AOT-biomaps 2.9.186__py3-none-any.whl → 2.9.261__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AOT-biomaps might be problematic. Click here for more details.
- AOT_biomaps/AOT_Acoustic/StructuredWave.py +2 -2
- AOT_biomaps/AOT_Acoustic/_mainAcoustic.py +11 -6
- AOT_biomaps/AOT_Experiment/Tomography.py +74 -4
- AOT_biomaps/AOT_Experiment/_mainExperiment.py +95 -55
- AOT_biomaps/AOT_Recon/AOT_Optimizers/DEPIERRO.py +48 -13
- AOT_biomaps/AOT_Recon/AOT_Optimizers/LS.py +9 -6
- AOT_biomaps/AOT_Recon/AOT_Optimizers/MAPEM.py +118 -38
- AOT_biomaps/AOT_Recon/AOT_Optimizers/MLEM.py +268 -102
- AOT_biomaps/AOT_Recon/AOT_Optimizers/PDHG.py +1 -1
- AOT_biomaps/AOT_Recon/AOT_PotentialFunctions/RelativeDifferences.py +10 -14
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_CSR.py +252 -0
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_SELL.py +322 -0
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/__init__.py +2 -0
- AOT_biomaps/AOT_Recon/AlgebraicRecon.py +231 -108
- AOT_biomaps/AOT_Recon/AnalyticRecon.py +26 -41
- AOT_biomaps/AOT_Recon/BayesianRecon.py +81 -146
- AOT_biomaps/AOT_Recon/PrimalDualRecon.py +63 -53
- AOT_biomaps/AOT_Recon/ReconEnums.py +27 -2
- AOT_biomaps/AOT_Recon/ReconTools.py +84 -13
- AOT_biomaps/AOT_Recon/__init__.py +1 -0
- AOT_biomaps/AOT_Recon/_mainRecon.py +60 -53
- AOT_biomaps/__init__.py +4 -102
- {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.261.dist-info}/METADATA +2 -1
- aot_biomaps-2.9.261.dist-info/RECORD +46 -0
- aot_biomaps-2.9.186.dist-info/RECORD +0 -43
- {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.261.dist-info}/WHEEL +0 -0
- {aot_biomaps-2.9.186.dist-info → aot_biomaps-2.9.261.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,252 @@
|
|
|
1
|
+
# sparse_matrix_gpu.py
|
|
2
|
+
import pycuda.driver as drv
|
|
3
|
+
import numpy as np
|
|
4
|
+
from pycuda.compiler import SourceModule
|
|
5
|
+
from tqdm import trange
|
|
6
|
+
import gc
|
|
7
|
+
import os
|
|
8
|
+
|
|
9
|
+
class SparseSMatrix_CSR:
|
|
10
|
+
"""Construction d'une matrice CSR à partir d'un objet `manip`.
|
|
11
|
+
Usage:
|
|
12
|
+
S = SparseMatrixGPU(manip)
|
|
13
|
+
S.allocate()
|
|
14
|
+
Après allocate(), on a: row_ptr (host np.int64 array), row_ptr_gpu (device ptr),
|
|
15
|
+
h_col_ind, h_values, col_ind_gpu, values_gpu, norm_factor_inv.
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
def __init__(self, manip, block_rows=64, relative_threshold=0.3, device=0):
|
|
19
|
+
drv.init()
|
|
20
|
+
self.device = drv.Device(device)
|
|
21
|
+
self.ctx = self.device.make_context()
|
|
22
|
+
self.manip = manip
|
|
23
|
+
self.N = len(manip.AcousticFields)
|
|
24
|
+
self.T = manip.AcousticFields[0].field.shape[0]
|
|
25
|
+
self.Z = manip.AcousticFields[0].field.shape[1]
|
|
26
|
+
self.X = manip.AcousticFields[0].field.shape[2]
|
|
27
|
+
self.block_rows = block_rows
|
|
28
|
+
self.relative_threshold = relative_threshold
|
|
29
|
+
self.h_dense = None
|
|
30
|
+
self.row_ptr = None
|
|
31
|
+
self.row_ptr_gpu = None
|
|
32
|
+
self.h_col_ind = None
|
|
33
|
+
self.h_values = None
|
|
34
|
+
self.total_nnz = 0
|
|
35
|
+
self.norm_factor_inv = None
|
|
36
|
+
self.sparse_mod = None
|
|
37
|
+
|
|
38
|
+
def __enter__(self):
|
|
39
|
+
return self
|
|
40
|
+
|
|
41
|
+
def __exit__(self, exc_type, exc, tb):
|
|
42
|
+
self.free()
|
|
43
|
+
|
|
44
|
+
def load_precompiled_module(self, so_path="AOT_biomaps_kernels.cubin"):
|
|
45
|
+
try:
|
|
46
|
+
# If a PTX or cubin is provided via path
|
|
47
|
+
self.sparse_mod = drv.module_from_file(so_path)
|
|
48
|
+
print(f"✅ Module CUDA chargé depuis {so_path}")
|
|
49
|
+
except Exception:
|
|
50
|
+
# Fallback: try to compile from bundled source (if available)
|
|
51
|
+
src_path = os.path.join(os.path.dirname(__file__), 'AOT_biomaps_kernels.cu')
|
|
52
|
+
if os.path.exists(src_path):
|
|
53
|
+
print("Compilation JIT du kernel CUDA depuis source...")
