]`.
|
|
550
|
+
"""
|
|
551
|
+
run = self.get_state(run_id)
|
|
552
|
+
runtime_ns = run.vars.get("_runtime")
|
|
553
|
+
spans = runtime_ns.get("memory_spans") if isinstance(runtime_ns, dict) else None
|
|
554
|
+
if not isinstance(spans, list):
|
|
555
|
+
return []
|
|
556
|
+
out: list[dict[str, Any]] = []
|
|
557
|
+
for s in spans:
|
|
558
|
+
if not isinstance(s, dict):
|
|
559
|
+
continue
|
|
560
|
+
if s.get("kind") != "evidence":
|
|
561
|
+
continue
|
|
562
|
+
out.append(copy.deepcopy(s))
|
|
563
|
+
return out
|
|
564
|
+
|
|
565
|
+
def load_evidence(self, evidence_id: str) -> Optional[dict[str, Any]]:
|
|
566
|
+
"""Load an evidence record payload from ArtifactStore by id."""
|
|
567
|
+
artifact_store = self._artifact_store
|
|
568
|
+
if artifact_store is None:
|
|
569
|
+
raise RuntimeError("Evidence requires an ArtifactStore; configure runtime.set_artifact_store(...)")
|
|
570
|
+
payload = artifact_store.load_json(str(evidence_id))
|
|
571
|
+
return payload if isinstance(payload, dict) else None
|
|
572
|
+
|
|
573
|
+
# ---------------------------------------------------------------------
|
|
574
|
+
# Limit Management
|
|
575
|
+
# ---------------------------------------------------------------------
|
|
576
|
+
|
|
577
|
+
def get_limit_status(self, run_id: str) -> Dict[str, Any]:
|
|
578
|
+
"""Get current limit status for a run.
|
|
579
|
+
|
|
580
|
+
Returns a structured dict with information about iterations, tokens,
|
|
581
|
+
and history limits, including whether warning thresholds are reached.
|
|
582
|
+
|
|
583
|
+
Args:
|
|
584
|
+
run_id: The run to check
|
|
585
|
+
|
|
586
|
+
Returns:
|
|
587
|
+
Dict with "iterations", "tokens", and "history" status info
|
|
588
|
+
|
|
589
|
+
Raises:
|
|
590
|
+
KeyError: If run_id not found
|
|
591
|
+
"""
|
|
592
|
+
run = self.get_state(run_id)
|
|
593
|
+
limits = run.vars.get("_limits", {})
|
|
594
|
+
|
|
595
|
+
def pct(current: int, maximum: int) -> float:
|
|
596
|
+
return round(current / maximum * 100, 1) if maximum > 0 else 0
|
|
597
|
+
|
|
598
|
+
current_iter = int(limits.get("current_iteration", 0) or 0)
|
|
599
|
+
max_iter = int(limits.get("max_iterations", 25) or 25)
|
|
600
|
+
tokens_used = int(limits.get("estimated_tokens_used", 0) or 0)
|
|
601
|
+
max_tokens = int(limits.get("max_tokens", 32768) or 32768)
|
|
602
|
+
|
|
603
|
+
return {
|
|
604
|
+
"iterations": {
|
|
605
|
+
"current": current_iter,
|
|
606
|
+
"max": max_iter,
|
|
607
|
+
"pct": pct(current_iter, max_iter),
|
|
608
|
+
"warning": pct(current_iter, max_iter) >= limits.get("warn_iterations_pct", 80),
|
|
609
|
+
},
|
|
610
|
+
"tokens": {
|
|
611
|
+
"estimated_used": tokens_used,
|
|
612
|
+
"max": max_tokens,
|
|
613
|
+
"pct": pct(tokens_used, max_tokens),
|
|
614
|
+
"warning": pct(tokens_used, max_tokens) >= limits.get("warn_tokens_pct", 80),
|
|
615
|
+
},
|
|
616
|
+
"history": {
|
|
617
|
+
"max_messages": limits.get("max_history_messages", -1),
|
|
618
|
+
},
|
|
619
|
+
}
|
|
620
|
+
|
|
621
|
+
def check_limits(self, run: RunState) -> list[LimitWarning]:
|
|
622
|
+
"""Check if any limits are approaching or exceeded.
|
|
623
|
+
|
|
624
|
+
This is the hybrid enforcement model: the runtime provides warnings,
|
|
625
|
+
workflow nodes are responsible for enforcement decisions.
|
|
626
|
+
|
|
627
|
+
Args:
|
|
628
|
+
run: The RunState to check
|
|
629
|
+
|
|
630
|
+
Returns:
|
|
631
|
+
List of LimitWarning objects for any limits at warning threshold or exceeded
|
|
632
|
+
"""
|
|
633
|
+
warnings: list[LimitWarning] = []
|
|
634
|
+
limits = run.vars.get("_limits", {})
|
|
635
|
+
|
|
636
|
+
# Check iterations
|
|
637
|
+
current = int(limits.get("current_iteration", 0) or 0)
|
|
638
|
+
max_iter = int(limits.get("max_iterations", 25) or 25)
|
|
639
|
+
warn_pct = int(limits.get("warn_iterations_pct", 80) or 80)
|
|
640
|
+
|
|
641
|
+
if max_iter > 0:
|
|
642
|
+
if current >= max_iter:
|
|
643
|
+
warnings.append(LimitWarning("iterations", "exceeded", current, max_iter))
|
|
644
|
+
elif (current / max_iter * 100) >= warn_pct:
|
|
645
|
+
warnings.append(LimitWarning("iterations", "warning", current, max_iter))
|
|
646
|
+
|
|
647
|
+
# Check tokens
|
|
648
|
+
tokens_used = int(limits.get("estimated_tokens_used", 0) or 0)
|
|
649
|
+
max_tokens = int(limits.get("max_tokens", 32768) or 32768)
|
|
650
|
+
warn_tokens_pct = int(limits.get("warn_tokens_pct", 80) or 80)
|
|
651
|
+
|
|
652
|
+
if max_tokens > 0 and tokens_used > 0:
|
|
653
|
+
if tokens_used >= max_tokens:
|
|
654
|
+
warnings.append(LimitWarning("tokens", "exceeded", tokens_used, max_tokens))
|
|
655
|
+
elif (tokens_used / max_tokens * 100) >= warn_tokens_pct:
|
|
656
|
+
warnings.append(LimitWarning("tokens", "warning", tokens_used, max_tokens))
|
|
657
|
+
|
|
658
|
+
return warnings
|
|
659
|
+
|
|
660
|
+
def update_limits(self, run_id: str, updates: Dict[str, Any]) -> None:
|
|
661
|
+
"""Update limits for a running workflow.
|
|
662
|
+
|
|
663
|
+
This allows mid-session updates (e.g., from /max-tokens command).
|
|
664
|
+
Only allowed limit keys are updated; unknown keys are ignored.
|
|
665
|
+
|
|
666
|
+
Args:
|
|
667
|
+
run_id: The run to update
|
|
668
|
+
updates: Dict of limit updates (e.g., {"max_tokens": 65536})
|
|
669
|
+
|
|
670
|
+
Raises:
|
|
671
|
+
KeyError: If run_id not found
|
|
672
|
+
"""
|
|
673
|
+
run = self.get_state(run_id)
|
|
674
|
+
limits = run.vars.setdefault("_limits", {})
|
|
675
|
+
|
|
676
|
+
allowed_keys = {
|
|
677
|
+
"max_iterations",
|
|
678
|
+
"max_tokens",
|
|
679
|
+
"max_output_tokens",
|
|
680
|
+
"max_history_messages",
|
|
681
|
+
"warn_iterations_pct",
|
|
682
|
+
"warn_tokens_pct",
|
|
683
|
+
"estimated_tokens_used",
|
|
684
|
+
"current_iteration",
|
|
685
|
+
}
|
|
686
|
+
|
|
687
|
+
for key, value in updates.items():
|
|
688
|
+
if key in allowed_keys:
|
|
689
|
+
limits[key] = value
|
|
690
|
+
|
|
691
|
+
self._run_store.save(run)
|
|
692
|
+
|
|
192
693
|
def tick(self, *, workflow: WorkflowSpec, run_id: str, max_steps: int = 100) -> RunState:
|
|
193
694
|
run = self.get_state(run_id)
|
|
194
|
-
|
|
695
|
+
# Terminal runs never progress.
|
|
696
|
+
if run.status in (RunStatus.COMPLETED, RunStatus.FAILED, RunStatus.CANCELLED):
|
|
697
|
+
return run
|
|
698
|
+
if _is_paused_run_vars(run.vars):
|
|
195
699
|
return run
|
|
196
700
|
if run.status == RunStatus.WAITING:
|
|
197
701
|
# For WAIT_UNTIL we can auto-unblock if time passed
|
|
@@ -203,15 +707,40 @@ class Runtime:
|
|
|
203
707
|
else:
|
|
204
708
|
return run
|
|
205
709
|
|
|
710
|
+
# IMPORTANT (Web hosts / concurrency):
|
|
711
|
+
# A run may be paused/cancelled by an external control plane (e.g. AbstractFlow Web UI)
|
|
712
|
+
# while we're blocked inside a long-running effect (LLM/tool execution).
|
|
713
|
+
#
|
|
714
|
+
# We make `tick()` resilient to that by re-loading the persisted RunState before
|
|
715
|
+
# committing any updates. If an external pause/cancel is observed, we stop without
|
|
716
|
+
# overwriting it.
|
|
717
|
+
def _abort_if_externally_controlled() -> Optional[RunState]:
|
|
718
|
+
try:
|
|
719
|
+
latest = self.get_state(run_id)
|
|
720
|
+
except Exception:
|
|
721
|
+
return None
|
|
722
|
+
if latest.status == RunStatus.CANCELLED:
|
|
723
|
+
return latest
|
|
724
|
+
if _is_paused_run_vars(latest.vars):
|
|
725
|
+
return latest
|
|
726
|
+
return None
|
|
727
|
+
|
|
206
728
|
steps = 0
|
|
207
729
|
while steps < max_steps:
|
|
208
730
|
steps += 1
|
|
209
731
|
|
|
732
|
+
controlled = _abort_if_externally_controlled()
|
|
733
|
+
if controlled is not None:
|
|
734
|
+
return controlled
|
|
735
|
+
|
|
210
736
|
handler = workflow.get_node(run.current_node)
|
|
211
737
|
plan = handler(run, self._ctx)
|
|
212
738
|
|
|
213
739
|
# Completion
|
|
214
740
|
if plan.complete_output is not None:
|
|
741
|
+
controlled = _abort_if_externally_controlled()
|
|
742
|
+
if controlled is not None:
|
|
743
|
+
return controlled
|
|
215
744
|
run.status = RunStatus.COMPLETED
|
|
216
745
|
run.output = plan.complete_output
|
|
217
746
|
run.updated_at = utc_now_iso()
|
|
@@ -228,6 +757,9 @@ class Runtime:
|
|
|
228
757
|
if plan.effect is None:
|
|
229
758
|
if not plan.next_node:
|
|
230
759
|
raise ValueError(f"Node '{plan.node_id}' returned no effect and no next_node")
|
|
760
|
+
controlled = _abort_if_externally_controlled()
|
|
761
|
+
if controlled is not None:
|
|
762
|
+
return controlled
|
|
231
763
|
run.current_node = plan.next_node
|
|
232
764
|
run.updated_at = utc_now_iso()
|
|
233
765
|
self._run_store.save(run)
|
|
@@ -238,6 +770,13 @@ class Runtime:
|
|
|
238
770
|
run=run, node_id=plan.node_id, effect=plan.effect
|
|
239
771
|
)
|
|
240
772
|
prior_result = self._find_prior_completed_result(run.run_id, idempotency_key)
|
|
773
|
+
reused_prior_result = prior_result is not None
|
|
774
|
+
|
|
775
|
+
# Measure effect execution duration (wall-clock). This is used for
|
|
776
|
+
# host-side UX (badges, throughput estimates) and is stored in the
|
|
777
|
+
# runtime-owned node trace (JSON-safe).
|
|
778
|
+
import time
|
|
779
|
+
t0 = time.perf_counter()
|
|
241
780
|
|
|
242
781
|
if prior_result is not None:
|
|
243
782
|
# Reuse prior result - skip re-execution
|
|
@@ -252,7 +791,42 @@ class Runtime:
|
|
|
252
791
|
default_next_node=plan.next_node,
|
|
253
792
|
)
|
|
254
793
|
|
|
794
|
+
duration_ms = float((time.perf_counter() - t0) * 1000.0)
|
|
795
|
+
|
|
796
|
+
# Evidence capture (runtime-owned, durable):
|
|
797
|
+
# After tool execution completes, record provenance-first evidence for a small set of
|
|
798
|
+
# external-boundary tools (web_search/fetch_url/execute_command). This must happen
|
|
799
|
+
# BEFORE we persist node traces / result_key outputs so run state remains bounded.
|
|
800
|
+
try:
|
|
801
|
+
if (
|
|
802
|
+
not reused_prior_result
|
|
803
|
+
and plan.effect.type == EffectType.TOOL_CALLS
|
|
804
|
+
and outcome.status == "completed"
|
|
805
|
+
):
|
|
806
|
+
self._maybe_record_tool_evidence(
|
|
807
|
+
run=run,
|
|
808
|
+
node_id=plan.node_id,
|
|
809
|
+
effect=plan.effect,
|
|
810
|
+
tool_results=outcome.result,
|
|
811
|
+
)
|
|
812
|
+
except Exception:
|
|
813
|
+
# Evidence capture should never crash the run; failures are recorded in run vars.
|
|
814
|
+
pass
|
|
815
|
+
|
|
816
|
+
_record_node_trace(
|
|
817
|
+
run=run,
|
|
818
|
+
node_id=plan.node_id,
|
|
819
|
+
effect=plan.effect,
|
|
820
|
+
outcome=outcome,
|
|
821
|
+
idempotency_key=idempotency_key,
|
|
822
|
+
reused_prior_result=reused_prior_result,
|
|
823
|
+
duration_ms=duration_ms,
|
|
824
|
+
)
|
|
825
|
+
|
|
255
826
|
if outcome.status == "failed":
|
|
827
|
+
controlled = _abort_if_externally_controlled()
|
|
828
|
+
if controlled is not None:
|
|
829
|
+
return controlled
|
|
256
830
|
run.status = RunStatus.FAILED
|
|
257
831
|
run.error = outcome.error or "unknown error"
|
|
258
832
|
run.updated_at = utc_now_iso()
|
|
@@ -261,6 +835,9 @@ class Runtime:
|
|
|
261
835
|
|
|
262
836
|
if outcome.status == "waiting":
|
|
263
837
|
assert outcome.wait is not None
|
|
838
|
+
controlled = _abort_if_externally_controlled()
|
|
839
|
+
if controlled is not None:
|
|
840
|
+
return controlled
|
|
264
841
|
run.status = RunStatus.WAITING
|
|
265
842
|
run.waiting = outcome.wait
|
|
266
843
|
run.updated_at = utc_now_iso()
|
|
@@ -271,16 +848,85 @@ class Runtime:
|
|
|
271
848
|
if plan.effect.result_key and outcome.result is not None:
|
|
272
849
|
_set_nested(run.vars, plan.effect.result_key, outcome.result)
|
|
273
850
|
|
|
851
|
+
# Terminal effect node: treat missing next_node as completion.
|
|
852
|
+
#
|
|
853
|
+
# Rationale: StepPlan.complete_output is evaluated *before* effects
|
|
854
|
+
# execute, so an effectful node cannot both execute an effect and
|
|
855
|
+
# complete the run in a single StepPlan. Allowing next_node=None
|
|
856
|
+
# makes "end on an effect node" valid (Blueprint-style UX).
|
|
274
857
|
if not plan.next_node:
|
|
275
|
-
|
|
858
|
+
controlled = _abort_if_externally_controlled()
|
|
859
|
+
if controlled is not None:
|
|
860
|
+
return controlled
|
|
861
|
+
run.status = RunStatus.COMPLETED
|
|
862
|
+
run.output = {"success": True, "result": outcome.result}
|
|
863
|
+
run.updated_at = utc_now_iso()
|
|
864
|
+
self._run_store.save(run)
|
|
865
|
+
return run
|
|
866
|
+
controlled = _abort_if_externally_controlled()
|
|
867
|
+
if controlled is not None:
|
|
868
|
+
return controlled
|
|
276
869
|
run.current_node = plan.next_node
|
|
277
870
|
run.updated_at = utc_now_iso()
|
|
278
871
|
self._run_store.save(run)
|
|
279
872
|
|
|
280
873
|
return run
|
|
281
874
|
|
|
282
|
-
def
|
|
875
|
+
def _maybe_record_tool_evidence(
|
|
876
|
+
self,
|
|
877
|
+
*,
|
|
878
|
+
run: RunState,
|
|
879
|
+
node_id: str,
|
|
880
|
+
effect: Effect,
|
|
881
|
+
tool_results: Optional[Dict[str, Any]],
|
|
882
|
+
) -> None:
|
|
883
|
+
"""Best-effort evidence capture for TOOL_CALLS.
|
|
884
|
+
|
|
885
|
+
This is intentionally non-fatal: evidence capture must not crash the run,
|
|
886
|
+
but failures should be visible in durable run state for debugging.
