AOT-biomaps 2.9.176__py3-none-any.whl → 2.9.300__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AOT-biomaps might be problematic. Click here for more details.
- AOT_biomaps/AOT_Acoustic/StructuredWave.py +2 -2
- AOT_biomaps/AOT_Acoustic/_mainAcoustic.py +11 -6
- AOT_biomaps/AOT_Experiment/Tomography.py +74 -4
- AOT_biomaps/AOT_Experiment/_mainExperiment.py +95 -55
- AOT_biomaps/AOT_Recon/AOT_Optimizers/DEPIERRO.py +48 -13
- AOT_biomaps/AOT_Recon/AOT_Optimizers/LS.py +406 -13
- AOT_biomaps/AOT_Recon/AOT_Optimizers/MAPEM.py +118 -38
- AOT_biomaps/AOT_Recon/AOT_Optimizers/MLEM.py +390 -102
- AOT_biomaps/AOT_Recon/AOT_Optimizers/PDHG.py +443 -12
- AOT_biomaps/AOT_Recon/AOT_PotentialFunctions/RelativeDifferences.py +10 -14
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_CSR.py +274 -0
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/SparseSMatrix_SELL.py +331 -0
- AOT_biomaps/AOT_Recon/AOT_SparseSMatrix/__init__.py +2 -0
- AOT_biomaps/AOT_Recon/AOT_biomaps_kernels.cubin +0 -0
- AOT_biomaps/AOT_Recon/AlgebraicRecon.py +259 -153
- AOT_biomaps/AOT_Recon/AnalyticRecon.py +27 -42
- AOT_biomaps/AOT_Recon/BayesianRecon.py +84 -151
- AOT_biomaps/AOT_Recon/DeepLearningRecon.py +1 -1
- AOT_biomaps/AOT_Recon/PrimalDualRecon.py +162 -102
- AOT_biomaps/AOT_Recon/ReconEnums.py +27 -2
- AOT_biomaps/AOT_Recon/ReconTools.py +229 -12
- AOT_biomaps/AOT_Recon/__init__.py +1 -0
- AOT_biomaps/AOT_Recon/_mainRecon.py +72 -58
- AOT_biomaps/__init__.py +4 -53
- {aot_biomaps-2.9.176.dist-info → aot_biomaps-2.9.300.dist-info}/METADATA +2 -1
- aot_biomaps-2.9.300.dist-info/RECORD +47 -0
- aot_biomaps-2.9.176.dist-info/RECORD +0 -43
- {aot_biomaps-2.9.176.dist-info → aot_biomaps-2.9.300.dist-info}/WHEEL +0 -0
- {aot_biomaps-2.9.176.dist-info → aot_biomaps-2.9.300.dist-info}/top_level.txt +0 -0
|
@@ -1,34 +1,59 @@
|
|
|
1
1
|
from AOT_biomaps.Config import config
|
|
2
|
+
from AOT_biomaps.AOT_Recon.ReconTools import calculate_memory_requirement, check_gpu_memory
|
|
3
|
+
from AOT_biomaps.AOT_Recon.ReconEnums import SMatrixType
|
|
4
|
+
|
|
2
5
|
import torch
|
|
3
6
|
import numpy as np
|
|
4
7
|
from tqdm import trange
|
|
8
|
+
import pycuda.driver as drv
|
|
9
|
+
import torch.cuda
|
|
10
|
+
import gc
|
|
11
|
+
|
|
12
|
+
|
|
5
13
|
|
|
6
14
|
def LS(
|
|
7
15
|
SMatrix,
|
|
8
16
|
y,
|
|
9
|
-
numIterations=
|
|
10
|
-
alpha=1e-3,
|
|
17
|
+
numIterations=100,
|
|
11
18
|
isSavingEachIteration=True,
|
|
12
19
|
withTumor=True,
|
|
20
|
+
alpha=1e-1,
|
|
13
21
|
device=None,
|
|
22
|
+
use_numba=False,
|
|
23
|
+
denominator_threshold=1e-6,
|
|
14
24
|
max_saves=5000,
|
|
25
|
+
show_logs=True,
|
|
26
|
+
smatrixType=SMatrixType.SELL
|
|
15
27
|
):
|
|
16
28
|
"""
|
|
17
29
|
Least Squares reconstruction using Projected Gradient Descent (PGD) with non-negativity constraint.