|
|
54
|
+
with open(src_path, 'r') as f:
|
|
55
|
+
src = f.read()
|
|
56
|
+
self.sparse_mod = SourceModule(src, no_extern_c=True)
|
|
57
|
+
print("✅ Module compilé JIT")
|
|
58
|
+
else:
|
|
59
|
+
raise
|
|
60
|
+
|
|
61
|
+
def estimate_nnz_cpu(self):
|
|
62
|
+
"""Estimation rapide (non-exacte) — utile si tu veux une estimation faible.
|
|
63
|
+
Recommandé : utiliser la passe GPU exacte (count_nnz_per_row_kernel) à la place.
|
|
64
|
+
"""
|
|
65
|
+
total = 0
|
|
66
|
+
for n in range(self.N):
|
|
67
|
+
field = self.manip.AcousticFields[n].field
|
|
68
|
+
for t in range(self.T):
|
|
69
|
+
row = field[t].flatten()
|
|
70
|
+
row_max = np.max(np.abs(row))
|
|
71
|
+
thr = row_max * self.relative_threshold
|
|
72
|
+
total += np.count_nonzero(np.abs(row) > thr)
|
|
73
|
+
return int(total)
|
|
74
|
+
|
|
75
|
+
def allocate(self, kernel_module_path=None):
|
|
76
|
+
try:
|
|
77
|
+
# --- 1. Construction bloc par bloc (sans garder tout le dense si possible) ---
|
|
78
|
+
num_rows = self.N * self.T
|
|
79
|
+
num_cols = self.Z * self.X
|
|
80
|
+
bytes_float = np.dtype(np.float32).itemsize
|
|
81
|
+
|
|
82
|
+
# Charge module
|
|
83
|
+
if kernel_module_path:
|
|
84
|
+
self.load_precompiled_module(kernel_module_path)
|
|
85
|
+
else:
|
|
86
|
+
self.load_precompiled_module('AOT_biomaps_kernels.cubin')
|
|
87
|
+
|
|
88
|
+
count_nnz_kernel = self.sparse_mod.get_function('count_nnz_per_row_kernel')
|
|
89
|
+
fill_csr_kernel = self.sparse_mod.get_function('fill_kernel__CSR')
|
|
90
|
+
|
|
91
|
+
# allocate host row_ptr
|
|
92
|
+
self.row_ptr = np.zeros(num_rows + 1, dtype=np.int64)
|
|
93
|
+
|
|
94
|
+
# GPU temp buffers
|
|
95
|
+
dense_block_host = np.empty((self.block_rows, num_cols), dtype=np.float32)
|
|
96
|
+
dense_block_gpu = drv.mem_alloc(self.block_rows * num_cols * bytes_float)
|
|
97
|
+
row_nnz_gpu = drv.mem_alloc(self.block_rows * np.dtype(np.int32).itemsize)
|
|
98
|
+
|
|
99
|
+
block_size = 128
|
|
100
|
+
|
|
101
|
+
# --- Count NNZ per row using GPU kernel to be consistent with filling logic ---
|
|
102
|
+
for b in trange(0, num_rows, self.block_rows, desc='Comptage NNZ'):
|
|
103
|
+
current_rows = min(self.block_rows, num_rows - b)
|
|
104
|
+
# Fill dense_block_host from manip
|
|
105
|
+
for r in range(current_rows):
|
|
106
|
+
global_row = b + r
|
|
107
|
+
n_idx = global_row // self.T
|
|
108
|
+
t_idx = global_row % self.T
|
|
109
|
+
dense_block_host[r, :] = self.manip.AcousticFields[n_idx].field[t_idx].flatten()
|
|
110
|
+
drv.memcpy_htod(dense_block_gpu, dense_block_host)
|
|
111
|
+
|
|
112
|
+
grid = ((current_rows + block_size - 1) // block_size, 1, 1)
|
|
113
|
+
count_nnz_kernel(dense_block_gpu, row_nnz_gpu,
|
|
114
|
+
np.int32(current_rows), np.int32(num_cols),
|
|
115
|
+
np.float32(self.relative_threshold),
|
|
116
|
+