|
|
887
|
+
"""
|
|
888
|
+
if effect.type != EffectType.TOOL_CALLS:
|
|
889
|
+
return
|
|
890
|
+
if not isinstance(tool_results, dict):
|
|
891
|
+
return
|
|
892
|
+
payload = effect.payload if isinstance(effect.payload, dict) else {}
|
|
893
|
+
tool_calls = payload.get("tool_calls")
|
|
894
|
+
if not isinstance(tool_calls, list) or not tool_calls:
|
|
895
|
+
return
|
|
896
|
+
|
|
897
|
+
artifact_store = self._artifact_store
|
|
898
|
+
if artifact_store is None:
|
|
899
|
+
return
|
|
900
|
+
|
|
901
|
+
try:
|
|
902
|
+
from ..evidence import EvidenceRecorder
|
|
903
|
+
|
|
904
|
+
EvidenceRecorder(artifact_store=artifact_store).record_tool_calls(
|
|
905
|
+
run=run,
|
|
906
|
+
node_id=str(node_id or ""),
|
|
907
|
+
tool_calls=list(tool_calls),
|
|
908
|
+
tool_results=tool_results,
|
|
909
|
+
)
|
|
910
|
+
except Exception as e:
|
|
911
|
+
runtime_ns = _ensure_runtime_namespace(run.vars)
|
|
912
|
+
warnings = runtime_ns.get("evidence_warnings")
|
|
913
|
+
if not isinstance(warnings, list):
|
|
914
|
+
warnings = []
|
|
915
|
+
runtime_ns["evidence_warnings"] = warnings
|
|
916
|
+
warnings.append({"ts": utc_now_iso(), "node_id": str(node_id or ""), "error": str(e)})
|
|
917
|
+
|
|
918
|
+
def resume(
|
|
919
|
+
self,
|
|
920
|
+
*,
|
|
921
|
+
workflow: WorkflowSpec,
|
|
922
|
+
run_id: str,
|
|
923
|
+
wait_key: Optional[str],
|
|
924
|
+
payload: Dict[str, Any],
|
|
925
|
+
max_steps: int = 100,
|
|
926
|
+
) -> RunState:
|
|
283
927
|
run = self.get_state(run_id)
|
|
928
|
+
if _is_paused_run_vars(run.vars):
|
|
929
|
+
raise ValueError("Run is paused")
|
|
284
930
|
if run.status != RunStatus.WAITING or run.waiting is None:
|
|
285
931
|
raise ValueError("Run is not waiting")
|
|
286
932
|
|
|
@@ -291,14 +937,101 @@ class Runtime:
|
|
|
291
937
|
resume_to = run.waiting.resume_to_node
|
|
292
938
|
result_key = run.waiting.result_key
|
|
293
939
|
|
|
940
|
+
# Keep track of what we actually persisted for this resume (tool resumes may
|
|
941
|
+
# merge blocked-by-allowlist entries back into the payload).
|
|
942
|
+
stored_payload: Dict[str, Any] = payload
|
|
943
|
+
|
|
294
944
|
if result_key:
|
|
295
|
-
|
|
945
|
+
# Tool waits may carry blocked-by-allowlist metadata. External hosts typically only execute
|
|
946
|
+
# the filtered subset of tool calls and resume with results for those calls. To keep agent
|
|
947
|
+
# semantics correct (and evidence indices aligned), merge blocked entries back into the
|
|
948
|
+
# resumed payload deterministically.
|
|
949
|
+
merged_payload: Dict[str, Any] = payload
|
|
950
|
+
try:
|
|
951
|
+
details = run.waiting.details if run.waiting is not None else None
|
|
952
|
+
if isinstance(details, dict):
|
|
953
|
+
blocked = details.get("blocked_by_index")
|
|
954
|
+
original_count = details.get("original_call_count")
|
|
955
|
+
results = payload.get("results") if isinstance(payload, dict) else None
|
|
956
|
+
if (
|
|
957
|
+
isinstance(blocked, dict)
|
|
958
|
+
and isinstance(original_count, int)
|
|
959
|
+
and original_count > 0
|
|
960
|
+
and isinstance(results, list)
|
|
961
|
+
and len(results) != original_count
|
|
962
|
+
):
|
|
963
|
+
merged_results: list[Any] = []
|
|
964
|
+
executed_iter = iter(results)
|
|
965
|
+
|
|
966
|
+
for idx in range(original_count):
|
|
967
|
+
blocked_entry = blocked.get(str(idx))
|
|
968
|
+
if isinstance(blocked_entry, dict):
|
|
969
|
+
merged_results.append(blocked_entry)
|
|
970
|
+
continue
|
|
971
|
+
try:
|
|
972
|
+
merged_results.append(next(executed_iter))
|
|
973
|
+
except StopIteration:
|
|
974
|
+
merged_results.append(
|
|
975
|
+
{
|
|
976
|
+
"call_id": "",
|
|
977
|
+
"name": "",
|
|
978
|
+
"success": False,
|
|
979
|
+
"output": None,
|
|
980
|
+
"error": "Missing tool result",
|
|
981
|
+
}
|
|
982
|
+
)
|
|
983
|
+
|
|
984
|
+
merged_payload = dict(payload)
|
|
985
|
+
merged_payload["results"] = merged_results
|
|
986
|
+
merged_payload.setdefault("mode", "executed")
|
|
987
|
+
except Exception:
|
|
988
|
+
merged_payload = payload
|
|
989
|
+
|
|
990
|
+
_set_nested(run.vars, result_key, merged_payload)
|
|
991
|
+
stored_payload = merged_payload
|
|
992
|
+
# Passthrough tool execution: the host resumes with tool results. We still want
|
|
993
|
+
# evidence capture and payload-bounding (store large parts as artifacts) before
|
|
994
|
+
# the run continues.
|
|
995
|
+
try:
|
|
996
|
+
details = run.waiting.details if run.waiting is not None else None
|
|
997
|
+
tool_calls_for_evidence = None
|
|
998
|
+
if isinstance(details, dict):
|
|
999
|
+
tool_calls_for_evidence = details.get("tool_calls_for_evidence")
|
|
1000
|
+
if not isinstance(tool_calls_for_evidence, list):
|
|
1001
|
+
tool_calls_for_evidence = details.get("tool_calls")
|
|
1002
|
+
|
|
1003
|
+
if isinstance(tool_calls_for_evidence, list):
|
|
1004
|
+
from ..evidence import EvidenceRecorder
|
|
1005
|
+
|
|
1006
|
+
artifact_store = self._artifact_store
|
|
1007
|
+
if artifact_store is not None and isinstance(payload, dict):
|
|
1008
|
+
EvidenceRecorder(artifact_store=artifact_store).record_tool_calls(
|
|
1009
|
+
run=run,
|
|
1010
|
+
node_id=str(run.current_node or ""),
|
|
1011
|
+
tool_calls=list(tool_calls_for_evidence or []),
|
|
1012
|
+
tool_results=merged_payload,
|
|
1013
|
+
)
|
|
1014
|
+
except Exception:
|
|
1015
|
+
pass
|
|
1016
|
+
|
|
1017
|
+
# Terminal waiting node: if there is no resume target, treat the resume payload as
|
|
1018
|
+
# the final output instead of re-executing the waiting node again (which would
|
|
1019
|
+
# otherwise create an infinite wait/resume loop).
|
|
1020
|
+
if resume_to is None:
|
|
1021
|
+
run.status = RunStatus.COMPLETED
|
|
1022
|
+
run.waiting = None
|
|
1023
|
+
run.output = {"success": True, "result": stored_payload}
|
|
1024
|
+
run.updated_at = utc_now_iso()
|
|
1025
|
+
self._run_store.save(run)
|
|
1026
|
+
return run
|
|
296
1027
|
|
|
297
1028
|
self._apply_resume_payload(run, payload=payload, override_node=resume_to)
|
|
298
1029
|
run.updated_at = utc_now_iso()
|
|
299
1030
|
self._run_store.save(run)
|
|
300
1031
|
|
|
301
|
-
|
|
1032
|
+
if max_steps <= 0:
|
|
1033
|
+
return run
|
|
1034
|
+
return self.tick(workflow=workflow, run_id=run_id, max_steps=max_steps)
|
|
302
1035
|
|
|
303
1036
|
# ---------------------------------------------------------------------
|
|
304
1037
|
# Internals
|
|
@@ -308,8 +1041,88 @@ class Runtime:
|
|
|
308
1041
|
self._handlers[EffectType.WAIT_EVENT] = self._handle_wait_event
|
|
309
1042
|
self._handlers[EffectType.WAIT_UNTIL] = self._handle_wait_until
|
|
310
1043
|
self._handlers[EffectType.ASK_USER] = self._handle_ask_user
|
|
1044
|
+
self._handlers[EffectType.ANSWER_USER] = self._handle_answer_user
|
|
1045
|
+
self._handlers[EffectType.EMIT_EVENT] = self._handle_emit_event
|
|
1046
|
+
self._handlers[EffectType.MEMORY_QUERY] = self._handle_memory_query
|
|
1047
|
+
self._handlers[EffectType.MEMORY_TAG] = self._handle_memory_tag
|
|
1048
|
+
self._handlers[EffectType.MEMORY_COMPACT] = self._handle_memory_compact
|
|
1049
|
+
self._handlers[EffectType.MEMORY_NOTE] = self._handle_memory_note
|
|
1050
|
+
self._handlers[EffectType.MEMORY_REHYDRATE] = self._handle_memory_rehydrate
|
|
1051
|
+
self._handlers[EffectType.VARS_QUERY] = self._handle_vars_query
|
|
311
1052
|
self._handlers[EffectType.START_SUBWORKFLOW] = self._handle_start_subworkflow
|
|
312
1053
|
|
|
1054
|
+
# Built-in memory helpers ------------------------------------------------
|
|
1055
|
+
|
|
1056
|
+
def _global_memory_run_id(self) -> str:
|
|
1057
|
+
"""Return the global memory run id (stable).
|
|
1058
|
+
|
|
1059
|
+
Hosts can override via `ABSTRACTRUNTIME_GLOBAL_MEMORY_RUN_ID`.
|
|
1060
|
+
"""
|
|
1061
|
+
rid = os.environ.get("ABSTRACTRUNTIME_GLOBAL_MEMORY_RUN_ID")
|
|
1062
|
+
rid = str(rid or "").strip()
|
|
1063
|
+
if rid and _SAFE_RUN_ID_PATTERN.match(rid):
|
|
1064
|
+
return rid
|
|
1065
|
+
return _DEFAULT_GLOBAL_MEMORY_RUN_ID
|
|
1066
|
+
|
|
1067
|
+
def _ensure_global_memory_run(self) -> RunState:
|
|
1068
|
+
"""Load or create the global memory run used as the owner for `scope="global"` spans."""
|
|
1069
|
+
rid = self._global_memory_run_id()
|
|
1070
|
+
existing = self._run_store.load(rid)
|
|
1071
|
+
if existing is not None:
|
|
1072
|
+
return existing
|
|
1073
|
+
|
|
1074
|
+
run = RunState(
|
|
1075
|
+
run_id=rid,
|
|
1076
|
+
workflow_id="__global_memory__",
|
|
1077
|
+
status=RunStatus.COMPLETED,
|
|
1078
|
+
current_node="done",
|
|
1079
|
+
vars={
|
|
1080
|
+
"context": {"task": "", "messages": []},
|
|
1081
|
+
"scratchpad": {},
|
|
1082
|
+
"_runtime": {"memory_spans": []},
|
|
1083
|
+
"_temp": {},
|
|
1084
|
+
"_limits": {},
|
|
1085
|
+
},
|
|
1086
|
+
waiting=None,
|
|
1087
|
+
output={"messages": []},
|
|
1088
|
+
error=None,
|
|
1089
|
+
created_at=utc_now_iso(),
|
|
1090
|
+
updated_at=utc_now_iso(),
|
|
1091
|
+
actor_id=None,
|
|
1092
|
+
session_id=None,
|
|
1093
|
+
parent_run_id=None,
|
|
1094
|
+
)
|
|
1095
|
+
self._run_store.save(run)
|
|
1096
|
+
return run
|
|
1097
|
+
|
|
1098
|
+
def _resolve_session_root_run(self, run: RunState) -> RunState:
|
|
1099
|
+
"""Resolve the root run of the current run-tree (walk `parent_run_id`)."""
|
|
1100
|
+
cur = run
|
|
1101
|
+
seen: set[str] = set()
|
|
1102
|
+
while True:
|
|
1103
|
+
parent_id = getattr(cur, "parent_run_id", None)
|
|
1104
|
+
if not isinstance(parent_id, str) or not parent_id.strip():
|
|
1105
|
+
return cur
|
|
1106
|
+
pid = parent_id.strip()
|
|
1107
|
+
if pid in seen:
|
|
1108
|
+
# Defensive: break cycles.
|
|
1109
|
+
return cur
|
|
1110
|
+
seen.add(pid)
|
|
1111
|
+
parent = self._run_store.load(pid)
|
|
1112
|
+
if parent is None:
|
|
1113
|
+
return cur
|
|
1114
|
+
cur = parent
|
|
1115
|
+
|
|
1116
|
+
def _resolve_scope_owner_run(self, base_run: RunState, *, scope: str) -> RunState:
|
|
1117
|
+
s = str(scope or "").strip().lower() or "run"
|
|
1118
|
+
if s == "run":
|
|
1119
|
+
return base_run
|
|
1120
|
+
if s == "session":
|
|
1121
|
+
return self._resolve_session_root_run(base_run)
|
|
1122
|
+
if s == "global":
|
|
1123
|
+
return self._ensure_global_memory_run()
|
|
1124
|
+
raise ValueError(f"Unknown memory scope: {scope}")
|
|
1125
|
+
|
|
313
1126
|
def _find_prior_completed_result(
|
|
314
1127
|
self, run_id: str, idempotency_key: str
|
|
315
1128
|
) -> Optional[Dict[str, Any]]:
|
|
@@ -399,18 +1212,25 @@ class Runtime:
|
|
|
399
1212
|
# correct resume semantics for waiting effects without duplicating payload fields.
|
|
400
1213
|
try:
|
|
401
1214
|
sig = inspect.signature(handler)
|
|
1215
|
+
except (TypeError, ValueError):
|
|
1216
|
+
sig = None
|
|
1217
|
+
|
|
1218
|
+
if sig is not None:
|
|
402
1219
|
params = list(sig.parameters.values())
|
|
403
1220
|
has_varargs = any(p.kind == inspect.Parameter.VAR_POSITIONAL for p in params)
|
|
404
1221
|
if has_varargs or len(params) >= 3:
|
|
405
1222
|
return handler(run, effect, default_next_node)
|
|
406
1223
|
return handler(run, effect)
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
1224
|
+
|
|
1225
|
+
# If signature inspection fails, fall back to attempting the new call form,
|
|
1226
|
+
# then the legacy form (only for arity-mismatch TypeError).
|
|
1227
|
+
try:
|
|
1228
|
+
return handler(run, effect, default_next_node)
|
|
1229
|
+
except TypeError as e:
|
|
1230
|
+
msg = str(e)
|
|
1231
|
+
if "positional" in msg and "argument" in msg and ("given" in msg or "required" in msg):
|
|
413
1232
|
return handler(run, effect)
|
|
1233
|
+
raise
|
|
414
1234
|
|
|
415
1235
|
def _apply_resume_payload(self, run: RunState, *, payload: Dict[str, Any], override_node: Optional[str]) -> None:
|
|
416
1236
|
run.status = RunStatus.RUNNING
|
|
@@ -423,16 +1243,226 @@ class Runtime:
|
|
|
423
1243
|
def _handle_wait_event(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
424
1244
|
wait_key = effect.payload.get("wait_key")
|
|
425
1245
|
if not wait_key:
|
|
426
|
-
|
|
1246
|
+
# Allow structured payloads (scope/name) so hosts can compute stable keys.
|
|
1247
|
+
scope = effect.payload.get("scope", "session")
|
|
1248
|
+
name = effect.payload.get("name") or effect.payload.get("event_name")
|
|
1249
|
+
if not isinstance(name, str) or not name.strip():
|
|
1250
|
+
return EffectOutcome.failed("wait_event requires payload.wait_key or payload.name")
|
|
1251
|
+
|
|
1252
|
+
session_id = effect.payload.get("session_id") or run.session_id or run.run_id
|
|
1253
|
+
try:
|
|
1254
|
+
wait_key = build_event_wait_key(
|
|
1255
|
+
scope=str(scope or "session"),
|
|
1256
|
+
name=str(name),
|
|
1257
|
+
session_id=str(session_id) if session_id is not None else None,
|
|
1258
|
+
workflow_id=run.workflow_id,
|
|
1259
|
+
run_id=run.run_id,
|
|
1260
|
+
)
|
|
1261
|
+
except Exception as e:
|
|
1262
|
+
return EffectOutcome.failed(f"wait_event invalid payload: {e}")
|
|
427
1263
|
resume_to = effect.payload.get("resume_to_node") or default_next_node
|
|
1264
|
+
# Optional UX metadata for hosts:
|
|
1265
|
+
# - "prompt"/"choices"/"allow_free_text" enable durable human-in-the-loop
|
|
1266
|
+
# waits using EVENT as the wakeup mechanism (useful for thin clients).
|
|
1267
|
+
prompt: Optional[str] = None
|
|
1268
|
+
try:
|
|
1269
|
+
p = effect.payload.get("prompt")
|
|
1270
|
+
if isinstance(p, str) and p.strip():
|
|
1271
|
+
prompt = p
|
|
1272
|
+
except Exception:
|
|
1273
|
+
prompt = None
|
|
1274
|
+
|
|
1275
|
+
choices: Optional[List[str]] = None
|
|
1276
|
+
try:
|
|
1277
|
+
raw_choices = effect.payload.get("choices")
|
|
1278
|
+
if isinstance(raw_choices, list):
|
|
1279
|
+
normalized: List[str] = []
|
|
1280
|
+
for c in raw_choices:
|
|
1281
|
+
if isinstance(c, str) and c.strip():
|
|
1282
|
+
normalized.append(c.strip())
|
|
1283
|
+
choices = normalized
|
|
1284
|
+
except Exception:
|
|
1285
|
+
choices = None
|
|
1286
|
+
|
|
1287
|
+
allow_free_text = True
|
|
1288
|
+
try:
|
|
1289
|
+
aft = effect.payload.get("allow_free_text")
|
|
1290
|
+
if aft is None:
|
|
1291
|
+
aft = effect.payload.get("allowFreeText")
|
|
1292
|
+
if aft is not None:
|
|
1293
|
+
allow_free_text = bool(aft)
|
|
1294
|
+
except Exception:
|
|
1295
|
+
allow_free_text = True
|
|
1296
|
+
|
|
1297
|
+
details = None
|
|
1298
|
+
try:
|
|
1299
|
+
d = effect.payload.get("details")
|
|
1300
|
+
if isinstance(d, dict):
|
|
1301
|
+
details = dict(d)
|
|
1302
|
+
except Exception:
|
|
1303
|
+
details = None
|
|
428
1304
|
wait = WaitState(
|
|
429
1305
|
reason=WaitReason.EVENT,
|
|
430
1306
|
wait_key=str(wait_key),
|
|
431
1307
|
resume_to_node=resume_to,
|
|
432
1308
|
result_key=effect.result_key,
|
|
1309
|
+
prompt=prompt,
|
|
1310
|
+
choices=choices,
|
|
1311
|
+
allow_free_text=allow_free_text,
|
|
1312
|
+
details=details,
|
|
433
1313
|
)
|
|
434
1314
|
return EffectOutcome.waiting(wait)
|
|
435
1315
|
|
|
1316
|
+
def _handle_emit_event(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
1317
|
+
"""Emit a durable event and resume matching WAIT_EVENT runs.