|
|
18
30
|
Currently only implements the stable GPU version.
|
|
19
31
|
"""
|
|
20
32
|
tumor_str = "WITH" if withTumor else "WITHOUT"
|
|
21
|
-
#
|
|
33
|
+
# Auto-select device and method
|
|
22
34
|
if device is None:
|
|
23
|
-
if
|
|
24
|
-
|
|
25
|
-
|
|
35
|
+
if torch.cuda.is_available() and check_gpu_memory(config.select_best_gpu(), calculate_memory_requirement(SMatrix, y), show_logs=show_logs):
|
|
36
|
+
device = torch.device(f"cuda:{config.select_best_gpu()}")
|
|
37
|
+
use_gpu = True
|
|
38
|
+
else:
|
|
39
|
+
device = torch.device("cpu")
|
|
40
|
+
use_gpu = False
|
|
41
|
+
else:
|
|
42
|
+
use_gpu = device.type == "cuda"
|
|
43
|
+
# Dispatch to the appropriate implementation
|
|
44
|
+
if use_gpu:
|
|
45
|
+
if smatrixType == SMatrixType.CSR:
|
|
46
|
+
return _LS_CG_sparseCSR_pycuda(SMatrix, y, numIterations, isSavingEachIteration, tumor_str, device, max_saves, denominator_threshold, show_logs)
|
|
47
|
+
elif smatrixType == SMatrixType.SELL:
|
|
48
|
+
return _LS_CG_sparseSELL_pycuda(SMatrix, y, numIterations, isSavingEachIteration, tumor_str, device, max_saves, denominator_threshold, show_logs)
|
|
49
|
+
elif smatrixType == SMatrixType.DENSE:
|
|
50
|
+
return _LS_GPU_stable(SMatrix, y, numIterations, isSavingEachIteration, tumor_str, device, max_saves, denominator_threshold,show_logs)
|
|
51
|
+
else:
|
|
52
|
+
raise ValueError("Unsupported SMatrixType for GPU LS.")
|
|
26
53
|
else:
|
|
27
|
-
|
|
28
|
-
raise RuntimeError("Only GPU implementation is available for now.")
|
|
29
|
-
return _LS_GPU_stable(SMatrix, y, numIterations, alpha, isSavingEachIteration, tumor_str, max_saves)
|
|
54
|
+
raise NotImplementedError("Only GPU implementations are currently available for LS.")
|
|
30
55
|
|
|
31
|
-
def _LS_GPU_stable(SMatrix, y, numIterations, alpha, isSavingEachIteration, tumor_str, max_saves=5000):
|
|
56
|
+
def _LS_GPU_stable(SMatrix, y, numIterations, alpha, isSavingEachIteration, tumor_str, max_saves=5000, show_logs=True):
|
|
32
57
|
"""
|
|
33
58
|
Stable GPU implementation of LS using projected gradient descent with diagonal preconditioner.
|
|
34
59
|
"""
|
|
@@ -65,13 +90,14 @@ def _LS_GPU_stable(SMatrix, y, numIterations, alpha, isSavingEachIteration, tumo
|
|
|
65
90
|
AT_r = torch.empty(ZX, device=device)
|
|
66
91
|
description = f"AOT-BioMaps -- Stable LS Reconstruction ---- {tumor_str} TUMOR ---- GPU {torch.cuda.current_device()}"
|
|
67
92
|
|
|
68
|
-
|
|
93
|
+
iterator = trange(numIterations, desc=description) if show_logs else range(numIterations)
|
|
94
|
+
for it in iterator:
|
|
69
95
|
# Calcul du résidu (inplace)
|
|
70
96
|
torch.matmul(A_flat, lambda_k, out=r_k)
|
|
71
97
|
r_k = y_flat - r_k
|
|
72
|
-
if isSavingEachIteration and
|
|
98
|
+
if isSavingEachIteration and it in save_indices:
|
|
73
99
|
lambda_history.append(lambda_k.clone().reshape(Z, X) * (norm_y / norm_A))
|
|
74
|
-
saved_indices.append(
|
|
100
|
+
saved_indices.append(it)
|
|
75
101
|
|
|
76
102
|
# Gradient préconditionné (inplace)
|
|
77
103
|
torch.matmul(A_flat.T, r_k, out=AT_r)
|
|
@@ -101,3 +127,370 @@ def _LS_CPU_opti(*args, **kwargs):
|
|
|
101
127
|
|
|
102
128
|
def _LS_CPU_basic(*args, **kwargs):
|
|
103
129
|
raise NotImplementedError("Only _LS_GPU_stable is implemented for now.")
