AOT-biomaps 2.9.321__py3-none-any.whl → 2.9.333__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AOT-biomaps might be problematic. Click here for more details.
- AOT_biomaps/AOT_Experiment/ExperimentTools.py +19 -0
- AOT_biomaps/AOT_Experiment/Tomography.py +51 -10
- AOT_biomaps/AOT_Recon/AnalyticRecon.py +94 -0
- AOT_biomaps/AOT_Recon/ReconTools.py +46 -1
- AOT_biomaps/__init__.py +13 -1
- {aot_biomaps-2.9.321.dist-info → aot_biomaps-2.9.333.dist-info}/METADATA +1 -1
- {aot_biomaps-2.9.321.dist-info → aot_biomaps-2.9.333.dist-info}/RECORD +9 -9
- {aot_biomaps-2.9.321.dist-info → aot_biomaps-2.9.333.dist-info}/WHEEL +0 -0
- {aot_biomaps-2.9.321.dist-info → aot_biomaps-2.9.333.dist-info}/top_level.txt +0 -0
|
@@ -58,3 +58,22 @@ def convert_to_hex_list(matrix):
|
|
|
58
58
|
# 5. Assemblage des chaînes (de l'élément N vers 0 pour l'ordre Shift Register standard)
|
|
59
59
|
return ["".join(hex_matrix[::-1, col]) for col in range(n_scans)]
|
|
60
60
|
|
|
61
|
+
def hex_to_binary_profile(hex_string, n_piezos=192):
|
|
62
|
+
hex_string = hex_string.strip().replace(" ", "").replace("\n", "")
|
|
63
|
+
if set(hex_string.lower()) == {'f'}:
|
|
64
|
+
return np.ones(n_piezos, dtype=int)
|
|
65
|
+
|
|
66
|
+
try:
|
|
67
|
+
n_char = len(hex_string)
|
|
68
|
+
n_bits = n_char * 4
|
|
69
|
+
binary_str = bin(int(hex_string, 16))[2:].zfill(n_bits)
|
|
70
|
+
if len(binary_str) < n_piezos:
|
|
71
|
+
# Tronquer/padder en fonction de la taille réelle de la sonde
|
|
72
|
+
binary_str = binary_str.ljust(n_piezos, '0')
|
|
73
|
+
elif len(binary_str) > n_piezos:
|
|
74
|
+
binary_str = binary_str[:n_piezos]
|
|
75
|
+
return np.array([int(b) for b in binary_str])
|
|
76
|
+
except ValueError:
|
|
77
|
+
return np.zeros(n_piezos, dtype=int)
|
|
78
|
+
|
|
79
|
+
|
|
@@ -2,19 +2,43 @@ from ._mainExperiment import Experiment
|
|
|
2
2
|
from AOT_biomaps.AOT_Acoustic.AcousticEnums import WaveType
|
|
3
3
|
from AOT_biomaps.AOT_Acoustic.StructuredWave import StructuredWave
|
|
4
4
|
from AOT_biomaps.Config import config
|
|
5
|
-
from AOT_biomaps.AOT_Experiment.ExperimentTools import calc_mat_os, convert_to_hex_list
|
|
5
|
+
from AOT_biomaps.AOT_Experiment.ExperimentTools import calc_mat_os, convert_to_hex_list, hex_to_binary_profile
|
|
6
6
|
import os
|
|
7
7
|
import psutil
|
|
8
8
|
import numpy as np
|
|
9
9
|
import matplotlib.pyplot as plt
|
|
10
10
|
from tqdm import trange
|
|
11
11
|
import h5py
|
|
12
|
-
from scipy.io import loadmat
|
|
12
|
+
from scipy.io import loadmat, savemat
|
|
13
|
+
|
|
13
14
|
|
|
14
15
|
class Tomography(Experiment):
|
|
15
16
|
def __init__(self, **kwargs):
|
|
16
17
|
super().__init__(**kwargs)
|
|
17
18
|
self.patterns = None
|
|
19
|
+
self.theta = []
|
|
20
|
+
self.decimations = []
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
for i in range(len(self.AcousticFields)):
|
|
24
|
+
profile = hex_to_binary_profile(self.AcousticFields[i].getName_field()[6:-4], self.params.acoustic['num_elements'])
|
|
25
|
+
angle = self.AcousticFields[i].angle
|
|
26
|
+
self.theta.append(angle)
|
|
27
|
+
|
|
28
|
+
if set(self.AcousticFields[i].getName_field()[6:-4].lower().replace(" ", "")) == {'f'}:
|
|
29
|
+
fs_key = 0.0 # fs_key est en mm^-1 (0.0 mm^-1)
|
|
30
|
+
else:
|
|
31
|
+
ft_prof = np.fft.fft(profile)
|
|
32
|
+
idx_max = np.argmax(np.abs(ft_prof[1:len(profile)//2])) + 1
|
|
33
|
+
freqs = np.fft.fftfreq(len(profile), d=self.params.general['dx'])