|
|
1318
|
+
|
|
1319
|
+
Payload:
|
|
1320
|
+
- name: str (required) event name
|
|
1321
|
+
- scope: str (optional, default "session") "session" | "workflow" | "run" | "global"
|
|
1322
|
+
- session_id: str (optional) target session id (for cross-workflow targeted delivery)
|
|
1323
|
+
- payload: dict (optional) event payload delivered to listeners
|
|
1324
|
+
- max_steps: int (optional, default 100) tick budget per resumed run
|
|
1325
|
+
|
|
1326
|
+
Notes:
|
|
1327
|
+
- This is durable because it resumes WAIT_EVENT runs via Runtime.resume(), which
|
|
1328
|
+
checkpoints run state and appends ledger records for subsequent steps.
|
|
1329
|
+
- Delivery is best-effort and at-least-once; listeners should be idempotent if needed.
|
|
1330
|
+
"""
|
|
1331
|
+
name = effect.payload.get("name") or effect.payload.get("event_name")
|
|
1332
|
+
if not isinstance(name, str) or not name.strip():
|
|
1333
|
+
return EffectOutcome.failed("emit_event requires payload.name")
|
|
1334
|
+
|
|
1335
|
+
scope = effect.payload.get("scope", "session")
|
|
1336
|
+
target_session_id = effect.payload.get("session_id")
|
|
1337
|
+
payload = effect.payload.get("payload") or {}
|
|
1338
|
+
if not isinstance(payload, dict):
|
|
1339
|
+
payload = {"value": payload}
|
|
1340
|
+
|
|
1341
|
+
# NOTE: we intentionally resume listeners with max_steps=0 (no execution).
|
|
1342
|
+
# Hosts (web backend, workers, schedulers) should drive RUNNING runs and
|
|
1343
|
+
# stream their StepRecords deterministically (better observability and UX).
|
|
1344
|
+
try:
|
|
1345
|
+
max_steps = int(effect.payload.get("max_steps", 0) or 0)
|
|
1346
|
+
except Exception:
|
|
1347
|
+
max_steps = 0
|
|
1348
|
+
if max_steps < 0:
|
|
1349
|
+
max_steps = 0
|
|
1350
|
+
|
|
1351
|
+
# Determine target scope id (default: current session/run).
|
|
1352
|
+
session_id = target_session_id
|
|
1353
|
+
if session_id is None and str(scope or "session").strip().lower() == "session":
|
|
1354
|
+
session_id = run.session_id or run.run_id
|
|
1355
|
+
|
|
1356
|
+
try:
|
|
1357
|
+
wait_key = build_event_wait_key(
|
|
1358
|
+
scope=str(scope or "session"),
|
|
1359
|
+
name=str(name),
|
|
1360
|
+
session_id=str(session_id) if session_id is not None else None,
|
|
1361
|
+
workflow_id=run.workflow_id,
|
|
1362
|
+
run_id=run.run_id,
|
|
1363
|
+
)
|
|
1364
|
+
except Exception as e:
|
|
1365
|
+
return EffectOutcome.failed(f"emit_event invalid payload: {e}")
|
|
1366
|
+
|
|
1367
|
+
# Wildcard listeners ("*") receive all events within the same scope_id.
|
|
1368
|
+
wildcard_wait_key: Optional[str] = None
|
|
1369
|
+
try:
|
|
1370
|
+
wildcard_wait_key = build_event_wait_key(
|
|
1371
|
+
scope=str(scope or "session"),
|
|
1372
|
+
name="*",
|
|
1373
|
+
session_id=str(session_id) if session_id is not None else None,
|
|
1374
|
+
workflow_id=run.workflow_id,
|
|
1375
|
+
run_id=run.run_id,
|
|
1376
|
+
)
|
|
1377
|
+
except Exception:
|
|
1378
|
+
wildcard_wait_key = None
|
|
1379
|
+
|
|
1380
|
+
if self._workflow_registry is None:
|
|
1381
|
+
return EffectOutcome.failed(
|
|
1382
|
+
"emit_event requires a workflow_registry to resume target runs. "
|
|
1383
|
+
"Set it via Runtime(workflow_registry=...) or runtime.set_workflow_registry(...)."
|
|
1384
|
+
)
|
|
1385
|
+
|
|
1386
|
+
if not isinstance(self._run_store, QueryableRunStore):
|
|
1387
|
+
return EffectOutcome.failed(
|
|
1388
|
+
"emit_event requires a QueryableRunStore to find waiting runs. "
|
|
1389
|
+
"Use InMemoryRunStore/JsonFileRunStore or provide a queryable store."
|
|
1390
|
+
)
|
|
1391
|
+
|
|
1392
|
+
# Find all runs waiting for this event key.
|
|
1393
|
+
candidates = self._run_store.list_runs(
|
|
1394
|
+
status=RunStatus.WAITING,
|
|
1395
|
+
wait_reason=WaitReason.EVENT,
|
|
1396
|
+
limit=10_000,
|
|
1397
|
+
)
|
|
1398
|
+
|
|
1399
|
+
delivered_to: list[str] = []
|
|
1400
|
+
resumed: list[Dict[str, Any]] = []
|
|
1401
|
+
envelope = {
|
|
1402
|
+
"event_id": effect.payload.get("event_id") or None,
|
|
1403
|
+
"name": str(name),
|
|
1404
|
+
"scope": str(scope or "session"),
|
|
1405
|
+
"session_id": str(session_id) if session_id is not None else None,
|
|
1406
|
+
"payload": dict(payload),
|
|
1407
|
+
"emitted_at": utc_now_iso(),
|
|
1408
|
+
"emitter": {
|
|
1409
|
+
"run_id": run.run_id,
|
|
1410
|
+
"workflow_id": run.workflow_id,
|
|
1411
|
+
"node_id": run.current_node,
|
|
1412
|
+
},
|
|
1413
|
+
}
|
|
1414
|
+
|
|
1415
|
+
available_in_session: list[str] = []
|
|
1416
|
+
prefix = f"evt:session:{session_id}:"
|
|
1417
|
+
|
|
1418
|
+
for r in candidates:
|
|
1419
|
+
if _is_paused_run_vars(getattr(r, "vars", None)):
|
|
1420
|
+
continue
|
|
1421
|
+
w = getattr(r, "waiting", None)
|
|
1422
|
+
if w is None:
|
|
1423
|
+
continue
|
|
1424
|
+
wk = getattr(w, "wait_key", None)
|
|
1425
|
+
if isinstance(wk, str) and wk.startswith(prefix):
|
|
1426
|
+
# Help users debug name mismatches (best-effort).
|
|
1427
|
+
suffix = wk[len(prefix) :]
|
|
1428
|
+
if suffix and suffix not in available_in_session and len(available_in_session) < 15:
|
|
1429
|
+
available_in_session.append(suffix)
|
|
1430
|
+
if wk != wait_key and (wildcard_wait_key is None or wk != wildcard_wait_key):
|
|
1431
|
+
continue
|
|
1432
|
+
|
|
1433
|
+
wf = self._workflow_registry.get(r.workflow_id)
|
|
1434
|
+
if wf is None:
|
|
1435
|
+
# Can't resume without the spec; skip but include diagnostic in result.
|
|
1436
|
+
resumed.append({"run_id": r.run_id, "status": "skipped", "error": "workflow_not_registered"})
|
|
1437
|
+
continue
|
|
1438
|
+
|
|
1439
|
+
try:
|
|
1440
|
+
# Resume using the run's own wait_key (supports wildcard listeners).
|
|
1441
|
+
resume_key = wk if isinstance(wk, str) and wk else None
|
|
1442
|
+
new_state = self.resume(
|
|
1443
|
+
workflow=wf,
|
|
1444
|
+
run_id=r.run_id,
|
|
1445
|
+
wait_key=resume_key,
|
|
1446
|
+
payload=envelope,
|
|
1447
|
+
max_steps=max_steps,
|
|
1448
|
+
)
|
|
1449
|
+
delivered_to.append(r.run_id)
|
|
1450
|
+
resumed.append({"run_id": r.run_id, "status": new_state.status.value})
|
|
1451
|
+
except Exception as e:
|
|
1452
|
+
resumed.append({"run_id": r.run_id, "status": "error", "error": str(e)})
|
|
1453
|
+
|
|
1454
|
+
out: Dict[str, Any] = {
|
|
1455
|
+
"wait_key": wait_key,
|
|
1456
|
+
"name": str(name),
|
|
1457
|
+
"scope": str(scope or "session"),
|
|
1458
|
+
"delivered": len(delivered_to),
|
|
1459
|
+
"delivered_to": delivered_to,
|
|
1460
|
+
"resumed": resumed,
|
|
1461
|
+
}
|
|
1462
|
+
if not delivered_to and available_in_session:
|
|
1463
|
+
out["available_listeners_in_session"] = available_in_session
|
|
1464
|
+
return EffectOutcome.completed(out)
|
|
1465
|
+
|
|
436
1466
|
def _handle_wait_until(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
437
1467
|
until = effect.payload.get("until")
|
|
438
1468
|
if not until:
|
|
@@ -472,6 +1502,22 @@ class Runtime:
|
|
|
472
1502
|
)
|
|
473
1503
|
return EffectOutcome.waiting(wait)
|
|
474
1504
|
|
|
1505
|
+
def _handle_answer_user(
|
|
1506
|
+
self, run: RunState, effect: Effect, default_next_node: Optional[str]
|
|
1507
|
+
) -> EffectOutcome:
|
|
1508
|
+
"""Handle ANSWER_USER effect.
|
|
1509
|
+
|
|
1510
|
+
This effect is intentionally non-blocking: it completes immediately and
|
|
1511
|
+
returns the message payload so the host UI can render it.
|
|
1512
|
+
"""
|
|
1513
|
+
message = effect.payload.get("message")
|
|
1514
|
+
if message is None:
|
|
1515
|
+
# Backward/compat convenience aliases.
|
|
1516
|
+
message = effect.payload.get("text") or effect.payload.get("content")
|
|
1517
|
+
if message is None:
|
|
1518
|
+
return EffectOutcome.failed("answer_user requires payload.message")
|
|
1519
|
+
return EffectOutcome.completed({"message": str(message)})
|
|
1520
|
+
|
|
475
1521
|
def _handle_start_subworkflow(
|
|
476
1522
|
self, run: RunState, effect: Effect, default_next_node: Optional[str]
|
|
477
1523
|
) -> EffectOutcome:
|
|
@@ -508,6 +1554,8 @@ class Runtime:
|
|
|
508
1554
|
|
|
509
1555
|
sub_vars = effect.payload.get("vars") or {}
|
|
510
1556
|
is_async = bool(effect.payload.get("async", False))
|
|
1557
|
+
wait_for_completion = bool(effect.payload.get("wait", False))
|
|
1558
|
+
include_traces = bool(effect.payload.get("include_traces", False))
|
|
511
1559
|
resume_to = effect.payload.get("resume_to_node") or default_next_node
|
|
512
1560
|
|
|
513
1561
|
# Start the subworkflow with parent tracking
|
|
@@ -515,12 +1563,34 @@ class Runtime:
|
|
|
515
1563
|
workflow=sub_workflow,
|
|
516
1564
|
vars=sub_vars,
|
|
517
1565
|
actor_id=run.actor_id, # Inherit actor from parent
|
|
1566
|
+
session_id=getattr(run, "session_id", None), # Inherit session from parent
|
|
518
1567
|
parent_run_id=run.run_id, # Track parent for hierarchy
|
|
519
1568
|
)
|
|
520
1569
|
|
|
521
1570
|
if is_async:
|
|
522
|
-
# Async mode: return immediately
|
|
523
|
-
#
|
|
1571
|
+
# Async mode: start the child and return immediately.
|
|
1572
|
+
#
|
|
1573
|
+
# If `wait=True`, we *also* transition the parent into a durable WAITING state
|
|
1574
|
+
# so a host (e.g. AbstractFlow WebSocket runner loop) can:
|
|
1575
|
+
# - tick the child run incrementally (and stream node traces in real time)
|
|
1576
|
+
# - resume the parent once the child completes (by calling runtime.resume(...))
|
|
1577
|
+
#
|
|
1578
|
+
# Without `wait=True`, this remains fire-and-forget.
|
|
1579
|
+
if wait_for_completion:
|
|
1580
|
+
wait = WaitState(
|
|
1581
|
+
reason=WaitReason.SUBWORKFLOW,
|
|
1582
|
+
wait_key=f"subworkflow:{sub_run_id}",
|
|
1583
|
+
resume_to_node=resume_to,
|
|
1584
|
+
result_key=effect.result_key,
|
|
1585
|
+
details={
|
|
1586
|
+
"sub_run_id": sub_run_id,
|
|
1587
|
+
"sub_workflow_id": workflow_id,
|
|
1588
|
+
"async": True,
|
|
1589
|
+
},
|
|
1590
|
+
)
|
|
1591
|
+
return EffectOutcome.waiting(wait)
|
|
1592
|
+
|
|
1593
|
+
# Fire-and-forget: caller is responsible for driving/observing the child.
|
|
524
1594
|
return EffectOutcome.completed({"sub_run_id": sub_run_id, "async": True})
|
|
525
1595
|
|
|
526
1596
|
# Sync mode: run the subworkflow until completion or waiting
|
|
@@ -532,10 +1602,10 @@ class Runtime:
|
|
|
532
1602
|
|
|
533
1603
|
if sub_state.status == RunStatus.COMPLETED:
|
|
534
1604
|
# Subworkflow completed - return its output
|
|
535
|
-
|
|
536
|
-
|
|
537
|
-
"
|
|
538
|
-
|
|
1605
|
+
result: Dict[str, Any] = {"sub_run_id": sub_run_id, "output": sub_state.output}
|
|
1606
|
+
if include_traces:
|
|
1607
|
+
result["node_traces"] = self.get_node_traces(sub_run_id)
|
|
1608
|
+
return EffectOutcome.completed(result)
|
|
539
1609
|
|
|
540
1610
|
if sub_state.status == RunStatus.FAILED:
|
|
541
1611
|
# Subworkflow failed - propagate error
|
|
@@ -564,6 +1634,1523 @@ class Runtime:
|
|
|
564
1634
|
# Unexpected status
|
|
565
1635
|
return EffectOutcome.failed(f"Unexpected subworkflow status: {sub_state.status.value}")
|
|
566
1636
|
|
|
1637
|
+
# Built-in memory handlers ---------------------------------------------
|
|
1638
|
+
|
|
1639
|
+
def _handle_memory_query(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
1640
|
+
"""Handle MEMORY_QUERY.
|
|
1641
|
+
|
|
1642
|
+
This effect supports provenance-first recall over archived memory spans stored in ArtifactStore.
|
|
1643
|
+
It is intentionally metadata-first and embedding-free (semantic retrieval belongs in AbstractMemory).
|
|
1644
|
+
|
|
1645
|
+
Payload (all optional unless otherwise stated):
|
|
1646
|
+
- span_id: str | int | list[str|int] (artifact_id or 1-based index into _runtime.memory_spans)
|
|
1647
|
+
- query: str (keyword substring match)
|
|
1648
|
+
- since: str (ISO8601, span intersection filter)
|
|
1649
|
+
- until: str (ISO8601, span intersection filter)
|
|
1650
|
+
- tags: dict[str, str|list[str]] (span tag filter; values can be multi-valued)
|
|
1651
|
+
- tags_mode: "all"|"any" (default "all"; AND/OR across tag keys)
|
|
1652
|
+
- authors: list[str] (alias: usernames; matches span.created_by case-insensitively)
|
|
1653
|
+
- locations: list[str] (matches span.location case-insensitively)
|
|
1654
|
+
- limit_spans: int (default 5)
|
|
1655
|
+
- deep: bool (default True when query is set; scans archived messages)
|
|
1656
|
+
- deep_limit_spans: int (default 50)
|
|
1657
|
+
- deep_limit_messages_per_span: int (default 400)
|
|
1658
|
+
- connected: bool (include connected spans via time adjacency + shared tags)
|
|
1659
|
+
- neighbor_hops: int (default 1 when connected=True)
|
|
1660
|
+
- connect_by: list[str] (default ["topic","person"])
|
|
1661
|
+
- max_messages: int (default 80; total messages rendered across all spans)
|
|
1662
|
+
- tool_name: str (default "recall_memory"; for formatting)
|
|
1663
|
+
- call_id: str (tool-call id passthrough)
|
|
1664
|
+
"""
|
|
1665
|
+
from .vars import ensure_namespaces, parse_vars_path, resolve_vars_path
|
|
1666
|
+
|
|
1667
|
+
ensure_namespaces(run.vars)
|
|
1668
|
+
runtime_ns = run.vars.get("_runtime")
|
|
1669
|
+
if not isinstance(runtime_ns, dict):
|
|
1670
|
+
runtime_ns = {}
|
|
1671
|
+
run.vars["_runtime"] = runtime_ns
|
|
1672
|
+
|
|
1673
|
+
artifact_store = self._artifact_store
|
|
1674
|
+
if artifact_store is None:
|
|
1675
|
+
return EffectOutcome.failed(
|
|
1676
|
+
"MEMORY_QUERY requires an ArtifactStore; configure runtime.set_artifact_store(...)"