|
|
130
|
+
|
|
131
|
+
def _LS_CG_sparseCSR_pycuda(SMatrix, y, numIterations, isSavingEachIteration, tumor_str, device, max_saves, denominator_threshold, show_logs=True):
|
|
132
|
+
"""
|
|
133
|
+
Reconstruction par Moindres Carrés (LS) via Gradient Conjugué (CG) sur format CSR.
|
|
134
|
+
Utilise les mêmes arguments que la fonction MLEM, sans sous-fonctions Python.
|
|
135
|
+
|
|
136
|
+
SMatrix: instance de SparseSMatrix_CSR (déjà allouée)
|
|
137
|
+
y: données mesurées (1D np.float32 de taille TN)
|
|
138
|
+
"""
|
|
139
|
+
final_result = None
|
|
140
|
+
|
|
141
|
+
# Paramètres non utilisés dans CG mais conservés pour la signature: denominator_threshold, device
|
|
142
|
+
|
|
143
|
+
# --- Logique de Produit Scalaire (Intégrée) ---
|
|
144
|
+
def _dot_product_gpu(mod, a_ptr, b_ptr, N_int, stream):
|
|
145
|
+
block_size = 256
|
|
146
|
+
grid_size = (N_int + block_size - 1) // block_size
|
|
147
|
+
|
|
148
|
+
reduction_host = np.empty(grid_size, dtype=np.float32)
|
|
149
|
+
reduction_buffer = drv.mem_alloc(reduction_host.nbytes)
|
|
150
|
+
|
|
151
|
+
dot_kernel = mod.get_function("dot_product_reduction_kernel")
|
|
152
|
+
|
|
153
|
+
dot_kernel(reduction_buffer, a_ptr, b_ptr, np.int32(N_int),
|
|
154
|
+
block=(block_size, 1, 1), grid=(grid_size, 1, 1), stream=stream)
|
|
155
|
+
|
|
156
|
+
drv.memcpy_dtoh(reduction_host, reduction_buffer)
|
|
157
|
+
total_dot = np.sum(reduction_host)
|
|
158
|
+
|
|
159
|
+
reduction_buffer.free()
|
|
160
|
+
return total_dot
|
|
161
|
+
# -----------------------------------------------
|
|
162
|
+
|
|
163
|
+
try:
|
|
164
|
+
if not isinstance(SMatrix, SMatrix.__class__):
|
|
165
|
+
raise TypeError("SMatrix must be a SparseSMatrix_CSR object")
|
|
166
|
+
|
|
167
|
+
if SMatrix.ctx:
|
|
168
|
+
SMatrix.ctx.push()
|
|
169
|
+
|
|
170
|
+
dtype = np.float32
|
|
171
|
+
TN = SMatrix.N * SMatrix.T
|
|
172
|
+
ZX = SMatrix.Z * SMatrix.X
|
|
173
|
+
Z = SMatrix.Z
|
|
174
|
+
X = SMatrix.X
|
|
175
|
+
block_size = 256
|
|
176
|
+
tolerance = 1e-12
|
|
177
|
+
|
|
178
|
+
if show_logs:
|
|
179
|
+
print(f"Executing on GPU device index: {SMatrix.device.primary_context.device.name()}")
|
|
180
|
+
print(f"Dim X: {X}, Dim Z: {Z}, TN: {TN}, ZX: {ZX}")
|
|
181
|
+
|
|
182
|
+
stream = drv.Stream()
|
|
183
|
+
|
|
184
|
+
# Récupération des Kernels
|
|
185
|
+
projection_kernel = SMatrix.sparse_mod.get_function('projection_kernel__CSR')
|
|
186
|
+
backprojection_kernel = SMatrix.sparse_mod.get_function('backprojection_kernel__CSR')
|
|
187
|
+
axpby_kernel = SMatrix.sparse_mod.get_function("vector_axpby_kernel")
|
|
188
|
+
minus_axpy_kernel = SMatrix.sparse_mod.get_function("vector_minus_axpy_kernel")
|
|
189
|
+
|
|
190
|
+
# --- Allocation des buffers (Pointeurs Bruts) ---
|
|
191
|
+
y = y.T.flatten().astype(dtype)
|
|
192
|
+
y_gpu = drv.mem_alloc(y.nbytes)
|
|
193
|
+
drv.memcpy_htod_async(y_gpu, y.astype(dtype), stream)
|
|
194
|
+
|
|
195
|
+
theta_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize) # lambda
|
|
196
|
+
drv.memcpy_htod_async(theta_flat_gpu, np.full(ZX, 0.1, dtype=dtype), stream)
|