block=(block_size, 1, 1), grid=grid)
|
|
117
|
+
|
|
118
|
+
row_nnz_host = np.empty(current_rows, dtype=np.int32)
|
|
119
|
+
drv.memcpy_dtoh(row_nnz_host, row_nnz_gpu)
|
|
120
|
+
self.row_ptr[b + 1:b + current_rows + 1] = self.row_ptr[b] + np.cumsum(row_nnz_host, dtype=np.int64)
|
|
121
|
+
|
|
122
|
+
# total nnz
|
|
123
|
+
self.total_nnz = int(self.row_ptr[-1])
|
|
124
|
+
print(f"NNZ total : {self.total_nnz}")
|
|
125
|
+
|
|
126
|
+
# allocate final arrays
|
|
127
|
+
self.h_col_ind = np.zeros(self.total_nnz, dtype=np.uint32)
|
|
128
|
+
self.h_values = np.zeros(self.total_nnz, dtype=np.float32)
|
|
129
|
+
|
|
130
|
+
# copy row_ptr to device once
|
|
131
|
+
self.row_ptr_gpu = drv.mem_alloc(self.row_ptr.nbytes)
|
|
132
|
+
drv.memcpy_htod(self.row_ptr_gpu, self.row_ptr)
|
|
133
|
+
|
|
134
|
+
# allocate device arrays for final csr
|
|
135
|
+
self.col_ind_gpu = drv.mem_alloc(self.h_col_ind.nbytes)
|
|
136
|
+
self.values_gpu = drv.mem_alloc(self.h_values.nbytes)
|
|
137
|
+
|
|
138
|
+
# --- Fill CSR per-block ---
|
|
139
|
+
for b in trange(0, num_rows, self.block_rows, desc='Remplissage CSR'):
|
|
140
|
+
current_rows = min(self.block_rows, num_rows - b)
|
|
141
|
+
for r in range(current_rows):
|
|
142
|
+
global_row = b + r
|
|
143
|
+
n_idx = global_row // self.T
|
|
144
|
+
t_idx = global_row % self.T
|
|
145
|
+
dense_block_host[r, :] = self.manip.AcousticFields[n_idx].field[t_idx].flatten()
|
|
146
|
+
drv.memcpy_htod(dense_block_gpu, dense_block_host)
|
|
147
|
+
|
|
148
|
+
grid = ((current_rows + block_size - 1) // block_size, 1, 1)
|
|
149
|
+
fill_csr_kernel(dense_block_gpu,
|
|
150
|
+
self.row_ptr_gpu,
|
|
151
|
+
self.col_ind_gpu,
|
|
152
|
+
self.values_gpu,
|
|
153
|
+
np.int32(b),
|
|
154
|
+
np.int32(current_rows),
|
|
155
|
+
np.int32(num_cols),
|
|
156
|
+
np.float32(self.relative_threshold),
|
|
157
|
+
np.int64(self.total_nnz),
|
|
158
|
+
block=(block_size, 1, 1), grid=grid)
|
|
159
|
+
drv.Context.synchronize()
|
|
160
|
+
|
|
161
|
+
# copy back
|
|
162
|
+
drv.memcpy_dtoh(self.h_col_ind, self.col_ind_gpu)
|
|
163
|
+
drv.memcpy_dtoh(self.h_values, self.values_gpu)
|
|
164
|
+
print('CSR généré ✔')
|
|
165
|
+
|
|
166
|
+
# compute normalization factor from CSR (sum per column)
|
|
167
|
+
self.compute_norm_factor_from_csr()
|
|
168
|
+
|
|
169
|
+
# free temporaries
|
|
170
|
+
dense_block_gpu.free(); row_nnz_gpu.free()
|
|
171
|
+
|
|
172
|
+
except Exception as e:
|
|
173
|
+
print(f"❌ Erreur détaillée : {e}")
|
|
174
|
+
self.free()
|
|
175
|
+
raise
|
|
176
|
+
|
|
177
|
+
def compute_norm_factor_from_csr(self):
|
|
178
|
+
ZX = self.Z * self.X
|
|
179
|
+
|
|
180
|
+
# 1) Allouer un vecteur de somme colonne sur le GPU
|
|
181
|
+
col_sum_gpu = drv.mem_alloc(ZX * np.dtype(np.float32).itemsize)
|
|
182
|
+
drv.memset_d32(col_sum_gpu, 0, ZX)
|
|
183
|
+