|
|
1677
|
+
)
|
|
1678
|
+
|
|
1679
|
+
payload = dict(effect.payload or {})
|
|
1680
|
+
tool_name = str(payload.get("tool_name") or "recall_memory")
|
|
1681
|
+
call_id = str(payload.get("call_id") or "memory")
|
|
1682
|
+
|
|
1683
|
+
# Scope routing (run-tree/global). Scope affects which run owns the span index queried.
|
|
1684
|
+
scope = str(payload.get("scope") or "run").strip().lower() or "run"
|
|
1685
|
+
if scope not in {"run", "session", "global", "all"}:
|
|
1686
|
+
return EffectOutcome.failed(f"Unknown memory_query scope: {scope}")
|
|
1687
|
+
|
|
1688
|
+
# Return mode controls whether we include structured meta in the tool result.
|
|
1689
|
+
return_mode = str(payload.get("return") or payload.get("return_mode") or "rendered").strip().lower() or "rendered"
|
|
1690
|
+
if return_mode not in {"rendered", "meta", "both"}:
|
|
1691
|
+
return EffectOutcome.failed(f"Unknown memory_query return mode: {return_mode}")
|
|
1692
|
+
|
|
1693
|
+
query = payload.get("query")
|
|
1694
|
+
query_text = str(query or "").strip()
|
|
1695
|
+
since = payload.get("since")
|
|
1696
|
+
until = payload.get("until")
|
|
1697
|
+
tags = payload.get("tags")
|
|
1698
|
+
tags_dict: Optional[Dict[str, Any]] = None
|
|
1699
|
+
if isinstance(tags, dict):
|
|
1700
|
+
# Accept str or list[str] values. Ignore reserved key "kind".
|
|
1701
|
+
out_tags: Dict[str, Any] = {}
|
|
1702
|
+
for k, v in tags.items():
|
|
1703
|
+
if not isinstance(k, str) or not k.strip():
|
|
1704
|
+
continue
|
|
1705
|
+
if k == "kind":
|
|
1706
|
+
continue
|
|
1707
|
+
if isinstance(v, str) and v.strip():
|
|
1708
|
+
out_tags[k.strip()] = v.strip()
|
|
1709
|
+
elif isinstance(v, (list, tuple)):
|
|
1710
|
+
vals = [str(x).strip() for x in v if isinstance(x, str) and str(x).strip()]
|
|
1711
|
+
if vals:
|
|
1712
|
+
out_tags[k.strip()] = vals
|
|
1713
|
+
tags_dict = out_tags or None
|
|
1714
|
+
|
|
1715
|
+
tags_mode_raw = payload.get("tags_mode")
|
|
1716
|
+
if tags_mode_raw is None:
|
|
1717
|
+
tags_mode_raw = payload.get("tagsMode")
|
|
1718
|
+
if tags_mode_raw is None:
|
|
1719
|
+
tags_mode_raw = payload.get("tag_mode")
|
|
1720
|
+
tags_mode = str(tags_mode_raw or "all").strip().lower() or "all"
|
|
1721
|
+
if tags_mode in {"and"}:
|
|
1722
|
+
tags_mode = "all"
|
|
1723
|
+
if tags_mode in {"or"}:
|
|
1724
|
+
tags_mode = "any"
|
|
1725
|
+
if tags_mode not in {"all", "any"}:
|
|
1726
|
+
tags_mode = "all"
|
|
1727
|
+
|
|
1728
|
+
def _norm_str_list(value: Any) -> list[str]:
|
|
1729
|
+
if value is None:
|
|
1730
|
+
return []
|
|
1731
|
+
if isinstance(value, str):
|
|
1732
|
+
v = value.strip()
|
|
1733
|
+
return [v] if v else []
|
|
1734
|
+
if not isinstance(value, list):
|
|
1735
|
+
return []
|
|
1736
|
+
out: list[str] = []
|
|
1737
|
+
for x in value:
|
|
1738
|
+
if isinstance(x, str) and x.strip():
|
|
1739
|
+
out.append(x.strip())
|
|
1740
|
+
# preserve order but dedup (case-insensitive)
|
|
1741
|
+
seen: set[str] = set()
|
|
1742
|
+
deduped: list[str] = []
|
|
1743
|
+
for s in out:
|
|
1744
|
+
key = s.lower()
|
|
1745
|
+
if key in seen:
|
|
1746
|
+
continue
|
|
1747
|
+
seen.add(key)
|
|
1748
|
+
deduped.append(s)
|
|
1749
|
+
return deduped
|
|
1750
|
+
|
|
1751
|
+
authors = _norm_str_list(payload.get("authors") if "authors" in payload else payload.get("usernames"))
|
|
1752
|
+
if not authors:
|
|
1753
|
+
authors = _norm_str_list(payload.get("users"))
|
|
1754
|
+
locations = _norm_str_list(payload.get("locations") if "locations" in payload else payload.get("location"))
|
|
1755
|
+
|
|
1756
|
+
try:
|
|
1757
|
+
limit_spans = int(payload.get("limit_spans", 5) or 5)
|
|
1758
|
+
except Exception:
|
|
1759
|
+
limit_spans = 5
|
|
1760
|
+
if limit_spans < 1:
|
|
1761
|
+
limit_spans = 1
|
|
1762
|
+
|
|
1763
|
+
deep = payload.get("deep")
|
|
1764
|
+
if deep is None:
|
|
1765
|
+
deep_enabled = bool(query_text)
|
|
1766
|
+
else:
|
|
1767
|
+
deep_enabled = bool(deep)
|
|
1768
|
+
|
|
1769
|
+
try:
|
|
1770
|
+
deep_limit_spans = int(payload.get("deep_limit_spans", 50) or 50)
|
|
1771
|
+
except Exception:
|
|
1772
|
+
deep_limit_spans = 50
|
|
1773
|
+
if deep_limit_spans < 1:
|
|
1774
|
+
deep_limit_spans = 1
|
|
1775
|
+
|
|
1776
|
+
try:
|
|
1777
|
+
deep_limit_messages_per_span = int(payload.get("deep_limit_messages_per_span", 400) or 400)
|
|
1778
|
+
except Exception:
|
|
1779
|
+
deep_limit_messages_per_span = 400
|
|
1780
|
+
if deep_limit_messages_per_span < 1:
|
|
1781
|
+
deep_limit_messages_per_span = 1
|
|
1782
|
+
|
|
1783
|
+
connected = bool(payload.get("connected", False))
|
|
1784
|
+
try:
|
|
1785
|
+
neighbor_hops = int(payload.get("neighbor_hops", 1) or 1)
|
|
1786
|
+
except Exception:
|
|
1787
|
+
neighbor_hops = 1
|
|
1788
|
+
if neighbor_hops < 0:
|
|
1789
|
+
neighbor_hops = 0
|
|
1790
|
+
|
|
1791
|
+
connect_by = payload.get("connect_by")
|
|
1792
|
+
if isinstance(connect_by, list):
|
|
1793
|
+
connect_keys = [str(x) for x in connect_by if isinstance(x, (str, int, float)) and str(x).strip()]
|
|
1794
|
+
else:
|
|
1795
|
+
connect_keys = ["topic", "person"]
|
|
1796
|
+
|
|
1797
|
+
try:
|
|
1798
|
+
max_messages = int(payload.get("max_messages", -1) or -1)
|
|
1799
|
+
except Exception:
|
|
1800
|
+
max_messages = -1
|
|
1801
|
+
# `-1` means "no truncation" for rendered messages.
|
|
1802
|
+
if max_messages < -1:
|
|
1803
|
+
max_messages = -1
|
|
1804
|
+
if max_messages != -1 and max_messages < 1:
|
|
1805
|
+
max_messages = 1
|
|
1806
|
+
|
|
1807
|
+
from ..memory.active_context import ActiveContextPolicy, TimeRange
|
|
1808
|
+
|
|
1809
|
+
# Select run(s) to query.
|
|
1810
|
+
runs_to_query: list[RunState] = []
|
|
1811
|
+
if scope == "run":
|
|
1812
|
+
runs_to_query = [run]
|
|
1813
|
+
elif scope == "session":
|
|
1814
|
+
runs_to_query = [self._resolve_scope_owner_run(run, scope="session")]
|
|
1815
|
+
elif scope == "global":
|
|
1816
|
+
runs_to_query = [self._resolve_scope_owner_run(run, scope="global")]
|
|
1817
|
+
else: # all
|
|
1818
|
+
# Deterministic order; dedup by run_id.
|
|
1819
|
+
root = self._resolve_scope_owner_run(run, scope="session")
|
|
1820
|
+
global_run = self._resolve_scope_owner_run(run, scope="global")
|
|
1821
|
+
seen_ids: set[str] = set()
|
|
1822
|
+
for r in (run, root, global_run):
|
|
1823
|
+
if r.run_id in seen_ids:
|
|
1824
|
+
continue
|
|
1825
|
+
seen_ids.add(r.run_id)
|
|
1826
|
+
runs_to_query.append(r)
|
|
1827
|
+
|
|
1828
|
+
# Collect per-run span indexes (metadata) and summary maps for rendering.
|
|
1829
|
+
spans_by_run_id: dict[str, list[dict[str, Any]]] = {}
|
|
1830
|
+
all_spans: list[dict[str, Any]] = []
|
|
1831
|
+
all_summary_by_artifact: dict[str, str] = {}
|
|
1832
|
+
for target in runs_to_query:
|
|
1833
|
+
spans = ActiveContextPolicy.list_memory_spans_from_run(target)
|
|
1834
|
+
# `memory_spans` is a general span-like index (conversation spans, notes, evidence, etc).
|
|
1835
|
+
# MEMORY_QUERY is specifically for provenance-first *memory recall*, not evidence retrieval.
|
|
1836
|
+
spans = [s for s in spans if not (isinstance(s, dict) and str(s.get("kind") or "") == "evidence")]
|
|
1837
|
+
spans_by_run_id[target.run_id] = spans
|
|
1838
|
+
all_spans.extend([dict(s) for s in spans if isinstance(s, dict)])
|
|
1839
|
+
all_summary_by_artifact.update(ActiveContextPolicy.summary_text_by_artifact_id_from_run(target))
|
|
1840
|
+
|
|
1841
|
+
# Resolve explicit span ids if provided.
|
|
1842
|
+
span_id_payload = payload.get("span_id")
|
|
1843
|
+
span_ids_payload = payload.get("span_ids")
|
|
1844
|
+
explicit_ids = span_ids_payload if isinstance(span_ids_payload, list) else span_id_payload
|
|
1845
|
+
|
|
1846
|
+
all_selected: list[str] = []
|
|
1847
|
+
|
|
1848
|
+
if explicit_ids is not None:
|
|
1849
|
+
explicit_list = list(explicit_ids) if isinstance(explicit_ids, list) else [explicit_ids]
|
|
1850
|
+
|
|
1851
|
+
# Indices are inherently scoped to a single run's span list; for `scope="all"`,
|
|
1852
|
+
# require stable artifact ids to avoid ambiguity.
|
|
1853
|
+
if scope == "all":
|
|
1854
|
+
for x in explicit_list:
|
|
1855
|
+
if isinstance(x, int):
|
|
1856
|
+
return EffectOutcome.failed("memory_query scope='all' requires explicit span_ids as artifact ids (no indices)")
|
|
1857
|
+
if isinstance(x, str) and x.strip().isdigit():
|
|
1858
|
+
return EffectOutcome.failed("memory_query scope='all' requires explicit span_ids as artifact ids (no indices)")
|
|
1859
|
+
# Treat as artifact ids.
|
|
1860
|
+
all_selected = _dedup_preserve_order([str(x).strip() for x in explicit_list if str(x).strip()])
|
|
1861
|
+
else:
|
|
1862
|
+
# Single-run resolution for indices.
|
|
1863
|
+
target = runs_to_query[0]
|
|
1864
|
+
spans = spans_by_run_id.get(target.run_id, [])
|
|
1865
|
+
all_selected = ActiveContextPolicy.resolve_span_ids_from_spans(explicit_list, spans)
|
|
1866
|
+
else:
|
|
1867
|
+
# Filter spans per target and union.
|
|
1868
|
+
time_range = None
|
|
1869
|
+
if since or until:
|
|
1870
|
+
time_range = TimeRange(
|
|
1871
|
+
start=str(since) if since else None,
|
|
1872
|
+
end=str(until) if until else None,
|
|
1873
|
+
)
|
|
1874
|
+
|
|
1875
|
+
for target in runs_to_query:
|
|
1876
|
+
spans = spans_by_run_id.get(target.run_id, [])
|
|
1877
|
+
matches = ActiveContextPolicy.filter_spans_from_run(
|
|
1878
|
+
target,
|
|
1879
|
+
artifact_store=artifact_store,
|
|
1880
|
+
time_range=time_range,
|
|
1881
|
+
tags=tags_dict,
|
|
1882
|
+
tags_mode=tags_mode,
|
|
1883
|
+
authors=authors or None,
|
|
1884
|
+
locations=locations or None,
|
|
1885
|
+
query=query_text or None,
|
|
1886
|
+
limit=limit_spans,
|
|
1887
|
+
)
|
|
1888
|
+
selected = [str(s.get("artifact_id") or "") for s in matches if isinstance(s, dict) and s.get("artifact_id")]
|
|
1889
|
+
|
|
1890
|
+
if deep_enabled and query_text:
|
|
1891
|
+
# Deep scan is bounded and should respect metadata filters (tags/authors/locations/time).
|
|
1892
|
+
deep_candidates = ActiveContextPolicy.filter_spans_from_run(
|
|
1893
|
+
target,
|
|
1894
|
+
artifact_store=artifact_store,
|
|
1895
|
+
time_range=time_range,
|
|
1896
|
+
tags=tags_dict,
|
|
1897
|
+
tags_mode=tags_mode,
|
|
1898
|
+
authors=authors or None,
|
|
1899
|
+
locations=locations or None,
|
|
1900
|
+
query=None,
|
|
1901
|
+
limit=deep_limit_spans,
|
|
1902
|
+
)
|
|
1903
|
+
selected = _dedup_preserve_order(
|
|
1904
|
+
selected
|
|
1905
|
+
+ _deep_scan_span_ids(
|
|
1906
|
+
spans=deep_candidates,
|
|
1907
|
+
artifact_store=artifact_store,
|
|
1908
|
+
query=query_text,
|
|
1909
|
+
limit_spans=deep_limit_spans,
|
|
1910
|
+
limit_messages_per_span=deep_limit_messages_per_span,
|
|
1911
|
+
)
|
|
1912
|
+
)
|
|
1913
|
+
|
|
1914
|
+
if connected and selected:
|
|
1915
|
+
connect_candidates = ActiveContextPolicy.filter_spans_from_run(
|
|
1916
|
+
target,
|
|
1917
|
+
artifact_store=artifact_store,
|
|
1918
|
+
time_range=time_range,
|
|
1919
|
+
tags=tags_dict,
|
|
1920
|
+
tags_mode=tags_mode,
|
|
1921
|
+
authors=authors or None,
|
|
1922
|
+
locations=locations or None,
|
|
1923
|
+
query=None,
|
|
1924
|
+
limit=max(1000, len(spans)),
|
|
1925
|
+
)
|
|
1926
|
+
selected = _dedup_preserve_order(
|
|
1927
|
+
_expand_connected_span_ids(
|
|
1928
|
+
spans=connect_candidates,
|
|
1929
|
+
seed_artifact_ids=selected,
|
|
1930
|
+
connect_keys=connect_keys,
|
|
1931
|
+
neighbor_hops=neighbor_hops,
|
|
1932
|
+
limit=max(limit_spans, len(selected)),
|
|
1933
|
+
)
|
|
1934
|
+
)
|
|
1935
|
+
|
|
1936
|
+
all_selected = _dedup_preserve_order(all_selected + selected)
|
|
1937
|
+
|
|
1938
|
+
rendered_text = ""
|
|
1939
|
+
if return_mode in {"rendered", "both"}:
|
|
1940
|
+
# Render output (provenance + messages). Note: this may load artifacts.
|
|
1941
|
+
rendered_text = _render_memory_query_output(
|
|
1942
|
+
spans=all_spans,
|
|
1943
|
+
artifact_store=artifact_store,
|
|
1944
|
+
selected_artifact_ids=all_selected,
|
|
1945
|
+
summary_by_artifact=all_summary_by_artifact,
|
|
1946
|
+
max_messages=max_messages,
|
|
1947
|
+
)