|
|
34
|
+
|
|
35
|
+
# freqs est en m^-1 car delta_x est en mètres.
|
|
36
|
+
fs_m_inv = abs(freqs[idx_max])
|
|
37
|
+
|
|
38
|
+
fs_key = fs_m_inv # Fréquence spatiale en mm^-1
|
|
39
|
+
|
|
40
|
+
# fs = n * dfx => n = fs / dfx with dfx = 1/(N*delta_x)
|
|
41
|
+
self.decimations.append(int(fs_key / (1/(len(profile)*self.params.general['dx']))))
|
|
18
42
|
|
|
19
43
|
# PUBLIC METHODS
|
|
20
44
|
def check(self):
|
|
@@ -274,7 +298,7 @@ class Tomography(Experiment):
|
|
|
274
298
|
line = f"({coords}, {angles})\n"
|
|
275
299
|
file.write(line)
|
|
276
300
|
|
|
277
|
-
def generateActiveList(self, N, decimations = None, angles = None):
|
|
301
|
+
def generateActiveList(self, N = None, decimations = None, angles = None):
|
|
278
302
|
"""
|
|
279
303
|
Génère une liste de patterns d'activation équilibrés et réguliers.
|
|
280
304
|
Args:
|
|
@@ -283,14 +307,30 @@ class Tomography(Experiment):
|
|
|
283
307
|
list: Liste de strings au format "hex_angle".
|
|
284
308
|
"""
|
|
285
309
|
if decimations is not None and angles is not None:
|
|
286
|
-
self._genereate_patterns_from_decimations(decimations, angles)
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
310
|
+
self.patterns = self._genereate_patterns_from_decimations(decimations, angles)
|
|
311
|
+
elif N is not None and N > 1:
|
|
312
|
+
self.patterns = self._generate_patterns(N)
|
|
313
|
+
if not self._check_patterns(self.patterns):
|
|
314
|
+
raise ValueError("Generated patterns failed validation.")
|
|
315
|
+
else:
|
|
316
|
+
raise ValueError("Either N (>=2) or both decimations and angles must be provided for pattern generation.")