|
197
|
+
|
|
198
|
+
q_flat_gpu = drv.mem_alloc(TN * np.dtype(dtype).itemsize) # q = A*p
|
|
199
|
+
r_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize) # r (residue)
|
|
200
|
+
p_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize) # p (direction)
|
|
201
|
+
z_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize) # z = A^T A p
|
|
202
|
+
ATy_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize) # A^T y (constant)
|
|
203
|
+
|
|
204
|
+
# --- Initialisation CG ---
|
|
205
|
+
|
|
206
|
+
# 1. ATy = A^T * y
|
|
207
|
+
drv.memset_d32_async(ATy_flat_gpu, 0, ZX, stream)
|
|
208
|
+
backprojection_kernel(ATy_flat_gpu, SMatrix.values_gpu, SMatrix.row_ptr_gpu, SMatrix.col_ind_gpu,
|
|
209
|
+
y_gpu, np.int32(TN),
|
|
210
|
+
block=(block_size, 1, 1), grid=((TN + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
211
|
+
|
|
212
|
+
# 2. q = A * theta_0
|
|
213
|
+
projection_kernel(q_flat_gpu, SMatrix.values_gpu, SMatrix.row_ptr_gpu, SMatrix.col_ind_gpu,
|
|
214
|
+
theta_flat_gpu, np.int32(TN),
|
|
215
|
+
block=(block_size, 1, 1), grid=((TN + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
216
|
+
|
|
217
|
+
# 3. r_temp = A^T * q = A^T A theta_0
|
|
218
|
+
drv.memset_d32_async(r_flat_gpu, 0, ZX, stream)
|
|
219
|
+
backprojection_kernel(r_flat_gpu, SMatrix.values_gpu, SMatrix.row_ptr_gpu, SMatrix.col_ind_gpu,
|
|
220
|
+
q_flat_gpu, np.int32(TN),
|
|
221
|
+
block=(block_size, 1, 1), grid=((TN + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
222
|
+
|
|
223
|
+
# 4. r_0 = ATy - r_temp (r = ATy + (-1)*r_temp)
|
|
224
|
+
axpby_kernel(r_flat_gpu, ATy_flat_gpu, r_flat_gpu,
|
|
225
|
+
np.float32(1.0), np.float32(-1.0), np.int32(ZX),
|
|
226
|
+
block=(block_size, 1, 1), grid=((ZX + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
227
|
+
|
|
228
|
+
# 5. p_0 = r_0
|
|
229
|
+
drv.memcpy_dtod(p_flat_gpu, r_flat_gpu, ZX * np.dtype(dtype).itemsize)
|
|
230
|
+
|
|
231
|
+
# 6. rho_prev = ||r_0||^2
|
|
232
|
+
rho_prev = _dot_product_gpu(SMatrix.sparse_mod, r_flat_gpu, r_flat_gpu, ZX, stream)
|
|
233
|
+
|
|
234
|
+
# --- Boucle itérative ---
|
|
235
|
+
saved_theta, saved_indices = [], []
|
|
236
|
+
if numIterations <= max_saves:
|
|
237
|
+
save_indices = list(range(numIterations))
|
|
238
|
+
else:
|
|
239
|
+
save_indices = list(range(0, numIterations, max(1, numIterations // max_saves)))
|
|
240
|
+
if save_indices[-1] != numIterations - 1:
|
|
241
|
+
save_indices.append(numIterations - 1)
|
|
242
|
+
|
|
243
|
+
description = f"AOT-BioMaps -- LS-CG (CSR-sparse SMatrix) ---- {tumor_str} TUMOR ---- GPU {torch.cuda.current_device()}"
|
|
244
|
+
iterator = trange(numIterations, desc=description) if show_logs else range(numIterations)
|
|
245
|
+
|
|
246
|
+
for it in iterator:
|
|
247
|
+
# a. q = A * p
|
|
248
|
+
projection_kernel(q_flat_gpu, SMatrix.values_gpu, SMatrix.row_ptr_gpu, SMatrix.col_ind_gpu,
|
|
249
|
+
p_flat_gpu, np.int32(TN),
|
|
250
|
+
block=(block_size, 1, 1), grid=((TN + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
251
|
+
|
|
252
|
+
# b. z = A^T * q = A^T A p
|
|
253
|
+