|
|
1948
|
+
|
|
1949
|
+
# Structured meta output (for deterministic workflows).
|
|
1950
|
+
meta: dict[str, Any] = {}
|
|
1951
|
+
if return_mode in {"meta", "both"}:
|
|
1952
|
+
# Index span record by artifact id (first match wins deterministically).
|
|
1953
|
+
by_artifact: dict[str, dict[str, Any]] = {}
|
|
1954
|
+
for s in all_spans:
|
|
1955
|
+
try:
|
|
1956
|
+
aid = str(s.get("artifact_id") or "").strip()
|
|
1957
|
+
except Exception:
|
|
1958
|
+
aid = ""
|
|
1959
|
+
if not aid or aid in by_artifact:
|
|
1960
|
+
continue
|
|
1961
|
+
by_artifact[aid] = s
|
|
1962
|
+
|
|
1963
|
+
matches: list[dict[str, Any]] = []
|
|
1964
|
+
for aid in all_selected:
|
|
1965
|
+
span = by_artifact.get(aid)
|
|
1966
|
+
if not isinstance(span, dict):
|
|
1967
|
+
continue
|
|
1968
|
+
m: dict[str, Any] = {
|
|
1969
|
+
"span_id": aid,
|
|
1970
|
+
"kind": span.get("kind"),
|
|
1971
|
+
"created_at": span.get("created_at"),
|
|
1972
|
+
"from_timestamp": span.get("from_timestamp"),
|
|
1973
|
+
"to_timestamp": span.get("to_timestamp"),
|
|
1974
|
+
"tags": span.get("tags") if isinstance(span.get("tags"), dict) else {},
|
|
1975
|
+
}
|
|
1976
|
+
for k in ("created_by", "location"):
|
|
1977
|
+
if k in span:
|
|
1978
|
+
m[k] = span.get(k)
|
|
1979
|
+
# Include known preview fields without enforcing a global schema.
|
|
1980
|
+
for k in ("note_preview", "message_count", "summary_message_id"):
|
|
1981
|
+
if k in span:
|
|
1982
|
+
m[k] = span.get(k)
|
|
1983
|
+
matches.append(m)
|
|
1984
|
+
|
|
1985
|
+
meta = {"matches": matches, "span_ids": list(all_selected)}
|
|
1986
|
+
|
|
1987
|
+
result = {
|
|
1988
|
+
"mode": "executed",
|
|
1989
|
+
"results": [
|
|
1990
|
+
{
|
|
1991
|
+
"call_id": call_id,
|
|
1992
|
+
"name": tool_name,
|
|
1993
|
+
"success": True,
|
|
1994
|
+
"output": rendered_text if return_mode in {"rendered", "both"} else "",
|
|
1995
|
+
"error": None,
|
|
1996
|
+
"meta": meta if meta else None,
|
|
1997
|
+
}
|
|
1998
|
+
],
|
|
1999
|
+
}
|
|
2000
|
+
return EffectOutcome.completed(result=result)
|
|
2001
|
+
|
|
2002
|
+
def _handle_vars_query(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
2003
|
+
"""Handle VARS_QUERY.
|
|
2004
|
+
|
|
2005
|
+
This is a JSON-safe, runtime-owned introspection primitive intended for:
|
|
2006
|
+
- progressive recall/debugging (e.g., inspect `scratchpad`)
|
|
2007
|
+
- host tooling parity (schema-only tools that map to runtime effects)
|
|
2008
|
+
|
|
2009
|
+
Payload (all optional unless stated):
|
|
2010
|
+
- path: str (default "scratchpad"; supports dot path or JSON pointer "/a/b/0")
|
|
2011
|
+
- keys_only: bool (default False; when True, return keys/length instead of full value)
|
|
2012
|
+
- target_run_id: str (optional; inspect another run state)
|
|
2013
|
+
- tool_name: str (default "inspect_vars"; for tool-style output)
|
|
2014
|
+
- call_id: str (tool-call id passthrough)
|
|
2015
|
+
"""
|
|
2016
|
+
import json
|
|
2017
|
+
|
|
2018
|
+
from .vars import ensure_namespaces, parse_vars_path, resolve_vars_path
|
|
2019
|
+
|
|
2020
|
+
payload = dict(effect.payload or {})
|
|
2021
|
+
tool_name = str(payload.get("tool_name") or "inspect_vars")
|
|
2022
|
+
call_id = str(payload.get("call_id") or "vars")
|
|
2023
|
+
|
|
2024
|
+
target_run_id = payload.get("target_run_id")
|
|
2025
|
+
if target_run_id is not None:
|
|
2026
|
+
target_run_id = str(target_run_id).strip() or None
|
|
2027
|
+
|
|
2028
|
+
path = payload.get("path")
|
|
2029
|
+
if path is None:
|
|
2030
|
+
path = payload.get("var_path")
|
|
2031
|
+
path_text = str(path or "").strip() or "scratchpad"
|
|
2032
|
+
|
|
2033
|
+
keys_only = bool(payload.get("keys_only", False))
|
|
2034
|
+
|
|
2035
|
+
target_run = run
|
|
2036
|
+
if target_run_id and target_run_id != run.run_id:
|
|
2037
|
+
loaded = self._run_store.load(target_run_id)
|
|
2038
|
+
if loaded is None:
|
|
2039
|
+
return EffectOutcome.completed(
|
|
2040
|
+
result={
|
|
2041
|
+
"mode": "executed",
|
|
2042
|
+
"results": [
|
|
2043
|
+
{
|
|
2044
|
+
"call_id": call_id,
|
|
2045
|
+
"name": tool_name,
|
|
2046
|
+
"success": False,
|
|
2047
|
+
"output": None,
|
|
2048
|
+
"error": f"Unknown target_run_id: {target_run_id}",
|
|
2049
|
+
}
|
|
2050
|
+
],
|
|
2051
|
+
}
|
|
2052
|
+
)
|
|
2053
|
+
target_run = loaded
|
|
2054
|
+
|
|
2055
|
+
ensure_namespaces(target_run.vars)
|
|
2056
|
+
|
|
2057
|
+
try:
|
|
2058
|
+
tokens = parse_vars_path(path_text)
|
|
2059
|
+
value = resolve_vars_path(target_run.vars, tokens)
|
|
2060
|
+
except Exception as e:
|
|
2061
|
+
return EffectOutcome.completed(
|
|
2062
|
+
result={
|
|
2063
|
+
"mode": "executed",
|
|
2064
|
+
"results": [
|
|
2065
|
+
{
|
|
2066
|
+
"call_id": call_id,
|
|
2067
|
+
"name": tool_name,
|
|
2068
|
+
"success": False,
|
|
2069
|
+
"output": None,
|
|
2070
|
+
"error": str(e),
|
|
2071
|
+
}
|
|
2072
|
+
],
|
|
2073
|
+
}
|
|
2074
|
+
)
|
|
2075
|
+
|
|
2076
|
+
out: Dict[str, Any] = {"path": path_text, "type": type(value).__name__}
|
|
2077
|
+
if keys_only:
|
|
2078
|
+
if isinstance(value, dict):
|
|
2079
|
+
out["keys"] = sorted([str(k) for k in value.keys()])
|
|
2080
|
+
elif isinstance(value, list):
|
|
2081
|
+
out["length"] = len(value)
|
|
2082
|
+
else:
|
|
2083
|
+
out["value"] = value
|
|
2084
|
+
else:
|
|
2085
|
+
out["value"] = value
|
|
2086
|
+
|
|
2087
|
+
text = json.dumps(out, ensure_ascii=False, indent=2, sort_keys=True, default=str)
|
|
2088
|
+
|
|
2089
|
+
return EffectOutcome.completed(
|
|
2090
|
+
result={
|
|
2091
|
+
"mode": "executed",
|
|
2092
|
+
"results": [
|
|
2093
|
+
{
|
|
2094
|
+
"call_id": call_id,
|
|
2095
|
+
"name": tool_name,
|
|
2096
|
+
"success": True,
|
|
2097
|
+
"output": text,
|
|
2098
|
+
"error": None,
|
|
2099
|
+
}
|
|
2100
|
+
],
|
|
2101
|
+
}
|
|
2102
|
+
)
|
|
2103
|
+
|
|
2104
|
+
def _handle_memory_tag(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
2105
|
+
"""Handle MEMORY_TAG.
|
|
2106
|
+
|
|
2107
|
+
Payload (required unless stated):
|
|
2108
|
+
- span_id: str | int (artifact_id or 1-based index into `_runtime.memory_spans`)
|
|
2109
|
+
- tags: dict[str,str] (merged into span["tags"] by default)
|
|
2110
|
+
- merge: bool (optional, default True; when False, replaces span["tags"])
|
|
2111
|
+
- tool_name: str (optional; for tool-style output, default "remember")
|
|
2112
|
+
- call_id: str (optional; passthrough for tool-style output)
|
|
2113
|
+
|
|
2114
|
+
Notes:
|
|
2115
|
+
- This mutates the in-run span index (`_runtime.memory_spans`) only; it does not change artifacts.
|
|
2116
|
+
- Tagging is intentionally JSON-safe (string->string).
|
|
2117
|
+
"""
|
|
2118
|
+
import json
|
|
2119
|
+
|
|
2120
|
+
from .vars import ensure_namespaces
|
|
2121
|
+
|
|
2122
|
+
ensure_namespaces(run.vars)
|
|
2123
|
+
runtime_ns = run.vars.get("_runtime")
|
|
2124
|
+
if not isinstance(runtime_ns, dict):
|
|
2125
|
+
runtime_ns = {}
|
|
2126
|
+
run.vars["_runtime"] = runtime_ns
|
|
2127
|
+
|
|
2128
|
+
spans = runtime_ns.get("memory_spans")
|
|
2129
|
+
if not isinstance(spans, list):
|
|
2130
|
+
return EffectOutcome.failed("MEMORY_TAG requires _runtime.memory_spans to be a list")
|
|
2131
|
+
|
|
2132
|
+
payload = dict(effect.payload or {})
|
|
2133
|
+
tool_name = str(payload.get("tool_name") or "remember")
|
|
2134
|
+
call_id = str(payload.get("call_id") or "memory")
|
|
2135
|
+
|
|
2136
|
+
span_id = payload.get("span_id")
|
|
2137
|
+
tags = payload.get("tags")
|
|
2138
|
+
if span_id is None:
|
|
2139
|
+
return EffectOutcome.failed("MEMORY_TAG requires payload.span_id")
|
|
2140
|
+
if not isinstance(tags, dict) or not tags:
|
|
2141
|
+
return EffectOutcome.failed("MEMORY_TAG requires payload.tags as a non-empty dict[str,str]")
|
|
2142
|
+
|
|
2143
|
+
merge = bool(payload.get("merge", True))
|
|
2144
|
+
|
|
2145
|
+
clean_tags: Dict[str, str] = {}
|
|
2146
|
+
for k, v in tags.items():
|
|
2147
|
+
if isinstance(k, str) and isinstance(v, str) and k and v:
|
|
2148
|
+
clean_tags[k] = v
|
|
2149
|
+
if not clean_tags:
|
|
2150
|
+
return EffectOutcome.failed("MEMORY_TAG requires at least one non-empty string tag")
|
|
2151
|
+
|
|
2152
|
+
artifact_id: Optional[str] = None
|
|
2153
|
+
target_index: Optional[int] = None
|
|
2154
|
+
|
|
2155
|
+
if isinstance(span_id, int):
|
|
2156
|
+
idx = span_id - 1
|
|
2157
|
+
if idx < 0 or idx >= len(spans):
|
|
2158
|
+
return EffectOutcome.failed(f"Unknown span index: {span_id}")
|
|
2159
|
+
span = spans[idx]
|
|
2160
|
+
if not isinstance(span, dict):
|
|
2161
|
+
return EffectOutcome.failed(f"Invalid span record at index {span_id}")
|
|
2162
|
+
artifact_id = str(span.get("artifact_id") or "").strip() or None
|
|
2163
|
+
target_index = idx
|
|
2164
|
+
elif isinstance(span_id, str):
|
|
2165
|
+
s = span_id.strip()
|
|
2166
|
+
if not s:
|
|
2167
|
+
return EffectOutcome.failed("MEMORY_TAG requires a non-empty span_id")
|
|
2168
|
+
if s.isdigit():
|
|
2169
|
+
idx = int(s) - 1
|
|
2170
|
+
if idx < 0 or idx >= len(spans):
|
|
2171
|
+
return EffectOutcome.failed(f"Unknown span index: {s}")
|
|
2172
|
+
span = spans[idx]
|
|
2173
|
+
if not isinstance(span, dict):
|
|
2174
|
+
return EffectOutcome.failed(f"Invalid span record at index {s}")
|
|
2175
|
+
artifact_id = str(span.get("artifact_id") or "").strip() or None
|
|
2176
|
+
target_index = idx
|
|
2177
|
+
else:
|
|
2178
|
+
artifact_id = s
|
|
2179
|
+
else:
|
|
2180
|
+
return EffectOutcome.failed("MEMORY_TAG requires span_id as str or int")
|
|
2181
|
+
|
|
2182
|
+
if not artifact_id:
|
|
2183
|
+
return EffectOutcome.failed("Could not resolve span_id to an artifact_id")
|
|
2184
|
+
|
|
2185
|
+
if target_index is None:
|
|
2186
|
+
for i, span in enumerate(spans):
|
|
2187
|
+
if not isinstance(span, dict):
|
|
2188
|
+
continue
|
|
2189
|
+
if str(span.get("artifact_id") or "") == artifact_id:
|
|
2190
|
+
target_index = i
|
|
2191
|
+
break
|
|
2192
|
+
|
|
2193
|
+
if target_index is None:
|
|
2194
|
+
return EffectOutcome.failed(f"Unknown span_id: {artifact_id}")
|
|
2195
|
+
|
|
2196
|
+
target = spans[target_index]
|
|
2197
|
+
if not isinstance(target, dict):
|
|
2198
|
+
return EffectOutcome.failed(f"Invalid span record at index {target_index + 1}")
|
|
2199
|
+
|
|
2200
|
+
existing_tags = target.get("tags")
|
|
2201
|
+
if not isinstance(existing_tags, dict):
|
|
2202
|
+
existing_tags = {}
|
|
2203
|
+
|
|
2204
|
+
if merge:
|
|
2205
|
+
merged_tags = dict(existing_tags)
|
|
2206
|
+
merged_tags.update(clean_tags)
|
|
2207
|
+
else:
|
|
2208
|
+
merged_tags = dict(clean_tags)
|
|
2209
|
+
|
|
2210
|
+
target["tags"] = merged_tags
|
|
2211
|
+
target["tagged_at"] = utc_now_iso()
|
|
2212
|
+
if run.actor_id:
|
|
2213
|
+
target["tagged_by"] = str(run.actor_id)
|
|
2214
|
+
|
|
2215
|
+
rendered_tags = json.dumps(merged_tags, ensure_ascii=False, sort_keys=True)
|
|
2216
|
+
text = f"Tagged span_id={artifact_id} tags={rendered_tags}"
|
|
2217
|
+
|
|
2218
|
+
result = {
|
|
2219
|
+
"mode": "executed",
|
|
2220
|
+
"results": [
|
|
2221
|
+
{
|
|
2222
|
+
"call_id": call_id,
|
|
2223
|
+
"name": tool_name,
|
|
2224
|
+
"success": True,
|
|
2225
|
+
"output": text,
|
|
2226
|
+
"error": None,
|
|
2227
|
+
}
|
|
2228
|
+
],
|
|
2229
|
+
}
|
|
2230
|
+
return EffectOutcome.completed(result=result)
|
|
2231
|
+
|
|
2232
|
+
def _handle_memory_compact(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
2233
|
+
"""Handle MEMORY_COMPACT.
|
|
2234
|
+
|
|
2235
|
+
This is a runtime-owned compaction of a run's active context:
|
|
2236
|
+
- archives the compacted messages to ArtifactStore (provenance preserved)
|
|
2237
|
+
- inserts a system summary message that includes `span_id=...` (LLM-visible handle)
|
|
2238
|
+
- updates `_runtime.memory_spans` index with metadata/tags
|
|
2239
|
+
|
|
2240
|
+
Payload (optional unless stated):
|
|
2241
|
+
- preserve_recent: int (default 6; preserves N most recent non-system messages)
|
|
2242
|
+
- compression_mode: str ("light"|"standard"|"heavy", default "standard")
|
|
2243
|
+
- focus: str (optional; topic to prioritize)
|
|
2244
|
+
- target_run_id: str (optional; defaults to current run)
|
|
2245
|
+
- tool_name: str (optional; for tool-style output, default "compact_memory")
|
|
2246
|
+
- call_id: str (optional)
|
|
2247
|
+
"""
|
|
2248
|
+
import json
|
|
2249
|
+
from uuid import uuid4
|
|
2250
|
+
|
|
2251
|
+
from .vars import ensure_namespaces
|
|
2252
|
+
from ..memory.compaction import normalize_messages, split_for_compaction, span_metadata_from_messages
|
|
2253
|
+
|
|
2254
|
+
ensure_namespaces(run.vars)
|
|
2255
|
+
|
|
2256
|
+
artifact_store = self._artifact_store
|
|
2257
|
+
if artifact_store is None:
|
|
2258
|
+
return EffectOutcome.failed(
|
|
2259
|
+
"MEMORY_COMPACT requires an ArtifactStore; configure runtime.set_artifact_store(...)"