|
|
317
|
+
|
|
292
318
|
|
|
293
|
-
|
|
319
|
+
def saveAOsignals_matlab(self, filePath):
|
|
320
|
+
ActiveList = []
|
|
321
|
+
DelayLaw = []
|
|
322
|
+
c = self.params.acoustic['c0']
|
|
323
|
+
NbElemts = self.params.acoustic['num_elements']
|
|
324
|
+
pitch = self.params.acoustic['width']
|
|
325
|
+
|
|
326
|
+
for i in range(len(self.AcousticFields)):
|
|
327
|
+
profile = hex_to_binary_profile(self.AcousticFields[i].getName_field()[6:-4], NbElemts)
|
|
328
|
+
ActiveList.append(profile)
|
|
329
|
+
angle = self.AcousticFields[i].angle
|
|
330
|
+
Delay = 1000 * (1/c) * np.sin(np.deg2rad(angle)) * np.arange(1, NbElemts + 1) * pitch
|
|
331
|
+
DelayLaw.append(Delay - np.min(Delay))
|
|
332
|
+
|
|
333
|
+
savemat(filePath, {'data': self.AOsignal_withTumor, 'thetas': self.theta, 'decimations': self.decimations, 'ActiveList' : ActiveList, 'DelayLaw': DelayLaw})
|
|
294
334
|
|
|
295
335
|
def selectAngles(self, angles):
|
|
296
336
|
|
|
@@ -400,6 +440,7 @@ class Tomography(Experiment):
|
|
|
400
440
|
|
|
401
441
|
# 3. Construction de la liste de dictionnaires
|
|
402
442
|
patterns = []
|
|
443
|
+
print(f"Generating {Nscans} patterns from decimations and angles...")
|
|
403
444
|
for i in range(Nscans):
|
|
404
445
|
# On retrouve l'angle correspondant à l'index i
|
|
405
446
|
# La logique est cyclique sur la taille de 'angles'
|
|
@@ -1,14 +1,108 @@
|
|
|
1
1
|
from ._mainRecon import Recon
|
|
2
2
|
from .ReconEnums import ReconType, AnalyticType, ProcessType
|
|
3
|
+
from AOT_biomaps.AOT_Experiment.Tomography import hex_to_binary_profile
|
|
4
|
+
from .ReconTools import get_phase_deterministic
|
|
3
5
|
|
|
4
6
|
import numpy as np
|
|
5
7
|
from tqdm import trange
|
|
8
|
+
import torch
|
|
9
|
+
import tqdm
|
|
10
|
+
|
|
6
11
|
|
|
7
12
|
class AnalyticRecon(Recon):
|
|
8
13
|
def __init__(self, analyticType, **kwargs):
|
|
9
14
|
super().__init__(**kwargs)
|
|
10
15
|
self.reconType = ReconType.Analytic
|
|
11
16
|
self.analyticType = analyticType
|
|
17
|
+
self.AOsignal_demoldulated = None
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def parse_and_demodulate(self, withTumor=True):
|
|
22
|
+
|
|
23
|
+
if withTumor:
|
|
24
|
+
AOsignal = self.experiment.AOsignal_withTumor
|
|
25
|
+
else:
|
|
26
|
+
AOsignal = self.experiment.AOsignal_withoutTumor
|
|
27
|
+
delta_x = self.params.acoustic['dx'] # en m
|
|
28
|
+
n_piezos = self.params.acoustic['num_elements']
|
|
29
|
+
demodulated_data = {}
|
|
30
|
+
structured_buffer = {}
|
|
31
|
+
|
|
32
|
+
for i in tqdm(range(len(self.experiment.AcousticFields)), desc="Demodulating AO signals"):
|
|
33
|
+
label = self.experiment.AcousticFields[i].getName_field()
|
|
34
|
+
|
|
35
|
+
parts = label.split("_")
|
|
36
|
+
hex_pattern = parts[0]
|
|
37
|
+
angle_code = parts[-1]
|
|
38
|
+
|
|
39
|
+
# Angle
|
|
40
|
+
if angle_code.startswith("1"):
|
|
41
|
+
angle_deg = -int(angle_code[1:])
|
|
42
|
+
else:
|
|
43
|
+
angle_deg = int(angle_code)
|
|
44
|
+
angle_rad = np.deg2rad(angle_deg)
|
|
45
|
+
|
|
46
|
+
# Onde Plane (f_s = 0)
|
|
47
|
+
if set(hex_pattern.lower().replace(" ", "")) == {'f'}:
|
|
48
|
+
fs_key = 0.0 # fs_key est en mm^-1 (0.0 mm^-1)
|
|
49
|
+
demodulated_data[(fs_key, angle_rad)] = np.array(AOsignal[i])
|
|
50
|
+
continue
|
|
51
|
+
|
|
52
|
+
# Onde Structurée
|
|
53
|
+
profile = hex_to_binary_profile(hex_pattern, n_piezos)
|
|
54
|
+
|
|
55
|
+
# Calcul FS (Fréquence de Structuration)
|
|
56
|
+
ft_prof = np.fft.fft(profile)
|
|
57
|
+
# On regarde uniquement la partie positive non DC
|
|
58
|
+
idx_max = np.argmax(np.abs(ft_prof[1:len(profile)//2])) + 1
|
|
59
|
+
freqs = np.fft.fftfreq(len(profile), d=delta_x)