drv.memset_d32_async(z_flat_gpu, 0, ZX, stream)
|
|
254
|
+
backprojection_kernel(z_flat_gpu, SMatrix.values_gpu, SMatrix.row_ptr_gpu, SMatrix.col_ind_gpu,
|
|
255
|
+
q_flat_gpu, np.int32(TN),
|
|
256
|
+
block=(block_size, 1, 1), grid=((TN + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
257
|
+
|
|
258
|
+
# c. alpha = rho_prev / <p, z>
|
|
259
|
+
pAp = _dot_product_gpu(SMatrix.sparse_mod, p_flat_gpu, z_flat_gpu, ZX, stream)
|
|
260
|
+
|
|
261
|
+
if abs(pAp) < 1e-15: break
|
|
262
|
+
alpha = rho_prev / pAp
|
|
263
|
+
|
|
264
|
+
# d. theta = theta + alpha * p
|
|
265
|
+
axpby_kernel(theta_flat_gpu, theta_flat_gpu, p_flat_gpu,
|
|
266
|
+
np.float32(1.0), alpha, np.int32(ZX),
|
|
267
|
+
block=(block_size, 1, 1), grid=((ZX + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
268
|
+
|
|
269
|
+
# e. r = r - alpha * z
|
|
270
|
+
minus_axpy_kernel(r_flat_gpu, z_flat_gpu, alpha, np.int32(ZX),
|
|
271
|
+
block=(block_size, 1, 1), grid=((ZX + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
272
|
+
|
|
273
|
+
# f. rho_curr = ||r||^2
|
|
274
|
+
rho_curr = _dot_product_gpu(SMatrix.sparse_mod, r_flat_gpu, r_flat_gpu, ZX, stream)
|
|
275
|
+
|
|
276
|
+
if rho_curr < tolerance: break
|
|
277
|
+
|
|
278
|
+
# g. beta = rho_curr / rho_prev
|
|
279
|
+
beta = rho_curr / rho_prev
|
|
280
|
+
|
|
281
|
+
# h. p = r + beta * p
|
|
282
|
+
axpby_kernel(p_flat_gpu, r_flat_gpu, p_flat_gpu,
|
|
283
|
+
np.float32(1.0), beta, np.int32(ZX),
|
|
284
|
+
block=(block_size, 1, 1), grid=((ZX + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
285
|
+
|
|
286
|
+
rho_prev = rho_curr
|
|
287
|
+
|
|
288
|
+
if show_logs and (it % 10 == 0 or it == numIterations - 1):
|
|
289
|
+
drv.Context.synchronize()
|
|
290
|
+
|
|
291
|
+
if isSavingEachIteration and it in save_indices:
|
|
292
|
+
theta_host = np.empty(ZX, dtype=dtype)
|
|
293
|
+
drv.memcpy_dtoh(theta_host, theta_flat_gpu)
|
|
294
|
+
saved_theta.append(theta_host.reshape(Z, X))
|
|
295
|
+
saved_indices.append(it)
|
|
296
|
+
|
|
297
|
+
drv.Context.synchronize()
|
|
298
|
+
|
|
299
|
+
final_result = np.empty(ZX, dtype=dtype)
|
|
300
|
+
drv.memcpy_dtoh(final_result, theta_flat_gpu)
|
|
301
|
+
final_result = final_result.reshape(Z, X)
|
|
302
|
+
|
|
303
|
+
# Libération
|
|
304
|
+
y_gpu.free(); q_flat_gpu.free(); r_flat_gpu.free(); p_flat_gpu.free(); z_flat_gpu.free(); theta_flat_gpu.free(); ATy_flat_gpu.free()
|
|
305
|
+
|
|
306
|
+
return (saved_theta, saved_indices) if isSavingEachIteration else (final_result, None)
|
|
307
|
+
|
|
308
|
+
except Exception as e:
|
|
309
|
+
print(f"Error in LS_CG_sparseCSR_pycuda: {type(e).__name__}: {e}")
|
|
310
|
+
gc.collect()
|
|
311
|
+
return None, None
|
|
312
|
+
|
|
313
|
+
finally:
|
|
314
|
+
if SMatrix and hasattr(SMatrix, 'ctx') and SMatrix.ctx:
|
|
315
|
+
SMatrix.ctx.pop()
|
|
316
|
+
|
|
317
|
+
def _LS_CG_sparseSELL_pycuda(SMatrix, y, numIterations, isSavingEachIteration, tumor_str, device, max_saves, denominator_threshold, show_logs=True):
|
|
318
|
+
"""
|
|
319
|
+
Reconstruction par Moindres Carrés (LS) via Gradient Conjugué (CG) sur format SELL-C-sigma.