|
|
2260
|
+
)
|
|
2261
|
+
|
|
2262
|
+
payload = dict(effect.payload or {})
|
|
2263
|
+
tool_name = str(payload.get("tool_name") or "compact_memory")
|
|
2264
|
+
call_id = str(payload.get("call_id") or "memory")
|
|
2265
|
+
|
|
2266
|
+
target_run_id = payload.get("target_run_id")
|
|
2267
|
+
if target_run_id is not None:
|
|
2268
|
+
target_run_id = str(target_run_id).strip() or None
|
|
2269
|
+
|
|
2270
|
+
try:
|
|
2271
|
+
preserve_recent = int(payload.get("preserve_recent", 6) or 6)
|
|
2272
|
+
except Exception:
|
|
2273
|
+
preserve_recent = 6
|
|
2274
|
+
if preserve_recent < 0:
|
|
2275
|
+
preserve_recent = 0
|
|
2276
|
+
|
|
2277
|
+
compression_mode = str(payload.get("compression_mode") or "standard").strip().lower()
|
|
2278
|
+
if compression_mode not in ("light", "standard", "heavy"):
|
|
2279
|
+
compression_mode = "standard"
|
|
2280
|
+
|
|
2281
|
+
focus = payload.get("focus")
|
|
2282
|
+
focus_text = str(focus).strip() if isinstance(focus, str) else ""
|
|
2283
|
+
focus_text = focus_text or None
|
|
2284
|
+
|
|
2285
|
+
# Resolve which run is being compacted.
|
|
2286
|
+
target_run = run
|
|
2287
|
+
if target_run_id and target_run_id != run.run_id:
|
|
2288
|
+
loaded = self._run_store.load(target_run_id)
|
|
2289
|
+
if loaded is None:
|
|
2290
|
+
return EffectOutcome.failed(f"Unknown target_run_id: {target_run_id}")
|
|
2291
|
+
target_run = loaded
|
|
2292
|
+
ensure_namespaces(target_run.vars)
|
|
2293
|
+
|
|
2294
|
+
ctx = target_run.vars.get("context")
|
|
2295
|
+
if not isinstance(ctx, dict):
|
|
2296
|
+
return EffectOutcome.failed("MEMORY_COMPACT requires vars.context to be a dict")
|
|
2297
|
+
messages_raw = ctx.get("messages")
|
|
2298
|
+
if not isinstance(messages_raw, list) or not messages_raw:
|
|
2299
|
+
return EffectOutcome.completed(
|
|
2300
|
+
result={
|
|
2301
|
+
"mode": "executed",
|
|
2302
|
+
"results": [
|
|
2303
|
+
{
|
|
2304
|
+
"call_id": call_id,
|
|
2305
|
+
"name": tool_name,
|
|
2306
|
+
"success": True,
|
|
2307
|
+
"output": "No messages to compact.",
|
|
2308
|
+
"error": None,
|
|
2309
|
+
}
|
|
2310
|
+
],
|
|
2311
|
+
}
|
|
2312
|
+
)
|
|
2313
|
+
|
|
2314
|
+
now_iso = utc_now_iso
|
|
2315
|
+
messages = normalize_messages(messages_raw, now_iso=now_iso)
|
|
2316
|
+
split = split_for_compaction(messages, preserve_recent=preserve_recent)
|
|
2317
|
+
|
|
2318
|
+
if not split.older_messages:
|
|
2319
|
+
return EffectOutcome.completed(
|
|
2320
|
+
result={
|
|
2321
|
+
"mode": "executed",
|
|
2322
|
+
"results": [
|
|
2323
|
+
{
|
|
2324
|
+
"call_id": call_id,
|
|
2325
|
+
"name": tool_name,
|
|
2326
|
+
"success": True,
|
|
2327
|
+
"output": f"Nothing to compact (non-system messages <= preserve_recent={preserve_recent}).",
|
|
2328
|
+
"error": None,
|
|
2329
|
+
}
|
|
2330
|
+
],
|
|
2331
|
+
}
|
|
2332
|
+
)
|
|
2333
|
+
|
|
2334
|
+
# ------------------------------------------------------------------
|
|
2335
|
+
# 1) LLM summary - use integration layer summarizer if available
|
|
2336
|
+
# ------------------------------------------------------------------
|
|
2337
|
+
#
|
|
2338
|
+
# When chat_summarizer is injected (from AbstractCore integration layer),
|
|
2339
|
+
# use it for adaptive chunking based on max_tokens. This handles cases
|
|
2340
|
+
# where the environment can't use the model's full context window
|
|
2341
|
+
# (e.g., GPU memory constraints).
|
|
2342
|
+
#
|
|
2343
|
+
# When max_tokens == -1 (AUTO): Uses model's full capability
|
|
2344
|
+
# When max_tokens > 0: Chunks messages if they exceed the limit
|
|
2345
|
+
|
|
2346
|
+
sub_run_id: Optional[str] = None # Track for provenance if using fallback
|
|
2347
|
+
|
|
2348
|
+
if self._chat_summarizer is not None:
|
|
2349
|
+
# Use AbstractCore's BasicSummarizer with adaptive chunking
|
|
2350
|
+
try:
|
|
2351
|
+
summarizer_result = self._chat_summarizer.summarize_chat_history(
|
|
2352
|
+
messages=split.older_messages,
|
|
2353
|
+
preserve_recent=0, # Already split; don't preserve again
|
|
2354
|
+
focus=focus_text,
|
|
2355
|
+
compression_mode=compression_mode,
|
|
2356
|
+
)
|
|
2357
|
+
summary_text_out = summarizer_result.get("summary", "(summary unavailable)")
|
|
2358
|
+
key_points = list(summarizer_result.get("key_points") or [])
|
|
2359
|
+
confidence = summarizer_result.get("confidence")
|
|
2360
|
+
except Exception as e:
|
|
2361
|
+
return EffectOutcome.failed(f"Summarizer failed: {e}")
|
|
2362
|
+
else:
|
|
2363
|
+
# Fallback: Original prompt-based approach (for non-AbstractCore runtimes)
|
|
2364
|
+
older_text = "\n".join([f"{m.get('role')}: {m.get('content')}" for m in split.older_messages])
|
|
2365
|
+
focus_line = f"Focus: {focus_text}\n" if focus_text else ""
|
|
2366
|
+
mode_line = f"Compression mode: {compression_mode}\n"
|
|
2367
|
+
|
|
2368
|
+
prompt = (
|
|
2369
|
+
"You are compressing older conversation context for an agent runtime.\n"
|
|
2370
|
+
"Write a faithful, compact summary that preserves decisions, constraints, names, file paths, commands, and open questions.\n"
|
|
2371
|
+
"Do NOT invent details. If something is unknown, say so.\n"
|
|
2372
|
+
f"{mode_line}"
|
|
2373
|
+
f"{focus_line}"
|
|
2374
|
+
"Return STRICT JSON with keys: summary (string), key_points (array of strings), confidence (number 0..1).\n\n"
|
|
2375
|
+
"OLDER MESSAGES (to be archived):\n"
|
|
2376
|
+
f"{older_text}\n"
|
|
2377
|
+
)
|
|
2378
|
+
|
|
2379
|
+
# Best-effort output budget for the summary itself.
|
|
2380
|
+
limits = target_run.vars.get("_limits") if isinstance(target_run.vars.get("_limits"), dict) else {}
|
|
2381
|
+
max_out = limits.get("max_output_tokens")
|
|
2382
|
+
try:
|
|
2383
|
+
max_out_tokens = int(max_out) if max_out is not None else None
|
|
2384
|
+
except Exception:
|
|
2385
|
+
max_out_tokens = None
|
|
2386
|
+
|
|
2387
|
+
llm_payload: Dict[str, Any] = {"prompt": prompt}
|
|
2388
|
+
if max_out_tokens is not None:
|
|
2389
|
+
llm_payload["params"] = {"max_tokens": max_out_tokens}
|
|
2390
|
+
|
|
2391
|
+
def llm_node(sub_run: RunState, sub_ctx) -> StepPlan:
|
|
2392
|
+
return StepPlan(
|
|
2393
|
+
node_id="llm",
|
|
2394
|
+
effect=Effect(type=EffectType.LLM_CALL, payload=llm_payload, result_key="_temp.llm"),
|
|
2395
|
+
next_node="done",
|
|
2396
|
+
)
|
|
2397
|
+
|
|
2398
|
+
def done_node(sub_run: RunState, sub_ctx) -> StepPlan:
|
|
2399
|
+
temp = sub_run.vars.get("_temp") if isinstance(sub_run.vars.get("_temp"), dict) else {}
|
|
2400
|
+
return StepPlan(node_id="done", complete_output={"response": temp.get("llm")})
|
|
2401
|
+
|
|
2402
|
+
wf = WorkflowSpec(workflow_id="wf_memory_compact_llm", entry_node="llm", nodes={"llm": llm_node, "done": done_node})
|
|
2403
|
+
|
|
2404
|
+
sub_run_id = self.start(
|
|
2405
|
+
workflow=wf,
|
|
2406
|
+
vars={"context": {"prompt": prompt}, "scratchpad": {}, "_runtime": {}, "_temp": {}, "_limits": dict(limits)},
|
|
2407
|
+
actor_id=run.actor_id,
|
|
2408
|
+
session_id=getattr(run, "session_id", None),
|
|
2409
|
+
parent_run_id=run.run_id,
|
|
2410
|
+
)
|
|
2411
|
+
|
|
2412
|
+
sub_state = self.tick(workflow=wf, run_id=sub_run_id)
|
|
2413
|
+
if sub_state.status == RunStatus.WAITING:
|
|
2414
|
+
return EffectOutcome.failed("MEMORY_COMPACT does not support waiting subworkflows yet")
|
|
2415
|
+
if sub_state.status == RunStatus.FAILED:
|
|
2416
|
+
return EffectOutcome.failed(sub_state.error or "Compaction LLM subworkflow failed")
|
|
2417
|
+
response = (sub_state.output or {}).get("response")
|
|
2418
|
+
if not isinstance(response, dict):
|
|
2419
|
+
response = {}
|
|
2420
|
+
|
|
2421
|
+
content = response.get("content")
|
|
2422
|
+
content_text = "" if content is None else str(content).strip()
|
|
2423
|
+
lowered = content_text.lower()
|
|
2424
|
+
if any(
|
|
2425
|
+
keyword in lowered
|
|
2426
|
+
for keyword in (
|
|
2427
|
+
"operation not permitted",
|
|
2428
|
+
"failed to connect",
|
|
2429
|
+
"connection refused",
|
|
2430
|
+
"timed out",
|
|
2431
|
+
"timeout",
|
|
2432
|
+
"not running",
|
|
2433
|
+
"model not found",
|
|
2434
|
+
)
|
|
2435
|
+
):
|
|
2436
|
+
return EffectOutcome.failed(f"Compaction LLM unavailable: {content_text}")
|
|
2437
|
+
|
|
2438
|
+
summary_text_out = content_text
|
|
2439
|
+
key_points: list[str] = []
|
|
2440
|
+
confidence: Optional[float] = None
|
|
2441
|
+
|
|
2442
|
+
# Parse JSON if present (support fenced output).
|
|
2443
|
+
if content_text:
|
|
2444
|
+
candidate = content_text
|
|
2445
|
+
if "```" in candidate:
|
|
2446
|
+
# extract first JSON-ish block
|
|
2447
|
+
start = candidate.find("{")
|
|
2448
|
+
end = candidate.rfind("}")
|
|
2449
|
+
if 0 <= start < end:
|
|
2450
|
+
candidate = candidate[start : end + 1]
|
|
2451
|
+
try:
|
|
2452
|
+
parsed = json.loads(candidate)
|
|
2453
|
+
if isinstance(parsed, dict):
|
|
2454
|
+
if parsed.get("summary") is not None:
|
|
2455
|
+
summary_text_out = str(parsed.get("summary") or "").strip() or summary_text_out
|
|
2456
|
+
kp = parsed.get("key_points")
|
|
2457
|
+
if isinstance(kp, list):
|
|
2458
|
+
key_points = [str(x) for x in kp if isinstance(x, (str, int, float))][:20]
|
|
2459
|
+
conf = parsed.get("confidence")
|
|
2460
|
+
if isinstance(conf, (int, float)):
|
|
2461
|
+
confidence = float(conf)
|
|
2462
|
+
except Exception:
|
|
2463
|
+
pass
|
|
2464
|
+
|
|
2465
|
+
summary_text_out = summary_text_out.strip()
|
|
2466
|
+
if not summary_text_out:
|
|
2467
|
+
summary_text_out = "(summary unavailable)"
|
|
2468
|
+
|
|
2469
|
+
# ------------------------------------------------------------------
|
|
2470
|
+
# 2) Archive older messages + update run state with summary
|
|
2471
|
+
# ------------------------------------------------------------------
|
|
2472
|
+
|
|
2473
|
+
span_meta = span_metadata_from_messages(split.older_messages)
|
|
2474
|
+
artifact_payload = {
|
|
2475
|
+
"messages": split.older_messages,
|
|
2476
|
+
"span": span_meta,
|
|
2477
|
+
"created_at": now_iso(),
|
|
2478
|
+
}
|
|
2479
|
+
artifact_tags: Dict[str, str] = {
|
|
2480
|
+
"kind": "conversation_span",
|
|
2481
|
+
"compression_mode": compression_mode,
|
|
2482
|
+
"preserve_recent": str(preserve_recent),
|
|
2483
|
+
}
|
|
2484
|
+
if focus_text:
|
|
2485
|
+
artifact_tags["focus"] = focus_text
|
|
2486
|
+
|
|
2487
|
+
meta = artifact_store.store_json(artifact_payload, run_id=target_run.run_id, tags=artifact_tags)
|
|
2488
|
+
archived_ref = meta.artifact_id
|
|
2489
|
+
|
|
2490
|
+
summary_message_id = f"msg_{uuid4().hex}"
|
|
2491
|
+
summary_prefix = f"[CONVERSATION HISTORY SUMMARY span_id={archived_ref}]"
|
|
2492
|
+
summary_metadata: Dict[str, Any] = {
|
|
2493
|
+
"message_id": summary_message_id,
|
|
2494
|
+
"kind": "memory_summary",
|
|
2495
|
+
"compression_mode": compression_mode,
|
|
2496
|
+
"preserve_recent": preserve_recent,
|
|
2497
|
+
"source_artifact_id": archived_ref,
|
|
2498
|
+
"source_message_count": int(span_meta.get("message_count") or 0),
|
|
2499
|
+
"source_from_timestamp": span_meta.get("from_timestamp"),
|
|
2500
|
+
"source_to_timestamp": span_meta.get("to_timestamp"),
|
|
2501
|
+
"source_from_message_id": span_meta.get("from_message_id"),
|
|
2502
|
+
"source_to_message_id": span_meta.get("to_message_id"),
|
|
2503
|
+
}
|
|
2504
|
+
if focus_text:
|
|
2505
|
+
summary_metadata["focus"] = focus_text
|
|
2506
|
+
|
|
2507
|
+
summary_message = {
|
|
2508
|
+
"role": "system",
|
|
2509
|
+
"content": f"{summary_prefix}: {summary_text_out}",
|
|
2510
|
+
"timestamp": now_iso(),
|
|
2511
|
+
"metadata": summary_metadata,
|
|
2512
|
+
}
|
|
2513
|
+
|
|
2514
|
+
new_messages = list(split.system_messages) + [summary_message] + list(split.recent_messages)
|
|
2515
|
+
ctx["messages"] = new_messages
|
|
2516
|
+
if isinstance(getattr(target_run, "output", None), dict):
|
|
2517
|
+
target_run.output["messages"] = new_messages
|
|
2518
|
+
|
|
2519
|
+
runtime_ns = target_run.vars.get("_runtime")
|
|
2520
|
+
if not isinstance(runtime_ns, dict):
|
|
2521
|
+
runtime_ns = {}
|
|
2522
|
+
target_run.vars["_runtime"] = runtime_ns
|
|
2523
|
+
spans = runtime_ns.get("memory_spans")
|
|
2524
|
+
if not isinstance(spans, list):
|
|
2525
|
+
spans = []
|
|
2526
|
+
runtime_ns["memory_spans"] = spans
|
|
2527
|
+
span_record: Dict[str, Any] = {
|
|
2528
|
+
"kind": "conversation_span",
|
|
2529
|
+
"artifact_id": archived_ref,
|
|
2530
|
+
"created_at": now_iso(),
|
|
2531
|
+
"summary_message_id": summary_message_id,
|
|
2532
|
+
"from_timestamp": span_meta.get("from_timestamp"),
|
|
2533
|
+
"to_timestamp": span_meta.get("to_timestamp"),
|
|
2534
|
+
"from_message_id": span_meta.get("from_message_id"),
|
|
2535
|
+
"to_message_id": span_meta.get("to_message_id"),
|
|
2536
|
+
"message_count": int(span_meta.get("message_count") or 0),
|
|
2537
|
+
"compression_mode": compression_mode,
|
|
2538
|
+
"focus": focus_text,
|
|
2539
|
+
}
|
|
2540
|
+
if run.actor_id:
|
|
2541
|
+
span_record["created_by"] = str(run.actor_id)
|
|
2542
|
+
spans.append(span_record)
|
|
2543
|
+
|
|
2544
|
+
if target_run is not run:
|
|
2545
|
+
target_run.updated_at = now_iso()
|
|
2546
|
+
self._run_store.save(target_run)
|
|
2547
|
+
|
|
2548
|
+
out = {
|
|
2549
|
+
"llm_run_id": sub_run_id,
|
|
2550
|
+
"span_id": archived_ref,
|
|
2551
|
+
"summary_message_id": summary_message_id,
|
|
2552
|
+
"preserve_recent": preserve_recent,
|
|
2553
|
+
"compression_mode": compression_mode,
|
|
2554
|
+
"focus": focus_text,
|
|
2555
|
+
"key_points": key_points,
|
|
2556
|
+
"confidence": confidence,
|
|
2557
|
+
}
|
|
2558
|
+
text = f"Compacted {len(split.older_messages)} messages into span_id={archived_ref}."