|
|
60
|
+
|
|
61
|
+
# freqs est en m^-1 car delta_x est en mètres.
|
|
62
|
+
fs_m_inv = abs(freqs[idx_max])
|
|
63
|
+
|
|
64
|
+
# *** CORRECTION 1: Conversion de f_s en mm^-1 (mm^-1 est utilisé dans iRadon) ***
|
|
65
|
+
fs_key = fs_m_inv / 1000.0 # Fréquence spatiale en mm^-1
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
if fs_key == 0: continue
|
|
69
|
+
|
|
70
|
+
# Calcul de la Phase (Shift)
|
|
71
|
+
phase = get_phase_deterministic(profile)
|
|
72
|
+
|
|
73
|
+
# Stockage par (fs, theta) et phase
|
|
74
|
+
key = (fs_key, angle_rad)
|
|
75
|
+
if key not in structured_buffer:
|
|
76
|
+
structured_buffer[key] = {}
|
|
77
|
+
|
|
78
|
+
# La moyenne est nécessaire si plusieurs acquisitions ont la même phase (pour le SNR)
|
|
79
|
+
if phase in structured_buffer[key]:
|
|
80
|
+
structured_buffer[key][phase] = (structured_buffer[key][phase] + np.array(AOsignal[i])) / 2
|
|
81
|
+
else:
|
|
82
|
+
structured_buffer[key][phase] = np.array(AOsignal[i])
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
for (fs, theta), phases in structured_buffer.items():
|
|
87
|
+
s0 = phases.get(0.0, 0)
|
|
88
|
+
s_pi_2 = phases.get(np.pi/2, 0)
|
|
89
|
+
s_pi = phases.get(np.pi, 0)
|
|
90
|
+
s_3pi_2 = phases.get(3*np.pi/2, 0)
|
|
91
|
+
|
|
92
|
+
# Assurer que les zéros sont des vecteurs de la bonne taille
|
|
93
|
+
example = next(val for val in phases.values() if not isinstance(val, int))
|
|
94
|
+
if isinstance(s0, int): s0 = np.zeros_like(example)
|
|
95
|
+
if isinstance(s_pi, int): s_pi = np.zeros_like(example)
|
|
96
|
+
if isinstance(s_pi_2, int): s_pi_2 = np.zeros_like(example)
|
|
97
|
+
if isinstance(s_3pi_2, int): s_3pi_2 = np.zeros_like(example)
|
|
98
|
+
|
|
99
|
+
real = s0 - s_pi
|
|
100
|
+
imag = s_pi_2 - s_3pi_2
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
demodulated_data[(fs, theta)] = (real - 1j * imag) / (2/np.pi)
|
|
104
|
+
self.AOsignal_demoldulated = demodulated_data
|
|
105
|
+
|
|
12
106
|
|
|
13
107
|
def run(self, processType = ProcessType.PYTHON, withTumor= True):
|
|
14
108
|
"""
|
|
@@ -6,6 +6,7 @@ import pycuda.driver as drv
|
|
|
6
6
|
from numba import njit, prange
|
|
7
7
|
from torch_sparse import coalesce
|
|
8
8
|
from scipy.signal.windows import hann
|
|
9
|
+
from itertools import groupby
|
|
9
10
|
|
|
10
11
|
def load_recon(hdr_path):
|
|
11
12
|
"""
|
|
@@ -483,4 +484,48 @@ def power_method_estimate_L__SELL(SMatrix, stream, n_it=20, block_size=256):
|
|
|
483
484
|
g.free()
|
|
484
485
|
except:
|
|
485
486
|
pass
|
|
486
|
-
return max(L_sq, 1e-6)
|
|
487
|
+
return max(L_sq, 1e-6)
|
|
488
|
+
|
|
489
|
+
def get_phase_deterministic(profile):
|
|
490
|
+
"""
|
|
491
|
+
Détermine la phase en se basant sur la valeur initiale (0 ou 1) et l'état
|
|
492
|
+
de décalage (is_shifted) de la séquence binaire.