|
|
320
|
+
Utilise les mêmes arguments que la fonction MLEM, sans sous-fonctions Python.
|
|
321
|
+
|
|
322
|
+
SMatrix: instance de SparseSMatrix_SELL (déjà allouée)
|
|
323
|
+
y: données mesurées (1D np.float32 de taille TN)
|
|
324
|
+
"""
|
|
325
|
+
final_result = None
|
|
326
|
+
|
|
327
|
+
# --- Logique de Produit Scalaire (Intégrée) ---
|
|
328
|
+
def _dot_product_gpu(mod, a_ptr, b_ptr, N_int, stream):
|
|
329
|
+
block_size = 256
|
|
330
|
+
grid_size = (N_int + block_size - 1) // block_size
|
|
331
|
+
|
|
332
|
+
reduction_host = np.empty(grid_size, dtype=np.float32)
|
|
333
|
+
reduction_buffer = drv.mem_alloc(reduction_host.nbytes)
|
|
334
|
+
|
|
335
|
+
dot_kernel = mod.get_function("dot_product_reduction_kernel")
|
|
336
|
+
|
|
337
|
+
dot_kernel(reduction_buffer, a_ptr, b_ptr, np.int32(N_int),
|
|
338
|
+
block=(block_size, 1, 1), grid=(grid_size, 1, 1), stream=stream)
|
|
339
|
+
|
|
340
|
+
drv.memcpy_dtoh(reduction_host, reduction_buffer)
|
|
341
|
+
total_dot = np.sum(reduction_host)
|
|
342
|
+
|
|
343
|
+
reduction_buffer.free()
|
|
344
|
+
return total_dot
|
|
345
|
+
# -----------------------------------------------
|
|
346
|
+
|
|
347
|
+
try:
|
|
348
|
+
if not isinstance(SMatrix, SMatrix.__class__):
|
|
349
|
+
raise TypeError("SMatrix must be a SparseSMatrix_SELL object")
|
|
350
|
+
if SMatrix.sell_values_gpu is None:
|
|
351
|
+
raise RuntimeError("SELL not built. Call allocate_sell_c_sigma_direct() first.")
|
|
352
|
+
|
|
353
|
+
if SMatrix.ctx:
|
|
354
|
+
SMatrix.ctx.push()
|
|
355
|
+
|
|
356
|
+
dtype = np.float32
|
|
357
|
+
TN = int(SMatrix.N * SMatrix.T)
|
|
358
|
+
ZX = int(SMatrix.Z * SMatrix.X)
|
|
359
|
+
Z = SMatrix.Z
|
|
360
|
+
X = SMatrix.X
|
|
361
|
+
block_size = 256
|
|
362
|
+
tolerance = 1e-12
|
|
363
|
+
|
|
364
|
+
# Accès aux paramètres SELL
|
|
365
|
+
projection_kernel = SMatrix.sparse_mod.get_function("projection_kernel__SELL")
|
|
366
|
+
backprojection_kernel = SMatrix.sparse_mod.get_function("backprojection_kernel__SELL")
|
|
367
|
+
axpby_kernel = SMatrix.sparse_mod.get_function("vector_axpby_kernel")
|
|
368
|
+
minus_axpy_kernel = SMatrix.sparse_mod.get_function("vector_minus_axpy_kernel")
|
|
369
|
+
slice_height = np.int32(SMatrix.slice_height)
|
|
370
|
+
grid_rows = ((TN + block_size - 1) // block_size, 1, 1)
|
|
371
|
+
|
|
372
|
+
stream = drv.Stream()
|
|
373
|
+
|
|
374
|
+
# Allocation des buffers
|
|
375
|
+
y = y.T.flatten().astype(dtype)
|
|
376
|
+
y_gpu = drv.mem_alloc(y.nbytes)
|
|
377
|
+
drv.memcpy_htod_async(y_gpu, y.astype(dtype), stream)
|
|
378
|
+
|
|
379
|
+
theta_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize)
|
|
380
|
+
drv.memcpy_htod_async(theta_flat_gpu, np.full(ZX, 0.1, dtype=dtype), stream)
|
|
381
|
+
|
|
382
|
+