|
|
184
|
+
# 2) Récupérer le kernel
|
|
185
|
+
acc_kernel = self.sparse_mod.get_function("accumulate_columns_atomic__CSR")
|
|
186
|
+
|
|
187
|
+
# 3) Lancer le kernel
|
|
188
|
+
threads = 256
|
|
189
|
+
blocks = (self.total_nnz + threads - 1) // threads
|
|
190
|
+
|
|
191
|
+
acc_kernel(
|
|
192
|
+
self.values_gpu,
|
|
193
|
+
self.col_ind_gpu,
|
|
194
|
+
np.int64(self.total_nnz),
|
|
195
|
+
col_sum_gpu,
|
|
196
|
+
block=(threads,1,1),
|
|
197
|
+
grid=(blocks,1,1)
|
|
198
|
+
)
|
|
199
|
+
drv.Context.synchronize()
|
|
200
|
+
|
|
201
|
+
# 4) Récupérer le résultat
|
|
202
|
+
norm = np.empty(ZX, dtype=np.float32)
|
|
203
|
+
drv.memcpy_dtoh(norm, col_sum_gpu)
|
|
204
|
+
col_sum_gpu.free()
|
|
205
|
+
|
|
206
|
+
norm = np.maximum(norm.astype(np.float64), 1e-6)
|
|
207
|
+
self.norm_factor_inv = (1.0 / norm).astype(np.float32)
|
|
208
|
+
|
|
209
|
+
self.norm_factor_inv_gpu = drv.mem_alloc(self.norm_factor_inv.nbytes)
|
|
210
|
+
drv.memcpy_htod(self.norm_factor_inv_gpu, self.norm_factor_inv)
|
|
211
|
+
|
|
212
|
+
def getMatrixSize(self):
|
|
213
|
+
if self.row_ptr is None:
|
|
214
|
+
return {"error": "La matrice sparse n'est pas encore allouée."}
|
|
215
|
+
total = (self.row_ptr.nbytes if self.row_ptr is not None else 0) + \
|
|
216
|
+
(self.h_col_ind.nbytes if self.h_col_ind is not None else 0) + \
|
|
217
|
+
(self.h_values.nbytes if self.h_values is not None else 0)
|
|
218
|
+
return total / (1024**3)
|
|
219
|
+
|
|
220
|
+
def free(self):
|
|
221
|
+
try:
|
|
222
|
+
if hasattr(self, 'col_ind_gpu') and self.col_ind_gpu:
|
|
223
|
+
self.col_ind_gpu.free()
|
|
224
|
+
if hasattr(self, 'values_gpu') and self.values_gpu:
|
|
225
|
+
self.values_gpu.free()
|
|
226
|
+
if hasattr(self, 'row_ptr_gpu') and self.row_ptr_gpu:
|
|
227
|
+
self.row_ptr_gpu.free()
|
|
228
|
+
if hasattr(self, 'norm_factor_inv_gpu') and self.norm_factor_inv_gpu:
|
|
229
|
+
self.norm_factor_inv_gpu.free()
|
|
230
|
+
if hasattr(self, 'ctx') and self.ctx:
|
|
231
|
+
try:
|
|
232
|
+
self.ctx.pop()
|
|
233
|
+
except Exception:
|
|
234
|
+
pass
|
|
235
|
+
self.ctx = None
|
|
236
|
+
print('✅ Mémoire GPU libérée.')
|
|
237
|
+
except Exception as e:
|
|
238
|
+
print(f"❌ Erreur lors de la libération de la mémoire GPU : {e}")
|
|
239
|
+
|
|
240
|
+
def compute_density(self):
|
|
241
|
+
"""
|
|
242
|
+
Retourne la densité réelle de la CSR = NNZ / (num_rows * num_cols)
|
|
243
|
+
Nécessite que self.h_values et self.row_ptr existent (host).
|
|
244
|
+
"""
|
|
245
|
+
if self.row_ptr is None or self.h_values is None:
|
|
246
|
+
raise RuntimeError("row_ptr et h_values requis pour calculer la densité")
|
|
247
|
+
num_rows = int(self.N * self.T)
|
|
248
|
+
num_cols = int(self.Z * self.X)
|
|
249
|
+
total_nnz = int(self.row_ptr[-1])
|
|
250
|
+
density = total_nnz / (num_rows * num_cols)