|
|
493
|
+
|
|
494
|
+
ATTENTION: Cette fonction est conservée mais la logique est souvent simplifiée
|
|
495
|
+
en pratique si les labels garantissent les phases 0, pi/2, pi, 3pi/2.
|
|
496
|
+
"""
|
|
497
|
+
runs = [(k, sum(1 for _ in g)) for k, g in groupby(profile)]
|
|
498
|
+
if not runs: return 0.0
|
|
499
|
+
|
|
500
|
+
nominal_half_period = max([r[1] for r in runs])
|
|
501
|
+
if nominal_half_period == 0: return 0.0
|
|
502
|
+
|
|
503
|
+
first_val = runs[0][0] # 0 ou 1
|
|
504
|
+
first_len = runs[0][1]
|
|
505
|
+
# Détection de cycle 50%
|
|
506
|
+
is_shifted = (0.3 < first_len / nominal_half_period < 0.7)
|
|
507
|
+
|
|
508
|
+
# --- LOGIQUE DE MAPPAGE DE PHASE SIMPLIFIÉE (idx 1 à 4) ---
|
|
509
|
+
|
|
510
|
+
if first_val == 0:
|
|
511
|
+
if is_shifted:
|
|
512
|
+
idx = 3 # C1/C3 décalé (phi_1 ou phi_3)
|
|
513
|
+
else:
|
|
514
|
+
idx = 4 # C2/C4 non décalé
|
|
515
|
+
else: # first_val == 1
|
|
516
|
+
if is_shifted:
|
|
517
|
+
idx = 1 # C1/C3 décalé (phi_1 ou phi_3)
|
|
518
|
+
else:
|
|
519
|
+
idx = 2 # C2/C4 non décalé
|
|
520
|
+
|
|
521
|
+
# On utilise les phases de quadrature 0, pi/2, pi, 3pi/2
|
|
522
|
+
if idx == 1:
|
|
523
|
+
phase = 0
|
|
524
|
+
elif idx == 2 :
|
|
525
|
+
phase = np.pi/2
|
|
526
|
+
elif idx == 3 :
|
|
527
|
+
phase = np.pi
|
|
528
|
+
elif idx == 4 :
|
|
529
|
+
phase = 3*np.pi/2
|
|
530
|
+
|
|
531
|
+
return phase
|
AOT_biomaps/__init__.py
CHANGED
|
@@ -85,7 +85,7 @@ from .AOT_Recon.AOT_PotentialFunctions.RelativeDifferences import *