q_flat_gpu = drv.mem_alloc(TN * np.dtype(dtype).itemsize)
|
|
383
|
+
r_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize)
|
|
384
|
+
p_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize)
|
|
385
|
+
z_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize)
|
|
386
|
+
ATy_flat_gpu = drv.mem_alloc(ZX * np.dtype(dtype).itemsize)
|
|
387
|
+
|
|
388
|
+
# --- Initialisation CG ---
|
|
389
|
+
|
|
390
|
+
# 1. ATy = A^T * y
|
|
391
|
+
drv.memset_d32_async(ATy_flat_gpu, 0, ZX, stream)
|
|
392
|
+
backprojection_kernel(SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
|
|
393
|
+
y_gpu, ATy_flat_gpu, np.int32(TN), slice_height,
|
|
394
|
+
block=(block_size, 1, 1), grid=grid_rows, stream=stream)
|
|
395
|
+
|
|
396
|
+
# 2. q = A * theta_0
|
|
397
|
+
projection_kernel(q_flat_gpu, SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
|
|
398
|
+
theta_flat_gpu, np.int32(TN), slice_height,
|
|
399
|
+
block=(block_size, 1, 1), grid=grid_rows, stream=stream)
|
|
400
|
+
|
|
401
|
+
# 3. r_temp = A^T * q = A^T A theta_0
|
|
402
|
+
drv.memset_d32_async(r_flat_gpu, 0, ZX, stream)
|
|
403
|
+
backprojection_kernel(SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
|
|
404
|
+
q_flat_gpu, r_flat_gpu, np.int32(TN), slice_height,
|
|
405
|
+
block=(block_size, 1, 1), grid=grid_rows, stream=stream)
|
|
406
|
+
|
|
407
|
+
# 4. r_0 = ATy - r_temp
|
|
408
|
+
axpby_kernel(r_flat_gpu, ATy_flat_gpu, r_flat_gpu,
|
|
409
|
+
np.float32(1.0), np.float32(-1.0), np.int32(ZX),
|
|
410
|
+
block=(block_size, 1, 1), grid=((ZX + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
411
|
+
|
|
412
|
+
# 5. p_0 = r_0
|
|
413
|
+
drv.memcpy_dtod(p_flat_gpu, r_flat_gpu, ZX * np.dtype(dtype).itemsize)
|
|
414
|
+
|
|
415
|
+
# 6. rho_prev = ||r_0||^2
|
|
416
|
+
rho_prev = _dot_product_gpu(SMatrix.sparse_mod, r_flat_gpu, r_flat_gpu, ZX, stream)
|
|
417
|
+
|
|
418
|
+
# --- Boucle itérative ---
|
|
419
|
+
saved_theta, saved_indices = [], []
|
|
420
|
+
if numIterations <= max_saves:
|
|
421
|
+
save_indices = list(range(numIterations))
|
|
422
|
+
else:
|
|
423
|
+
save_indices = list(range(0, numIterations, max(1, numIterations // max_saves)))
|
|
424
|
+
if save_indices[-1] != numIterations - 1:
|
|
425
|
+
save_indices.append(numIterations - 1)
|
|
426
|
+
|
|
427
|
+
description = f"AOT-BioMaps -- LS-CG (SELL-c-σ-sparse SMatrix) ---- {tumor_str} TUMOR ---- GPU {torch.cuda.current_device()}"
|
|
428
|
+
iterator = trange(numIterations, desc=description) if show_logs else range(numIterations)
|
|
429
|
+
|
|
430
|
+
for it in iterator:
|
|
431
|
+
# a. q = A * p
|
|
432
|
+
projection_kernel(q_flat_gpu, SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
|
|
433
|
+
p_flat_gpu, np.int32(TN), slice_height,
|
|
434
|
+
block=(block_size, 1, 1), grid=grid_rows, stream=stream)