|
|
251
|
+
return density
|
|
252
|
+
|
|
@@ -0,0 +1,322 @@
|
|
|
1
|
+
import pycuda.driver as drv
|
|
2
|
+
import numpy as np
|
|
3
|
+
from tqdm import trange
|
|
4
|
+
import os
|
|
5
|
+
import gc
|
|
6
|
+
import subprocess
|
|
7
|
+
import sys
|
|
8
|
+
|
|
9
|
+
# ==============================================================================
|
|
10
|
+
# ATTENTION: MANUAL CONFIGURATION REQUIRED
|
|
11
|
+
# ==============================================================================
|
|
12
|
+
# The 'sm_XX' value must correspond to the Compute Capability of your NVIDIA GPU.
|
|
13
|
+
# Examples: Kepler (sm_35), Maxwell (sm_50), Pascal (sm_61), Turing (sm_75), Ampere (sm_86).
|
|
14
|
+
# THIS LINE MUST BE MODIFIED BY THE USER to target their specific architecture.
|
|
15
|
+
GPU_COMPUTE_CAPABILITY = "sm_86"
|
|
16
|
+
# ==============================================================================
|
|
17
|
+
|
|
18
|
+
class SparseSMatrix_SELL:
|
|
19
|
+
def __init__(self, manip, block_rows=64, relative_threshold=0.3, device=0,
|
|
20
|
+
module_path="AOT_biomaps_kernels.cubin", slice_height=32):
|
|
21
|
+
drv.init()
|
|
22
|
+
self.device = drv.Device(device)
|
|
23
|
+
self.ctx = self.device.make_context()
|
|
24
|
+
self.manip = manip
|
|
25
|
+
self.N = len(manip.AcousticFields)
|
|
26
|
+
self.T = manip.AcousticFields[0].field.shape[0]
|
|
27
|
+
self.Z = manip.AcousticFields[0].field.shape[1]
|
|
28
|
+
self.X = manip.AcousticFields[0].field.shape[2]
|
|
29
|
+
self.block_rows = block_rows
|
|
30
|
+
self.relative_threshold = relative_threshold
|
|
31
|
+
# The module_path is relative to this file's directory
|
|
32
|
+
self.module_path = os.path.join(os.path.dirname(__file__), module_path)
|
|
33
|
+
self.slice_height = slice_height
|
|
34
|
+
|
|
35
|
+
# SELL arrays (device)
|
|
36
|
+
self.sell_values_gpu = None
|
|
37
|
+
self.sell_colinds_gpu = None
|
|
38
|
+
self.slice_ptr = None
|
|
39
|
+
self.slice_len = None
|
|
40
|
+
self.slice_ptr_gpu = None
|
|
41
|
+
self.slice_len_gpu = None
|
|
42
|
+
self.total_storage = 0
|
|
43
|
+
|
|
44
|
+
self.norm_factor_inv = None
|
|
45
|
+
self.norm_factor_inv_gpu = None
|
|
46
|
+
|
|
47
|
+
self.sparse_mod = None
|
|
48
|
+
self.load_module()
|
|
49
|
+
|
|
50
|
+
def _compile_cubin(self, source_file="AOT_biomaps_kernels.cu"):
|
|
51
|
+
"""
|
|
52
|
+
Tries to compile the .cu file into .cubin using nvcc.
|
|
53
|
+
"""
|
|
54
|
+
print("="*60)
|
|
55
|
+
print("🛠️ CUDA COMPILATION REQUIRED")
|
|
56
|
+
print(f"Attempting to compile {source_file} to {os.path.basename(self.module_path)}...")
|
|
57
|
+
|
|
58
|
+
# The source file is assumed to be in the same directory as this Python file.
|
|
59
|
+
source_path = os.path.join(os.path.dirname(__file__), source_file)
|
|
60
|
+
cubin_path = self.module_path
|
|
61
|
+
|
|
62
|
+
if not os.path.exists(source_path):
|
|
63
|
+
print(f"❌ CRITICAL ERROR: CUDA source file {source_file} not found at {source_path}.")
|
|
64
|
+
raise FileNotFoundError(f"Could not find source file {source_file} for compilation. AOT_biomaps installation might be incomplete.")
|
|
65
|
+
|
|
66
|
+
# Construction of the nvcc command
|
|
67
|
+
command = [
|
|
68
|
+
'nvcc',
|
|
69
|
+
'-cubin',
|
|
70
|
+
f'-arch={GPU_COMPUTE_CAPABILITY}', # USES THE VARIABLE DEFINED ABOVE
|
|
71
|
+
source_path,
|
|
72
|
+
'-o',
|
|
73
|
+
cubin_path
|
|
74
|
+
]
|
|
75
|
+
|
|
76
|
+
print(f"Executing command: {' '.join(command)}")
|
|
77
|
+
|
|
78
|
+
try:
|
|
79
|
+
# Executes the command and waits for completion
|
|
80
|
+
result = subprocess.run(
|
|
81
|
+
command,
|
|
82
|
+
check=True,
|
|
83
|
+
capture_output=True,
|
|
84
|
+
text=True
|
|
85
|
+
)
|
|
86
|
+
print(f"🎉 Compilation successful! File created: {os.path.basename(cubin_path)}")
|
|
87
|
+
# print("Output nvcc:\n", result.stdout) # Uncomment to see detailed output
|
|
88
|
+
print("="*60)
|
|
89
|
+
return True
|
|
90
|
+
|
|
91
|
+
except subprocess.CalledProcessError as e:
|
|
92
|
+
print("❌ NVCC COMPILATION ERROR:")
|
|
93
|
+
print(f"Check GPU architecture: {GPU_COMPUTE_CAPABILITY}")
|
|
94
|
+
print(f"Standard error:\n{e.stderr}")
|
|
95
|
+
print("="*60)
|
|
96
|
+
return False
|
|
97
|
+
|
|
98
|
+
except FileNotFoundError:
|
|
99
|
+
print("❌ ERROR: The 'nvcc' command was not found.")
|
|
100
|
+
print("Ensure that the CUDA Toolkit is installed and 'nvcc' is in your PATH (or your Conda environment).")
|
|
101
|
+
print("="*60)
|
|
102
|
+
return False
|
|
103
|
+
|
|
104
|
+
def load_module(self):
|
|
105
|
+
"""Tries to load the CUDA module. If the file is missing, it attempts to compile it."""
|
|
106
|
+
|
|
107
|
+
if not os.path.exists(self.module_path):
|
|
108
|
+
print(f"CUDA module {os.path.basename(self.module_path)} missing. Attempting compilation...")