|
|
|
85
85
|
from .Config import config
|
|
86
86
|
from .Settings import *
|
|
87
87
|
|
|
88
|
-
__version__ = '2.9.
|
|
88
|
+
__version__ = '2.9.333'
|
|
89
89
|
__process__ = config.get_process()
|
|
90
90
|
|
|
91
91
|
def initialize(process=None):
|
|
@@ -172,6 +172,18 @@ def initialize(process=None):
|
|
|
172
172
|
|
|
173
173
|
|
|
174
174
|
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
|
|
175
187
|
|
|
176
188
|
|
|
177
189
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
AOT_biomaps/Config.py,sha256=ghEOP1n8aO1pR-su13wMeAZAxZRfry5hH67NbtZ8SqI,3614
|
|
2
2
|
AOT_biomaps/Settings.py,sha256=v8fPhnvvcfBJP29m1RLOTEr3jndGLGwbUiORXmsj2Bo,2853
|
|
3
|
-
AOT_biomaps/__init__.py,sha256=
|
|
3
|
+
AOT_biomaps/__init__.py,sha256=KTexXkgmJ_3hKllZPzxJIRkrNj2plmep-xD4ANfDxao,4328
|
|
4
4
|
AOT_biomaps/AOT_Acoustic/AcousticEnums.py,sha256=s5kXa6jKzbS4btwbubrVcynLOr0yg5tth5vL_FGfbMk,1802
|
|
5
5
|
AOT_biomaps/AOT_Acoustic/AcousticTools.py,sha256=h2sCtGVcDtyLtEF1q7sLZmuWivWmesVGUBPnW-ndQqc,7535
|
|
6
6
|
AOT_biomaps/AOT_Acoustic/FocusedWave.py,sha256=3kGKKDx_3Msy5COYqIwzROPORGWvNjw8UsDanBfkMXE,11037
|
|
@@ -9,9 +9,9 @@ AOT_biomaps/AOT_Acoustic/PlaneWave.py,sha256=xza-rj5AUWDecLkGDxRcULrwZVWeBvGnEP2
|
|
|
9
9
|
AOT_biomaps/AOT_Acoustic/StructuredWave.py,sha256=jTLVlOhYLWJb5MxZPxhq3OFVlz2McoyMPBmfLvnekDU,18209
|
|
10
10
|
AOT_biomaps/AOT_Acoustic/__init__.py,sha256=t9M2rRqa_L9pk7W2FeELTkHEMuP4DBr4gBRldMqsQbg,491
|
|
11
11
|
AOT_biomaps/AOT_Acoustic/_mainAcoustic.py,sha256=RdmhRF1i0KAlpsP7_wnZ7F4J27br3eUc4XR91Qq7C64,44158
|
|
12
|
-
AOT_biomaps/AOT_Experiment/ExperimentTools.py,sha256=
|
|
12
|
+
AOT_biomaps/AOT_Experiment/ExperimentTools.py,sha256=EyTIwgxTK-FqJYlhdjgirfWCSL1kTp-IOS0tTgiAVNA,3153
|
|
13
13
|
AOT_biomaps/AOT_Experiment/Focus.py,sha256=B2nBawmv-NG2AWJx9zgQ8GlN6aFB9FwTSqX-M-phKXg,3193
|
|
14
|
-
AOT_biomaps/AOT_Experiment/Tomography.py,sha256=
|
|
14
|
+
AOT_biomaps/AOT_Experiment/Tomography.py,sha256=87tdUjYJbrNU2S3FT7pCsnB4jFEYZQFqD4o_FBKekkc,36689
|
|
15
15
|
AOT_biomaps/AOT_Experiment/__init__.py,sha256=H9zMLeBLA6uhbaHohAa-2u5mDDxqJi8oE5c6tShdQp8,308
|
|
16
16
|
AOT_biomaps/AOT_Experiment/_mainExperiment.py,sha256=zSfuNrsz7nhiKrGIdK6CAXjlI2T6qYC5-JXHFgPNzhc,24674
|
|
17
17
|
AOT_biomaps/AOT_Optic/Absorber.py,sha256=jEodzRy7gkEH-wbazVasRQiri0dU16BfapmR-qnTSvM,867
|
|
@@ -21,12 +21,12 @@ AOT_biomaps/AOT_Optic/__init__.py,sha256=HSUVhfz0NzwHHZZ9KP9Xyfu33IgP_rYJX86J-gE