|
|
2559
|
+
result = {
|
|
2560
|
+
"mode": "executed",
|
|
2561
|
+
"results": [
|
|
2562
|
+
{
|
|
2563
|
+
"call_id": call_id,
|
|
2564
|
+
"name": tool_name,
|
|
2565
|
+
"success": True,
|
|
2566
|
+
"output": text,
|
|
2567
|
+
"error": None,
|
|
2568
|
+
"meta": out,
|
|
2569
|
+
}
|
|
2570
|
+
],
|
|
2571
|
+
}
|
|
2572
|
+
return EffectOutcome.completed(result=result)
|
|
2573
|
+
|
|
2574
|
+
def _handle_memory_note(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
2575
|
+
"""Handle MEMORY_NOTE.
|
|
2576
|
+
|
|
2577
|
+
Store a small, durable memory note (key insight/decision) with tags and provenance sources.
|
|
2578
|
+
|
|
2579
|
+
Payload:
|
|
2580
|
+
- note: str (required)
|
|
2581
|
+
- tags: dict[str,str] (optional)
|
|
2582
|
+
- sources: dict (optional)
|
|
2583
|
+
- run_id: str (optional; defaults to current run_id)
|
|
2584
|
+
- span_ids: list[str] (optional; referenced span ids)
|
|
2585
|
+
- message_ids: list[str] (optional; referenced message ids)
|
|
2586
|
+
- target_run_id: str (optional; defaults to current run_id)
|
|
2587
|
+
- tool_name: str (optional; default "remember_note")
|
|
2588
|
+
- call_id: str (optional; passthrough)
|
|
2589
|
+
"""
|
|
2590
|
+
import json
|
|
2591
|
+
|
|
2592
|
+
from .vars import ensure_namespaces
|
|
2593
|
+
|
|
2594
|
+
ensure_namespaces(run.vars)
|
|
2595
|
+
runtime_ns = run.vars.get("_runtime")
|
|
2596
|
+
if not isinstance(runtime_ns, dict):
|
|
2597
|
+
runtime_ns = {}
|
|
2598
|
+
run.vars["_runtime"] = runtime_ns
|
|
2599
|
+
|
|
2600
|
+
artifact_store = self._artifact_store
|
|
2601
|
+
if artifact_store is None:
|
|
2602
|
+
return EffectOutcome.failed(
|
|
2603
|
+
"MEMORY_NOTE requires an ArtifactStore; configure runtime.set_artifact_store(...)"
|
|
2604
|
+
)
|
|
2605
|
+
|
|
2606
|
+
payload = dict(effect.payload or {})
|
|
2607
|
+
tool_name = str(payload.get("tool_name") or "remember_note")
|
|
2608
|
+
call_id = str(payload.get("call_id") or "memory")
|
|
2609
|
+
|
|
2610
|
+
base_run_id = str(payload.get("target_run_id") or run.run_id).strip() or run.run_id
|
|
2611
|
+
base_run = run
|
|
2612
|
+
if base_run_id != run.run_id:
|
|
2613
|
+
loaded = self._run_store.load(base_run_id)
|
|
2614
|
+
if loaded is None:
|
|
2615
|
+
return EffectOutcome.failed(f"Unknown target_run_id: {base_run_id}")
|
|
2616
|
+
base_run = loaded
|
|
2617
|
+
ensure_namespaces(base_run.vars)
|
|
2618
|
+
|
|
2619
|
+
scope = str(payload.get("scope") or "run").strip().lower() or "run"
|
|
2620
|
+
try:
|
|
2621
|
+
target_run = self._resolve_scope_owner_run(base_run, scope=scope)
|
|
2622
|
+
except Exception as e:
|
|
2623
|
+
return EffectOutcome.failed(str(e))
|
|
2624
|
+
ensure_namespaces(target_run.vars)
|
|
2625
|
+
|
|
2626
|
+
target_runtime_ns = target_run.vars.get("_runtime")
|
|
2627
|
+
if not isinstance(target_runtime_ns, dict):
|
|
2628
|
+
target_runtime_ns = {}
|
|
2629
|
+
target_run.vars["_runtime"] = target_runtime_ns
|
|
2630
|
+
spans = target_runtime_ns.get("memory_spans")
|
|
2631
|
+
if not isinstance(spans, list):
|
|
2632
|
+
spans = []
|
|
2633
|
+
target_runtime_ns["memory_spans"] = spans
|
|
2634
|
+
|
|
2635
|
+
note = payload.get("note")
|
|
2636
|
+
note_text = str(note or "").strip()
|
|
2637
|
+
if not note_text:
|
|
2638
|
+
return EffectOutcome.failed("MEMORY_NOTE requires payload.note (non-empty string)")
|
|
2639
|
+
|
|
2640
|
+
location_raw = payload.get("location")
|
|
2641
|
+
location = str(location_raw).strip() if isinstance(location_raw, str) else ""
|
|
2642
|
+
|
|
2643
|
+
tags = payload.get("tags")
|
|
2644
|
+
clean_tags: Dict[str, str] = {}
|
|
2645
|
+
if isinstance(tags, dict):
|
|
2646
|
+
for k, v in tags.items():
|
|
2647
|
+
if isinstance(k, str) and isinstance(v, str) and k and v:
|
|
2648
|
+
if k == "kind":
|
|
2649
|
+
continue
|
|
2650
|
+
clean_tags[k] = v
|
|
2651
|
+
|
|
2652
|
+
sources = payload.get("sources")
|
|
2653
|
+
sources_dict = dict(sources) if isinstance(sources, dict) else {}
|
|
2654
|
+
|
|
2655
|
+
def _norm_list(value: Any) -> list[str]:
|
|
2656
|
+
if not isinstance(value, list):
|
|
2657
|
+
return []
|
|
2658
|
+
out: list[str] = []
|
|
2659
|
+
for item in value:
|
|
2660
|
+
if isinstance(item, str):
|
|
2661
|
+
s = item.strip()
|
|
2662
|
+
if s:
|
|
2663
|
+
out.append(s)
|
|
2664
|
+
elif isinstance(item, int):
|
|
2665
|
+
out.append(str(item))
|
|
2666
|
+
# preserve order but dedup
|
|
2667
|
+
seen: set[str] = set()
|
|
2668
|
+
deduped: list[str] = []
|
|
2669
|
+
for s in out:
|
|
2670
|
+
if s in seen:
|
|
2671
|
+
continue
|
|
2672
|
+
seen.add(s)
|
|
2673
|
+
deduped.append(s)
|
|
2674
|
+
return deduped
|
|
2675
|
+
|
|
2676
|
+
# Provenance default: the run that emitted this effect (not the scope owner).
|
|
2677
|
+
source_run_id = str(sources_dict.get("run_id") or run.run_id).strip() or run.run_id
|
|
2678
|
+
span_ids = _norm_list(sources_dict.get("span_ids"))
|
|
2679
|
+
message_ids = _norm_list(sources_dict.get("message_ids"))
|
|
2680
|
+
|
|
2681
|
+
created_at = utc_now_iso()
|
|
2682
|
+
artifact_payload: Dict[str, Any] = {
|
|
2683
|
+
"note": note_text,
|
|
2684
|
+
"sources": {"run_id": source_run_id, "span_ids": span_ids, "message_ids": message_ids},
|
|
2685
|
+
"created_at": created_at,
|
|
2686
|
+
}
|
|
2687
|
+
if location:
|
|
2688
|
+
artifact_payload["location"] = location
|
|
2689
|
+
if run.actor_id:
|
|
2690
|
+
artifact_payload["actor_id"] = str(run.actor_id)
|
|
2691
|
+
session_id = getattr(target_run, "session_id", None) or getattr(run, "session_id", None)
|
|
2692
|
+
if session_id:
|
|
2693
|
+
artifact_payload["session_id"] = str(session_id)
|
|
2694
|
+
|
|
2695
|
+
artifact_tags: Dict[str, str] = {"kind": "memory_note"}
|
|
2696
|
+
artifact_tags.update(clean_tags)
|
|
2697
|
+
meta = artifact_store.store_json(artifact_payload, run_id=target_run.run_id, tags=artifact_tags)
|
|
2698
|
+
artifact_id = meta.artifact_id
|
|
2699
|
+
|
|
2700
|
+
preview = note_text
|
|
2701
|
+
if len(preview) > 160:
|
|
2702
|
+
preview = preview[:157] + "…"
|
|
2703
|
+
|
|
2704
|
+
span_record: Dict[str, Any] = {
|
|
2705
|
+
"kind": "memory_note",
|
|
2706
|
+
"artifact_id": artifact_id,
|
|
2707
|
+
"created_at": created_at,
|
|
2708
|
+
# Treat notes as point-in-time spans for time-range filtering.
|
|
2709
|
+
"from_timestamp": created_at,
|
|
2710
|
+
"to_timestamp": created_at,
|
|
2711
|
+
"message_count": 0,
|
|
2712
|
+
"note_preview": preview,
|
|
2713
|
+
}
|
|
2714
|
+
if location:
|
|
2715
|
+
span_record["location"] = location
|
|
2716
|
+
if clean_tags:
|
|
2717
|
+
span_record["tags"] = dict(clean_tags)
|
|
2718
|
+
if span_ids or message_ids:
|
|
2719
|
+
span_record["sources"] = {"run_id": source_run_id, "span_ids": span_ids, "message_ids": message_ids}
|
|
2720
|
+
if run.actor_id:
|
|
2721
|
+
span_record["created_by"] = str(run.actor_id)
|
|
2722
|
+
|
|
2723
|
+
spans.append(span_record)
|
|
2724
|
+
|
|
2725
|
+
def _coerce_bool(value: Any) -> bool:
|
|
2726
|
+
if isinstance(value, bool):
|
|
2727
|
+
return bool(value)
|
|
2728
|
+
if isinstance(value, (int, float)) and not isinstance(value, bool):
|
|
2729
|
+
try:
|
|
2730
|
+
return float(value) != 0.0
|
|
2731
|
+
except Exception:
|
|
2732
|
+
return False
|
|
2733
|
+
if isinstance(value, str):
|
|
2734
|
+
s = value.strip().lower()
|
|
2735
|
+
if not s:
|
|
2736
|
+
return False
|
|
2737
|
+
if s in {"false", "0", "no", "off"}:
|
|
2738
|
+
return False
|
|
2739
|
+
if s in {"true", "1", "yes", "on"}:
|
|
2740
|
+
return True
|
|
2741
|
+
return False
|
|
2742
|
+
|
|
2743
|
+
# Optional UX convenience: keep the stored note immediately visible to downstream LLM calls by
|
|
2744
|
+
# rehydrating it into `base_run.context.messages` as a synthetic system message.
|
|
2745
|
+
keep_raw = payload.get("keep_in_context")
|
|
2746
|
+
if keep_raw is None:
|
|
2747
|
+
keep_raw = payload.get("keepInContext")
|
|
2748
|
+
keep_in_context = _coerce_bool(keep_raw)
|
|
2749
|
+
kept: Optional[Dict[str, Any]] = None
|
|
2750
|
+
if keep_in_context:
|
|
2751
|
+
try:
|
|
2752
|
+
from ..memory.active_context import ActiveContextPolicy
|
|
2753
|
+
|
|
2754
|
+
policy = ActiveContextPolicy(run_store=self._run_store, artifact_store=artifact_store)
|
|
2755
|
+
out = policy.rehydrate_into_context_from_run(
|
|
2756
|
+
base_run,
|
|
2757
|
+
span_ids=[artifact_id],
|
|
2758
|
+
placement="end",
|
|
2759
|
+
dedup_by="message_id",
|
|
2760
|
+
max_messages=1,
|
|
2761
|
+
)
|
|
2762
|
+
kept = {"inserted": out.get("inserted", 0), "skipped": out.get("skipped", 0)}
|
|
2763
|
+
|
|
2764
|
+
# Persist when mutating a different run than the currently executing one.
|
|
2765
|
+
if base_run is not run:
|
|
2766
|
+
base_run.updated_at = utc_now_iso()
|
|
2767
|
+
self._run_store.save(base_run)
|
|
2768
|
+
except Exception as e:
|
|
2769
|
+
kept = {"inserted": 0, "skipped": 0, "error": str(e)}
|
|
2770
|
+
|
|
2771
|
+
if target_run is not run:
|
|
2772
|
+
target_run.updated_at = utc_now_iso()
|
|
2773
|
+
self._run_store.save(target_run)
|
|
2774
|
+
|
|
2775
|
+
rendered_tags = json.dumps(clean_tags, ensure_ascii=False, sort_keys=True) if clean_tags else "{}"
|
|
2776
|
+
text = f"Stored memory_note span_id={artifact_id} tags={rendered_tags}"
|
|
2777
|
+
meta_out: Dict[str, Any] = {"span_id": artifact_id, "created_at": created_at, "note_preview": preview}
|
|
2778
|
+
if isinstance(kept, dict):
|
|
2779
|
+
meta_out["kept_in_context"] = kept
|
|
2780
|
+
|
|
2781
|
+
result = {
|
|
2782
|
+
"mode": "executed",
|
|
2783
|
+
"results": [
|
|
2784
|
+
{
|
|
2785
|
+
"call_id": call_id,
|
|
2786
|
+
"name": tool_name,
|
|
2787
|
+
"success": True,
|
|
2788
|
+
"output": text,
|
|
2789
|
+
"error": None,
|
|
2790
|
+
"meta": meta_out,
|
|
2791
|
+
}
|
|
2792
|
+
],
|
|
2793
|
+
}
|
|
2794
|
+
return EffectOutcome.completed(result=result)
|
|
2795
|
+
|
|
2796
|
+
def _handle_memory_rehydrate(self, run: RunState, effect: Effect, default_next_node: Optional[str]) -> EffectOutcome:
|
|
2797
|
+
"""Handle MEMORY_REHYDRATE.
|
|
2798
|
+
|
|
2799
|
+
This is a runtime-owned, deterministic mutation of `context.messages`:
|
|
2800
|
+
- loads archived conversation span artifacts from ArtifactStore
|
|
2801
|
+
- inserts them into `context.messages` with dedup
|
|
2802
|
+
- persists the mutated run (RunStore checkpoint)
|
|
2803
|
+
|
|
2804
|
+
Payload (required unless stated):
|
|
2805
|
+
- span_ids: list[str|int] (required; artifact ids preferred; indices allowed)
|
|
2806
|
+
- placement: str ("after_summary"|"after_system"|"end", default "after_summary")
|
|
2807
|
+
- dedup_by: str (default "message_id")
|
|
2808
|
+
- max_messages: int (optional; max inserted messages)
|
|
2809
|
+
- target_run_id: str (optional; defaults to current run)
|
|
2810
|
+
"""
|
|
2811
|
+
from .vars import ensure_namespaces
|
|
2812
|
+
|
|
2813
|
+
ensure_namespaces(run.vars)
|
|
2814
|
+
artifact_store = self._artifact_store
|
|
2815
|
+
if artifact_store is None:
|
|
2816
|
+
return EffectOutcome.failed(
|
|
2817
|
+
"MEMORY_REHYDRATE requires an ArtifactStore; configure runtime.set_artifact_store(...)"
|
|
2818
|
+
)
|
|
2819
|
+
|
|
2820
|
+
payload = dict(effect.payload or {})
|
|
2821
|
+
target_run_id = str(payload.get("target_run_id") or run.run_id).strip() or run.run_id
|
|
2822
|
+
|
|
2823
|
+
# Normalize span_ids (accept legacy `span_id` too).
|
|
2824
|
+
raw_span_ids = payload.get("span_ids")
|
|
2825
|
+
if raw_span_ids is None:
|
|
2826
|
+
raw_span_ids = payload.get("span_id")
|
|
2827
|
+
span_ids: list[Any] = []
|
|
2828
|
+
if isinstance(raw_span_ids, list):
|
|
2829
|
+
span_ids = list(raw_span_ids)
|
|
2830
|
+
elif raw_span_ids is not None:
|
|
2831
|
+
span_ids = [raw_span_ids]
|
|
2832
|
+
if not span_ids:
|
|
2833
|
+
return EffectOutcome.failed("MEMORY_REHYDRATE requires payload.span_ids (non-empty list)")
|
|
2834
|
+
|
|
2835
|
+
placement = str(payload.get("placement") or "after_summary").strip() or "after_summary"
|
|
2836
|
+
dedup_by = str(payload.get("dedup_by") or "message_id").strip() or "message_id"
|
|
2837
|
+
max_messages = payload.get("max_messages")
|
|
2838
|
+
|
|
2839
|
+
# Load the target run (may be different from current).
|
|
2840
|
+
target_run = run
|
|
2841
|
+
if target_run_id != run.run_id:
|
|
2842
|
+
loaded = self._run_store.load(target_run_id)
|
|
2843
|
+
if loaded is None:
|
|
2844
|
+
return EffectOutcome.failed(f"Unknown target_run_id: {target_run_id}")
|
|
2845
|
+
target_run = loaded
|
|
2846
|
+
ensure_namespaces(target_run.vars)