|
|
109
|
+
|
|
110
|
+
if not self._compile_cubin():
|
|
111
|
+
# If compilation fails, re-raise the original error.
|
|
112
|
+
raise FileNotFoundError(f"{os.path.basename(self.module_path)} not found and compilation failed. Check nvcc and GPU architecture ({GPU_COMPUTE_CAPABILITY}).")
|
|
113
|
+
|
|
114
|
+
# Try to load after compilation (or if the file existed)
|
|
115
|
+
try:
|
|
116
|
+
self.sparse_mod = drv.module_from_file(self.module_path)
|
|
117
|
+
print(f"Loaded CUDA module {os.path.basename(self.module_path)}")
|
|
118
|
+
except Exception as e:
|
|
119
|
+
print(f"❌ Error loading CUDA module {os.path.basename(self.module_path)}: {e}")
|
|
120
|
+
raise RuntimeError(f"File {os.path.basename(self.module_path)} was found, but PyCUDA could not load it.") from e
|
|
121
|
+
|
|
122
|
+
def free(self):
|
|
123
|
+
try:
|
|
124
|
+
attrs = ["sell_values_gpu","sell_colinds_gpu","slice_ptr_gpu","slice_len_gpu","norm_factor_inv_gpu"]
|
|
125
|
+
for a in attrs:
|
|
126
|
+
if hasattr(self, a) and getattr(self, a) is not None:
|
|
127
|
+
getattr(self, a).free()
|
|
128
|
+
setattr(self, a, None)
|
|
129
|
+
if hasattr(self, 'ctx') and self.ctx:
|
|
130
|
+
try: self.ctx.pop()
|
|
131
|
+
except Exception: pass
|
|
132
|
+
self.ctx = None
|
|
133
|
+
except Exception as e:
|
|
134
|
+
print("Error freeing GPU memory:", e)
|
|
135
|
+
|
|
136
|
+
def allocate(self):
|
|
137
|
+
"""
|
|
138
|
+
Build SELL-C-σ directly from manip AcousticFields in streaming blocks.
|
|
139
|
+
"""
|
|
140
|
+
# Ensures the module is loaded before attempting to retrieve functions
|
|
141
|
+
if self.sparse_mod is None:
|
|
142
|
+
raise RuntimeError("CUDA module not loaded. Check compilation.")
|
|
143
|
+
|
|
144
|
+
count_kernel = self.sparse_mod.get_function("count_nnz_rows_kernel")
|
|
145
|
+
fill_kernel = self.sparse_mod.get_function("fill_kernel__SELL")
|
|
146
|
+
|
|
147
|
+
num_rows = int(self.N * self.T)
|
|
148
|
+
num_cols = int(self.Z * self.X)
|
|
149
|
+
C = int(self.slice_height)
|
|
150
|
+
|
|
151
|
+
# host temporary block
|
|
152
|
+
br = int(self.block_rows)
|
|
153
|
+
bytes_per_elem = np.dtype(np.float32).itemsize
|
|
154
|
+
dense_host = np.empty((br, num_cols), dtype=np.float32)
|
|
155
|
+
dense_gpu = drv.mem_alloc(dense_host.nbytes)
|
|
156
|
+
|
|
157
|
+
# 1) count nnz per row (on host via small blocks with GPU kernel)
|
|
158
|
+
row_nnz = np.zeros(num_rows, dtype=np.int32)
|
|
159
|
+
row_nnz_gpu_block = drv.mem_alloc(br * np.dtype(np.int32).itemsize)
|
|
160
|
+
|
|
161
|
+
block = 256
|
|
162
|
+
for b in trange(0, num_rows, br, desc="Count NNZ per row"):
|
|
163
|
+
R = min(br, num_rows - b)
|
|
164
|
+
# fill dense_host
|
|
165
|
+
for i in range(R):
|
|
166
|
+
rg = b + i
|
|
167
|
+
n_idx = rg // self.T
|
|
168
|
+
t_idx = rg % self.T
|
|
169
|
+
dense_host[i, :] = self.manip.AcousticFields[n_idx].field[t_idx].flatten()
|
|
170
|
+
# copy only R rows
|
|
171
|
+
drv.memcpy_htod(dense_gpu, dense_host)
|
|
172
|
+
grid = ((R + block - 1) // block, 1, 1)
|
|
173
|
+
count_kernel(dense_gpu, row_nnz_gpu_block, np.int32(R), np.int32(num_cols), np.float32(self.relative_threshold),
|
|
174
|
+
block=(block,1,1), grid=grid)
|
|
175
|
+
tmp = np.empty(R, dtype=np.int32)
|
|
176
|
+
drv.memcpy_dtoh(tmp, row_nnz_gpu_block)
|
|
177
|
+
row_nnz[b:b+R] = tmp
|
|
178
|
+
|
|
179
|
+
row_nnz_gpu_block.free()
|
|
180
|
+
dense_gpu.free()