|
|
|
21
21
|
AOT_biomaps/AOT_Optic/_mainOptic.py,sha256=Wk63CcgWbU-ygMfjNK80islaUbGGJpTXgZY3_C2KQNY,8179
|
|
22
22
|
AOT_biomaps/AOT_Recon/AOT_biomaps_kernels.cubin,sha256=JWy-bdtBTZdnNlDbJGZKwXyF-2u1wICtmlOC_YxEL6o,82528
|
|
23
23
|
AOT_biomaps/AOT_Recon/AlgebraicRecon.py,sha256=CGBXZyYEZ3TOTFOKSt-h7NGuFbuI9PNr3YTWTbSLxDo,46832
|
|
24
|
-
AOT_biomaps/AOT_Recon/AnalyticRecon.py,sha256=
|
|
24
|
+
AOT_biomaps/AOT_Recon/AnalyticRecon.py,sha256=9MNztNRZuF8zM1WfJh1GaTC8b7UDb_iuh0T0LGwycUY,10905
|
|
25
25
|
AOT_biomaps/AOT_Recon/BayesianRecon.py,sha256=RnnPa-tTcvirwiNPnCRZnSM4NWeEEltYET-piBbp34g,12671
|
|
26
26
|
AOT_biomaps/AOT_Recon/DeepLearningRecon.py,sha256=RfVcEsi4GeGqJn0_SPxwQPQx6IQjin79WKh2UarMRLI,1383
|
|
27
27
|
AOT_biomaps/AOT_Recon/PrimalDualRecon.py,sha256=JbFhxiyUoSTnlJgHbOWIfUUwhwfZoi39RJMnfkagegY,16504
|
|
28
28
|
AOT_biomaps/AOT_Recon/ReconEnums.py,sha256=KAf55RqHAr2ilt6pxFrUBGQOn-7HA8NP6TyL-1FNiXo,19714
|
|
29
|
-
AOT_biomaps/AOT_Recon/ReconTools.py,sha256
|
|
29
|
+
AOT_biomaps/AOT_Recon/ReconTools.py,sha256=-ZbzRHSzUprjzPRGCJeBiow_2AEvS2IzCSrv3XfzpLs,21307
|
|
30
30
|
AOT_biomaps/AOT_Recon/__init__.py,sha256=xs_argJqXKFl76xP7-jiUc1ynOEEtY7XZ0gDxD5uVZc,246
|
|
31
31
|
AOT_biomaps/AOT_Recon/_mainRecon.py,sha256=exoa2UBMfMHjemxAU9dW0mhEfsP6Oe1qjSfrTrgbIcY,13125
|
|
32
32
|
AOT_biomaps/AOT_Recon/AOT_Optimizers/DEPIERRO.py,sha256=qA1n722GLQJH3V8HcLr5q_GxEwBS_NRlIT3E6JZk-Ag,9479
|
|
@@ -42,7 +42,7 @@ AOT_biomaps/AOT_Recon/AOT_PotentialFunctions/__init__.py,sha256=RwrJdLOFbAFBFnRx
|
|
|
42
42
|
AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_CSR.py,sha256=RACc2P5oxmp0uPLAGnNj9mEtAxa_OlepNgCawKij3jI,12062
|
|
43
43
|
AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_SELL.py,sha256=ti3dZQsb_Uu62C7Bn65Z-yf-R5NKCFsmnBT5GlLd_HY,15138
|
|
44
44
|
AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/__init__.py,sha256=8nou-hqjQjuCTLhoL5qv4EM_lMPFviAZAZKSPhi84jE,67
|
|
45
|
-
aot_biomaps-2.9.
|
|
46
|
-
aot_biomaps-2.9.
|
|
47
|
-
aot_biomaps-2.9.
|
|
48
|
-
aot_biomaps-2.9.
|
|
45
|
+
aot_biomaps-2.9.333.dist-info/METADATA,sha256=bnzNzvd1PZh5qMbP_pSbFR59oQ8YUrW4fYQmhKhY0Uo,700
|
|
46
|
+
aot_biomaps-2.9.333.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
47
|
+
aot_biomaps-2.9.333.dist-info/top_level.txt,sha256=6STF-lT4kaAnBHJYCripmN5mZABoHjMuY689JdiDphk,12
|
|
48
|
+
aot_biomaps-2.9.333.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|