|
|
2847
|
+
|
|
2848
|
+
# Best-effort: rehydrate only span kinds that are meaningful to inject into
|
|
2849
|
+
# `context.messages` for downstream LLM calls.
|
|
2850
|
+
#
|
|
2851
|
+
# Rationale:
|
|
2852
|
+
# - conversation_span: archived chat messages
|
|
2853
|
+
# - memory_note: durable notes (rehydrated as a synthetic message by ActiveContextPolicy)
|
|
2854
|
+
#
|
|
2855
|
+
# Evidence and other span kinds are intentionally skipped by default.
|
|
2856
|
+
from ..memory.active_context import ActiveContextPolicy
|
|
2857
|
+
|
|
2858
|
+
spans = ActiveContextPolicy.list_memory_spans_from_run(target_run)
|
|
2859
|
+
resolved = ActiveContextPolicy.resolve_span_ids_from_spans(span_ids, spans)
|
|
2860
|
+
if not resolved:
|
|
2861
|
+
return EffectOutcome.completed(result={"inserted": 0, "skipped": 0, "artifacts": []})
|
|
2862
|
+
|
|
2863
|
+
kind_by_artifact: dict[str, str] = {}
|
|
2864
|
+
for s in spans:
|
|
2865
|
+
if not isinstance(s, dict):
|
|
2866
|
+
continue
|
|
2867
|
+
aid = str(s.get("artifact_id") or "").strip()
|
|
2868
|
+
if not aid or aid in kind_by_artifact:
|
|
2869
|
+
continue
|
|
2870
|
+
kind_by_artifact[aid] = str(s.get("kind") or "").strip()
|
|
2871
|
+
|
|
2872
|
+
to_rehydrate: list[str] = []
|
|
2873
|
+
skipped_artifacts: list[dict[str, Any]] = []
|
|
2874
|
+
allowed_kinds = {"conversation_span", "memory_note"}
|
|
2875
|
+
for aid in resolved:
|
|
2876
|
+
kind = kind_by_artifact.get(aid, "")
|
|
2877
|
+
if kind and kind not in allowed_kinds:
|
|
2878
|
+
skipped_artifacts.append(
|
|
2879
|
+
{"span_id": aid, "inserted": 0, "skipped": 0, "error": None, "kind": kind}
|
|
2880
|
+
)
|
|
2881
|
+
continue
|
|
2882
|
+
to_rehydrate.append(aid)
|
|
2883
|
+
|
|
2884
|
+
# Reuse the canonical policy implementation (no duplicated logic).
|
|
2885
|
+
# Mutate the in-memory RunState to keep runtime tick semantics consistent.
|
|
2886
|
+
policy = ActiveContextPolicy(run_store=self._run_store, artifact_store=artifact_store)
|
|
2887
|
+
out = policy.rehydrate_into_context_from_run(
|
|
2888
|
+
target_run,
|
|
2889
|
+
span_ids=to_rehydrate,
|
|
2890
|
+
placement=placement,
|
|
2891
|
+
dedup_by=dedup_by,
|
|
2892
|
+
max_messages=max_messages,
|
|
2893
|
+
)
|
|
2894
|
+
|
|
2895
|
+
# Persist when mutating a different run than the currently executing one.
|
|
2896
|
+
if target_run is not run:
|
|
2897
|
+
target_run.updated_at = utc_now_iso()
|
|
2898
|
+
self._run_store.save(target_run)
|
|
2899
|
+
|
|
2900
|
+
# Normalize output shape to match backlog expectations (`span_id` field, optional kind).
|
|
2901
|
+
artifacts_out: list[dict[str, Any]] = []
|
|
2902
|
+
artifacts = out.get("artifacts")
|
|
2903
|
+
if isinstance(artifacts, list):
|
|
2904
|
+
for a in artifacts:
|
|
2905
|
+
if not isinstance(a, dict):
|
|
2906
|
+
continue
|
|
2907
|
+
aid = str(a.get("artifact_id") or "").strip()
|
|
2908
|
+
artifacts_out.append(
|
|
2909
|
+
{
|
|
2910
|
+
"span_id": aid,
|
|
2911
|
+
"inserted": a.get("inserted"),
|
|
2912
|
+
"skipped": a.get("skipped"),
|
|
2913
|
+
"error": a.get("error"),
|
|
2914
|
+
"kind": kind_by_artifact.get(aid) or None,
|
|
2915
|
+
"preview": a.get("preview"),
|
|
2916
|
+
}
|
|
2917
|
+
)
|
|
2918
|
+
artifacts_out.extend(skipped_artifacts)
|
|
2919
|
+
|
|
2920
|
+
return EffectOutcome.completed(
|
|
2921
|
+
result={
|
|
2922
|
+
"inserted": out.get("inserted", 0),
|
|
2923
|
+
"skipped": out.get("skipped", 0),
|
|
2924
|
+
"artifacts": artifacts_out,
|
|
2925
|
+
}
|
|
2926
|
+
)
|
|
2927
|
+
|
|
2928
|
+
|
|
2929
|
+
def _dedup_preserve_order(values: list[str]) -> list[str]:
|
|
2930
|
+
seen: set[str] = set()
|
|
2931
|
+
out: list[str] = []
|
|
2932
|
+
for v in values:
|
|
2933
|
+
s = str(v or "").strip()
|
|
2934
|
+
if not s or s in seen:
|
|
2935
|
+
continue
|
|
2936
|
+
seen.add(s)
|
|
2937
|
+
out.append(s)
|
|
2938
|
+
return out
|
|
2939
|
+
|
|
2940
|
+
|
|
2941
|
+
def _span_sort_key(span: dict) -> tuple[str, str]:
|
|
2942
|
+
"""Sort key for span adjacency. Prefer from_timestamp, then created_at."""
|
|
2943
|
+
from_ts = str(span.get("from_timestamp") or "")
|
|
2944
|
+
created = str(span.get("created_at") or "")
|
|
2945
|
+
return (from_ts or created, created)
|
|
2946
|
+
|
|
2947
|
+
|
|
2948
|
+
def _expand_connected_span_ids(
|
|
2949
|
+
*,
|
|
2950
|
+
spans: list[dict[str, Any]],
|
|
2951
|
+
seed_artifact_ids: list[str],
|
|
2952
|
+
connect_keys: list[str],
|
|
2953
|
+
neighbor_hops: int,
|
|
2954
|
+
limit: int,
|
|
2955
|
+
) -> list[str]:
|
|
2956
|
+
"""Expand seed spans to include deterministic neighbors (time + shared tags)."""
|
|
2957
|
+
if not spans or not seed_artifact_ids:
|
|
2958
|
+
return list(seed_artifact_ids)
|
|
2959
|
+
|
|
2960
|
+
ordered = [s for s in spans if isinstance(s, dict) and s.get("artifact_id")]
|
|
2961
|
+
ordered.sort(key=_span_sort_key)
|
|
2962
|
+
idx_by_artifact: dict[str, int] = {str(s["artifact_id"]): i for i, s in enumerate(ordered)}
|
|
2963
|
+
|
|
2964
|
+
# Build tag index for requested keys.
|
|
2965
|
+
tag_index: dict[tuple[str, str], list[str]] = {}
|
|
2966
|
+
for s in ordered:
|
|
2967
|
+
tags = s.get("tags") if isinstance(s.get("tags"), dict) else {}
|
|
2968
|
+
for k in connect_keys:
|
|
2969
|
+
v = tags.get(k)
|
|
2970
|
+
if isinstance(v, str) and v:
|
|
2971
|
+
tag_index.setdefault((k, v), []).append(str(s["artifact_id"]))
|
|
2972
|
+
|
|
2973
|
+
out: list[str] = []
|
|
2974
|
+
for aid in seed_artifact_ids:
|
|
2975
|
+
if len(out) >= limit:
|
|
2976
|
+
break
|
|
2977
|
+
out.append(aid)
|
|
2978
|
+
|
|
2979
|
+
idx = idx_by_artifact.get(aid)
|
|
2980
|
+
if idx is not None and neighbor_hops > 0:
|
|
2981
|
+
for delta in range(1, neighbor_hops + 1):
|
|
2982
|
+
for j in (idx - delta, idx + delta):
|
|
2983
|
+
if 0 <= j < len(ordered):
|
|
2984
|
+
out.append(str(ordered[j]["artifact_id"]))
|
|
2985
|
+
|
|
2986
|
+
if connect_keys:
|
|
2987
|
+
s = ordered[idx] if idx is not None and 0 <= idx < len(ordered) else None
|
|
2988
|
+
if isinstance(s, dict):
|
|
2989
|
+
tags = s.get("tags") if isinstance(s.get("tags"), dict) else {}
|
|
2990
|
+
for k in connect_keys:
|
|
2991
|
+
v = tags.get(k)
|
|
2992
|
+
if isinstance(v, str) and v:
|
|
2993
|
+
out.extend(tag_index.get((k, v), []))
|
|
2994
|
+
|
|
2995
|
+
return _dedup_preserve_order(out)[:limit]
|
|
2996
|
+
|
|
2997
|
+
|
|
2998
|
+
def _deep_scan_span_ids(
|
|
2999
|
+
*,
|
|
3000
|
+
spans: list[dict[str, Any]],
|
|
3001
|
+
artifact_store: Any,
|
|
3002
|
+
query: str,
|
|
3003
|
+
limit_spans: int,
|
|
3004
|
+
limit_messages_per_span: int,
|
|
3005
|
+
) -> list[str]:
|
|
3006
|
+
"""Fallback keyword scan over archived messages when metadata/summary is insufficient."""
|
|
3007
|
+
q = str(query or "").strip().lower()
|
|
3008
|
+
if not q:
|
|
3009
|
+
return []
|
|
3010
|
+
|
|
3011
|
+
scanned = 0
|
|
3012
|
+
matches: list[str] = []
|
|
3013
|
+
for s in spans:
|
|
3014
|
+
if scanned >= limit_spans:
|
|
3015
|
+
break
|
|
3016
|
+
if not isinstance(s, dict):
|
|
3017
|
+
continue
|
|
3018
|
+
artifact_id = s.get("artifact_id")
|
|
3019
|
+
if not isinstance(artifact_id, str) or not artifact_id:
|
|
3020
|
+
continue
|
|
3021
|
+
scanned += 1
|
|
3022
|
+
|
|
3023
|
+
payload = artifact_store.load_json(artifact_id)
|
|
3024
|
+
if not isinstance(payload, dict):
|
|
3025
|
+
continue
|
|
3026
|
+
messages = payload.get("messages")
|
|
3027
|
+
if not isinstance(messages, list) or not messages:
|
|
3028
|
+
continue
|
|
3029
|
+
|
|
3030
|
+
for m in messages[:limit_messages_per_span]:
|
|
3031
|
+
if not isinstance(m, dict):
|
|
3032
|
+
continue
|
|
3033
|
+
content = m.get("content")
|
|
3034
|
+
if not content:
|
|
3035
|
+
continue
|
|
3036
|
+
if q in str(content).lower():
|
|
3037
|
+
matches.append(artifact_id)
|
|
3038
|
+
break
|
|
3039
|
+
|
|
3040
|
+
return _dedup_preserve_order(matches)
|
|
3041
|
+
|
|
3042
|
+
|
|
3043
|
+
def _render_memory_query_output(
|
|
3044
|
+
*,
|
|
3045
|
+
spans: list[dict[str, Any]],
|
|
3046
|
+
artifact_store: Any,
|
|
3047
|
+
selected_artifact_ids: list[str],
|
|
3048
|
+
summary_by_artifact: dict[str, str],
|
|
3049
|
+
max_messages: int,
|
|
3050
|
+
) -> str:
|
|
3051
|
+
if not selected_artifact_ids:
|
|
3052
|
+
return "No matching memory spans."
|
|
3053
|
+
|
|
3054
|
+
span_by_id: dict[str, dict[str, Any]] = {
|
|
3055
|
+
str(s.get("artifact_id")): s for s in spans if isinstance(s, dict) and s.get("artifact_id")
|
|
3056
|
+
}
|
|
3057
|
+
|
|
3058
|
+
lines: list[str] = []
|
|
3059
|
+
lines.append("Recalled memory spans (provenance-preserving):")
|
|
3060
|
+
|
|
3061
|
+
remaining: Optional[int] = None if int(max_messages) == -1 else int(max_messages)
|
|
3062
|
+
for i, aid in enumerate(selected_artifact_ids, start=1):
|
|
3063
|
+
span = span_by_id.get(aid, {})
|
|
3064
|
+
kind = span.get("kind") or "span"
|
|
3065
|
+
created = span.get("created_at") or ""
|
|
3066
|
+
from_ts = span.get("from_timestamp") or ""
|
|
3067
|
+
to_ts = span.get("to_timestamp") or ""
|
|
3068
|
+
count = span.get("message_count") or ""
|
|
3069
|
+
created_by = span.get("created_by") or ""
|
|
3070
|
+
location = span.get("location") or ""
|
|
3071
|
+
tags = span.get("tags") if isinstance(span.get("tags"), dict) else {}
|
|
3072
|
+
tags_txt = ", ".join([f"{k}={v}" for k, v in sorted(tags.items()) if isinstance(v, str) and v])
|
|
3073
|
+
|
|
3074
|
+
lines.append("")
|
|
3075
|
+
lines.append(f"[{i}] span_id={aid} kind={kind} msgs={count} created_at={created}")
|
|
3076
|
+
if from_ts or to_ts:
|
|
3077
|
+
lines.append(f" time_range: {from_ts} .. {to_ts}")
|
|
3078
|
+
if isinstance(created_by, str) and str(created_by).strip():
|
|
3079
|
+
lines.append(f" created_by: {str(created_by).strip()}")
|
|
3080
|
+
if isinstance(location, str) and str(location).strip():
|
|
3081
|
+
lines.append(f" location: {str(location).strip()}")
|
|
3082
|
+
if tags_txt:
|
|
3083
|
+
lines.append(f" tags: {tags_txt}")
|
|
3084
|
+
|
|
3085
|
+
summary = summary_by_artifact.get(aid)
|
|
3086
|
+
if summary:
|
|
3087
|
+
lines.append(f" summary: {str(summary).strip()}")
|
|
3088
|
+
|
|
3089
|
+
if remaining is not None and remaining <= 0:
|
|
3090
|
+
continue
|
|
3091
|
+
|
|
3092
|
+
payload = artifact_store.load_json(aid)
|
|
3093
|
+
if not isinstance(payload, dict):
|
|
3094
|
+
lines.append(" (artifact payload unavailable)")
|
|
3095
|
+
continue
|
|
3096
|
+
if kind == "memory_note" or "note" in payload:
|
|
3097
|
+
note = str(payload.get("note") or "").strip()
|
|
3098
|
+
if note:
|
|
3099
|
+
lines.append(" note: " + note)
|
|
3100
|
+
else:
|
|
3101
|
+
lines.append(" (note payload missing note text)")
|
|
3102
|
+
|
|
3103
|
+
if not (isinstance(location, str) and location.strip()):
|
|
3104
|
+
loc = payload.get("location")
|
|
3105
|
+
if isinstance(loc, str) and loc.strip():
|
|
3106
|
+
lines.append(f" location: {loc.strip()}")
|
|
3107
|
+
|
|
3108
|
+
sources = payload.get("sources")
|
|
3109
|
+
if isinstance(sources, dict):
|
|
3110
|
+
src_run = sources.get("run_id")
|
|
3111
|
+
span_ids = sources.get("span_ids")
|
|
3112
|
+
msg_ids = sources.get("message_ids")
|
|
3113
|
+
if isinstance(src_run, str) and src_run:
|
|
3114
|
+
lines.append(f" sources.run_id: {src_run}")
|
|
3115
|
+
if isinstance(span_ids, list) and span_ids:
|
|
3116
|
+
cleaned = [str(x) for x in span_ids if isinstance(x, (str, int))]
|
|
3117
|
+
if cleaned:
|
|
3118
|
+
lines.append(f" sources.span_ids: {', '.join(cleaned[:12])}")
|
|
3119
|
+
if isinstance(msg_ids, list) and msg_ids:
|
|
3120
|
+
cleaned = [str(x) for x in msg_ids if isinstance(x, (str, int))]
|
|
3121
|
+
if cleaned:
|
|
3122
|
+
lines.append(f" sources.message_ids: {', '.join(cleaned[:12])}")
|
|
3123
|
+
continue
|
|
3124
|
+
|
|
3125
|
+
messages = payload.get("messages")
|
|
3126
|
+
if not isinstance(messages, list):
|
|
3127
|
+
lines.append(" (artifact missing messages)")
|
|
3128
|
+
continue
|
|
3129
|
+
|
|
3130
|
+
# Render messages with a global cap.
|
|
3131
|
+
rendered = 0
|
|
3132
|
+
for m in messages:
|
|
3133
|
+
if remaining is not None and remaining <= 0:
|
|
3134
|
+
break
|
|
3135
|
+
if not isinstance(m, dict):
|
|
3136
|
+
continue
|
|
3137
|
+
role = str(m.get("role") or "unknown")
|
|
3138
|
+
content = str(m.get("content") or "")
|
|
3139
|
+
ts = str(m.get("timestamp") or "")
|
|
3140
|
+
prefix = f" - {role}: "
|
|
3141
|
+
if ts:
|
|
3142
|
+
prefix = f" - {ts} {role}: "
|
|
3143
|
+
lines.append(prefix + content)
|
|
3144
|
+
rendered += 1
|
|
3145
|
+
if remaining is not None:
|
|
3146
|
+
remaining -= 1
|
|
3147
|
+
|
|
3148
|
+
total = sum(1 for m in messages if isinstance(m, dict))
|
|
3149
|
+
if remaining is not None and rendered < total:
|
|
3150
|
+
lines.append(f" (remaining {total - rendered} messages omitted by max_messages={int(max_messages)})")
|
|
3151
|
+
|
|
3152
|
+
return "\n".join(lines)
|
|
3153
|
+
|
|
567
3154
|
|
|
568
3155
|
def _set_nested(target: Dict[str, Any], dotted_key: str, value: Any) -> None:
|
|
569
3156
|
"""Set nested dict value using dot notation."""
|
|
@@ -577,5 +3164,3 @@ def _set_nested(target: Dict[str, Any], dotted_key: str, value: Any) -> None:
|
|
|
577
3164
|
cur[p] = nxt
|
|
578
3165
|
cur = nxt
|
|
579
3166
|
cur[parts[-1]] = value
|
|
580
|
-
|
|
581
|
-
|