|
|
181
|
+
|
|
182
|
+
# 2) compute per-slice maxlen and slice_ptr
|
|
183
|
+
num_slices = (num_rows + C - 1) // C
|
|
184
|
+
slice_len = np.zeros(num_slices, dtype=np.int32)
|
|
185
|
+
for s in range(num_slices):
|
|
186
|
+
r0 = s * C
|
|
187
|
+
r1 = min(num_rows, r0 + C)
|
|
188
|
+
slice_len[s] = int(np.max(row_nnz[r0:r1])) if (r1>r0) else 0
|
|
189
|
+
# slice_ptr (int64)
|
|
190
|
+
slice_ptr = np.zeros(num_slices + 1, dtype=np.int64)
|
|
191
|
+
for s in range(num_slices):
|
|
192
|
+
slice_ptr[s+1] = slice_ptr[s] + (slice_len[s] * C)
|
|
193
|
+
total_storage = int(slice_ptr[-1])
|
|
194
|
+
self.total_storage = total_storage
|
|
195
|
+
print(f"SELL: num_rows={num_rows}, num_slices={num_slices}, total_storage(padded)={total_storage}")
|
|
196
|
+
|
|
197
|
+
# allocate device SELL arrays (values float32, colinds uint32)
|
|
198
|
+
self.sell_values_gpu = drv.mem_alloc(total_storage * np.dtype(np.float32).itemsize)
|
|
199
|
+
self.sell_colinds_gpu = drv.mem_alloc(total_storage * np.dtype(np.uint32).itemsize)
|
|
200
|
+
# allocate slice metadata on device
|
|
201
|
+
self.slice_ptr = slice_ptr
|
|
202
|
+
self.slice_len = slice_len
|
|
203
|
+
self.slice_ptr_gpu = drv.mem_alloc(self.slice_ptr.nbytes)
|
|
204
|
+
self.slice_len_gpu = drv.mem_alloc(self.slice_len.nbytes)
|
|
205
|
+
drv.memcpy_htod(self.slice_ptr_gpu, self.slice_ptr)
|
|
206
|
+
drv.memcpy_htod(self.slice_len_gpu, self.slice_len)
|
|
207
|
+
|
|
208
|
+
# 3) fill SELL arrays by streaming blocks again (use GPU fill kernel)
|
|
209
|
+
# reuse dense_host and dense_gpu
|
|
210
|
+
dense_host = np.empty((br, num_cols), dtype=np.float32)
|
|
211
|
+
dense_gpu = drv.mem_alloc(dense_host.nbytes)
|
|
212
|
+
# we also need row_nnz on device per-block; supply global row_nnz on host but the kernel recomputes threshold
|
|
213
|
+
row_nnz_host_gpu = drv.mem_alloc(br * np.dtype(np.int32).itemsize)
|
|
214
|
+
|
|
215
|
+
for b in trange(0, num_rows, br, desc="Fill SELL"):
|
|
216
|
+
R = min(br, num_rows - b)
|
|
217
|
+
for i in range(R):
|
|
218
|
+
rg = b + i
|
|
219
|
+
n_idx = rg // self.T
|
|
220
|
+
t_idx = rg % self.T
|
|
221
|
+
dense_host[i, :] = self.manip.AcousticFields[n_idx].field[t_idx].flatten()
|
|
222
|
+
drv.memcpy_htod(dense_gpu, dense_host)
|
|
223
|
+
# We pass a dummy row_nnz pointer (not used in this kernel; left for API)
|
|
224
|
+
# Kernel expects rows_in_block, rows_global_offset to know where to write.
|
|
225
|
+
grid = ((R + block - 1) // block, 1, 1)
|
|
226
|
+
fill_kernel(dense_gpu,
|
|
227
|
+
np.intp(0), # placeholder for row_nnz pointer (not used)
|
|
228
|
+
self.slice_ptr_gpu,
|
|
229
|
+
self.slice_len_gpu,
|
|
230
|
+
self.sell_colinds_gpu,
|
|
231
|
+
self.sell_values_gpu,
|
|
232
|
+
np.int32(R),
|
|
233
|
+
np.int32(num_cols),
|
|
234
|
+
np.int32(b), # rows_global_offset
|
|
235
|
+
np.int32(C),
|
|
236
|
+
np.float32(self.relative_threshold),
|
|
237
|
+
block=(block,1,1), grid=grid)
|
|
238
|
+
dense_gpu.free()
|
|
239
|
+
row_nnz_host_gpu.free()
|
|
240
|
+
|
|
241
|
+
# At this point sell_values_gpu and sell_colinds_gpu are filled.
|
|
242
|
+
|
|
243
|
+
# 4) compute norm_factor_inv via GPU accumulate (col sums)
|
|
244
|
+
self.compute_norm_factor()
|
|
245
|
+
|
|
246
|
+
def compute_norm_factor(self):
|
|
247
|
+
"""
|
|
248
|
+
Accumulate column sums on GPU using accumulate_columns_atomic, then compute inverse.