|
|
435
|
+
|
|
436
|
+
# b. z = A^T * q = A^T A p
|
|
437
|
+
drv.memset_d32_async(z_flat_gpu, 0, ZX, stream)
|
|
438
|
+
backprojection_kernel(SMatrix.sell_values_gpu, SMatrix.sell_colinds_gpu, SMatrix.slice_ptr_gpu, SMatrix.slice_len_gpu,
|
|
439
|
+
q_flat_gpu, z_flat_gpu, np.int32(TN), slice_height,
|
|
440
|
+
block=(block_size, 1, 1), grid=grid_rows, stream=stream)
|
|
441
|
+
|
|
442
|
+
# c. alpha = rho_prev / <p, z>
|
|
443
|
+
pAp = _dot_product_gpu(SMatrix.sparse_mod, p_flat_gpu, z_flat_gpu, ZX, stream)
|
|
444
|
+
|
|
445
|
+
if abs(pAp) < 1e-15: break
|
|
446
|
+
alpha = rho_prev / pAp
|
|
447
|
+
|
|
448
|
+
# d. theta = theta + alpha * p
|
|
449
|
+
axpby_kernel(theta_flat_gpu, theta_flat_gpu, p_flat_gpu,
|
|
450
|
+
np.float32(1.0), alpha, np.int32(ZX),
|
|
451
|
+
block=(block_size, 1, 1), grid=((ZX + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
452
|
+
|
|
453
|
+
# e. r = r - alpha * z
|
|
454
|
+
minus_axpy_kernel(r_flat_gpu, z_flat_gpu, alpha, np.int32(ZX),
|
|
455
|
+
block=(block_size, 1, 1), grid=((ZX + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
456
|
+
|
|
457
|
+
# f. rho_curr = ||r||^2
|
|
458
|
+
rho_curr = _dot_product_gpu(SMatrix.sparse_mod, r_flat_gpu, r_flat_gpu, ZX, stream)
|
|
459
|
+
|
|
460
|
+
if rho_curr < tolerance: break
|
|
461
|
+
|
|
462
|
+
# g. beta = rho_curr / rho_prev
|
|
463
|
+
beta = rho_curr / rho_prev
|
|
464
|
+
|
|
465
|
+
# h. p = r + beta * p
|
|
466
|
+
axpby_kernel(p_flat_gpu, r_flat_gpu, p_flat_gpu,
|
|
467
|
+
np.float32(1.0), beta, np.int32(ZX),
|
|
468
|
+
block=(block_size, 1, 1), grid=((ZX + block_size - 1) // block_size, 1, 1), stream=stream)
|
|
469
|
+
|
|
470
|
+
rho_prev = rho_curr
|
|
471
|
+
|
|
472
|
+
stream.synchronize()
|
|
473
|
+
if isSavingEachIteration and it in save_indices:
|
|
474
|
+
out = np.empty(ZX, dtype=dtype)
|
|
475
|
+
drv.memcpy_dtoh(out, theta_flat_gpu)
|
|
476
|
+
saved_theta.append(out.reshape((Z, X)))
|
|
477
|
+
saved_indices.append(it)
|
|
478
|
+
|
|
479
|
+
# final copy
|
|
480
|
+
res = np.empty(ZX, dtype=np.float32)
|
|
481
|
+
drv.memcpy_dtoh(res, theta_flat_gpu)
|
|
482
|
+
final_result = res.reshape((Z, X))
|
|
483
|
+
|
|
484
|
+
# free temporaries
|
|
485
|
+
y_gpu.free(); q_flat_gpu.free(); r_flat_gpu.free(); p_flat_gpu.free(); z_flat_gpu.free(); theta_flat_gpu.free(); ATy_flat_gpu.free()
|
|
486
|
+
|
|
487
|
+
return (saved_theta, saved_indices) if isSavingEachIteration else (final_result, None)
|
|
488
|
+
|
|
489
|
+
except Exception as e:
|
|
490
|
+
print(f"Error in LS_CG_sparseSELL_pycuda: {type(e).__name__}: {e}")
|
|
491
|
+
gc.collect()
|
|
492
|
+
return None, None
|
|
493
|
+
|
|
494
|
+
finally:
|
|
495
|
+
if SMatrix and hasattr(SMatrix, 'ctx') and SMatrix.ctx:
|
|
496
|
+
SMatrix.ctx.pop()
|