|
|
249
|
+
"""
|
|
250
|
+
if self.total_storage == 0:
|
|
251
|
+
raise RuntimeError("sell not built")
|
|
252
|
+
ZX = int(self.Z * self.X)
|
|
253
|
+
|
|
254
|
+
# allocate col sum on device
|
|
255
|
+
col_sum_gpu = drv.mem_alloc(ZX * np.dtype(np.float32).itemsize)
|
|
256
|
+
drv.memset_d32(col_sum_gpu, 0, ZX)
|
|
257
|
+
|
|
258
|
+
acc_kernel = self.sparse_mod.get_function("accumulate_columns_atomic__SELL")
|
|
259
|
+
threads = 256
|
|
260
|
+
blocks = (self.total_storage + threads - 1) // threads
|
|
261
|
+
acc_kernel(self.sell_values_gpu, self.sell_colinds_gpu, np.int64(self.total_storage), col_sum_gpu,
|
|
262
|
+
block=(threads,1,1), grid=(blocks,1,1))
|
|
263
|
+
drv.Context.synchronize()
|
|
264
|
+
|
|
265
|
+
# copy back
|
|
266
|
+
norm_host = np.empty(ZX, dtype=np.float32)
|
|
267
|
+
drv.memcpy_dtoh(norm_host, col_sum_gpu)
|
|
268
|
+
col_sum_gpu.free()
|
|
269
|
+
|
|
270
|
+
norm = np.maximum(norm_host.astype(np.float64), 1e-6)
|
|
271
|
+
self.norm_factor_inv = (1.0 / norm).astype(np.float32)
|
|
272
|
+
if self.norm_factor_inv_gpu is not None:
|
|
273
|
+
self.norm_factor_inv_gpu.free()
|
|
274
|
+
self.norm_factor_inv_gpu = drv.mem_alloc(self.norm_factor_inv.nbytes)
|
|
275
|
+
drv.memcpy_htod(self.norm_factor_inv_gpu, self.norm_factor_inv)
|
|
276
|
+
|
|
277
|
+
def compute_density(self):
|
|
278
|
+
"""
|
|
279
|
+
Returns only the density of the SELL-C-σ matrix.
|
|
280
|
+
"""
|
|
281
|
+
if not hasattr(self, 'slice_ptr') or self.slice_ptr is None:
|
|
282
|
+
raise RuntimeError("The SELL-C-σ matrix is not allocated.")
|
|
283
|
+
|
|
284
|
+
num_rows = self.N * self.T
|
|
285
|
+
num_cols = self.Z * self.X
|
|
286
|
+
total_elements = num_rows * num_cols
|
|
287
|
+
|
|
288
|
+
# Conservative estimate of non-zeros (excluding padding)
|
|
289
|
+
nnz_ell_estimated = int(0.9 * self.total_storage)
|
|
290
|
+
|
|
291
|
+
return nnz_ell_estimated / total_elements # Returns only the density
|
|
292
|
+
|
|
293
|
+
def getMatrixSize(self):
|
|
294
|
+
"""
|
|
295
|
+
Returns the total size of the SELL-C-σ matrix in Gigabytes (GB).
|
|
296
|
+
"""
|
|
297
|
+
if self.sell_values_gpu is None:
|
|
298
|
+
return {"error": "The SELL-C-σ matrix is not yet allocated."}
|
|
299
|
+
|
|
300
|
+
total_bytes = 0
|
|
301
|
+
|
|
302
|
+
# Host-side arrays
|
|
303
|
+
if hasattr(self, 'slice_ptr') and self.slice_ptr is not None:
|
|
304
|
+
total_bytes += self.slice_ptr.nbytes
|
|
305
|
+
if hasattr(self, 'slice_len') and self.slice_len is not None:
|
|
306
|
+
total_bytes += self.slice_len.nbytes
|
|
307
|
+
if hasattr(self, 'norm_factor_inv') and self.norm_factor_inv is not None:
|
|
308
|
+
total_bytes += self.norm_factor_inv.nbytes
|
|
309
|
+
|
|
310
|
+
# GPU-side arrays
|
|
311
|
+
if hasattr(self, 'sell_values_gpu') and self.sell_values_gpu:
|
|
312
|
+
total_bytes += self.sell_values_gpu.size
|
|
313
|
+
if hasattr(self, 'sell_colinds_gpu') and self.sell_colinds_gpu:
|
|
314
|
+
total_bytes += self.sell_colinds_gpu.size
|
|
315
|
+
if hasattr(self, 'slice_ptr_gpu') and self.slice_ptr_gpu:
|
|
316
|
+
total_bytes += self.slice_ptr_gpu.size
|
|
317
|
+
if hasattr(self, 'slice_len_gpu') and self.slice_len_gpu:
|
|
318
|
+
total_bytes += self.slice_len_gpu.size
|
|
319
|
+
if hasattr(self, 'norm_factor_inv_gpu') and self.norm_factor_inv_gpu:
|
|
320
|
+
total_bytes += self.norm_factor_inv_gpu.size
|
|
321
|
+
|
|
322
|
+
return total_bytes / (1024 ** 3) # Returns only the size in GB
|