AMS-BP 0.0.31__py3-none-any.whl → 0.0.231__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
AMS_BP/__init__.py CHANGED
@@ -10,4 +10,4 @@ Last updated: 2024-12-16
10
10
 
11
11
  """
12
12
 
13
- __version__ = "0.0.31"
13
+ __version__ = "0.0.231"
@@ -1,7 +1,6 @@
1
1
  import numpy as np
2
-
2
+ from .boundary_conditions import _refecting_boundary, _absorbing_boundary
3
3
  from ...probabilityfuncs.markov_chain import MCMC_state_selection
4
- from .boundary_conditions import _absorbing_boundary, _refecting_boundary
5
4
 
6
5
  BOUNDARY_CONDITIONS = {
7
6
  "reflecting": _refecting_boundary,
@@ -162,8 +161,10 @@ class FBM_BP:
162
161
  phi = np.zeros(self.n)
163
162
  psi = np.zeros(self.n)
164
163
  # construct a gaussian noise vector
165
- gn = np.random.normal(0, 1, self.n) * np.sqrt(
166
- 2 * self._diff_a_n * (self.dt ** (2 * self._hurst_n))
164
+ gn = (
165
+ np.random.normal(0, 1, self.n)
166
+ * np.sqrt(self.dt * 2 * self._diff_a_n)
167
+ * (self.dt ** (2 * self._hurst_n))
167
168
  )
168
169
  # catch is all hurst are 0.5 then use the gaussian noise vector corresponding to the scale defined by the diffusion parameter
169
170
  if np.all(self._hurst_n == 0.5):
@@ -124,12 +124,12 @@ class Track_generator:
124
124
  rel_space_lim[i] = self.space_lim[i] - initials[i]
125
125
 
126
126
  # convert the diffusion_coefficients
127
- # diffusion_coefficient = self._convert_diffcoef_um2s_um2xms(
128
- # diffusion_coefficient
129
- # )
127
+ diffusion_coefficient = self._convert_diffcoef_um2s_um2xms(
128
+ diffusion_coefficient
129
+ )
130
130
  fbm = FBM_BP(
131
131
  n=track_length,
132
- dt=self.oversample_motion_time / 1000.0,
132
+ dt=1,
133
133
  hurst_parameters=[hurst_exponent],
134
134
  diffusion_parameters=[diffusion_coefficient],
135
135
  diffusion_parameter_transition_matrix=[1],
@@ -216,11 +216,11 @@ class Track_generator:
216
216
  for i in range(3):
217
217
  rel_space_lim[i] = self.space_lim[i] - initials[i]
218
218
  # convert the diffusion_coefficients
219
- # diffusion_parameters = self._convert_diffcoef_um2s_um2xms(diffusion_parameters)
219
+ diffusion_parameters = self._convert_diffcoef_um2s_um2xms(diffusion_parameters)
220
220
  # initialize the fbm class
221
221
  fbm = FBM_BP(
222
222
  n=track_length,
223
- dt=self.oversample_motion_time / 1000.0,
223
+ dt=1,
224
224
  hurst_parameters=hurst_parameters,
225
225
  diffusion_parameters=diffusion_parameters,
226
226
  diffusion_parameter_transition_matrix=diffusion_transition_matrix,
@@ -96,10 +96,7 @@ class LaserParameters:
96
96
  Power in watts
97
97
  """
98
98
  if callable(self.power):
99
- power = self.power(t)
100
- if power < 0:
101
- raise ValueError("Laser Power Cannot be Negative")
102
- return power
99
+ return self.power(t)
103
100
  return self.power
104
101
 
105
102
  def get_position(self, t: float) -> Tuple[float, float, float]:
@@ -371,16 +368,15 @@ class WidefieldBeam(LaserProfile):
371
368
  Returns:
372
369
  Intensity scaling factor between 0 and 1
373
370
  """
374
- # # Use error function for smooth transition at DoF boundaries
375
- # # Scale factor determines how sharp the transition is
376
- # scale_factor = 2.0 # Adjust this to change transition sharpness
377
- #
378
- # # Normalize z by DoF and create smooth falloff
379
- # normalized_z = scale_factor * (np.abs(z)) / self.dof
380
- #
381
- # # Use sigmoid function for smooth transition
382
- # return 1 / (1 + np.exp(normalized_z))
383
- return 1.0
371
+ # Use error function for smooth transition at DoF boundaries
372
+ # Scale factor determines how sharp the transition is
373
+ scale_factor = 2.0 # Adjust this to change transition sharpness
374
+
375
+ # Normalize z by DoF and create smooth falloff
376
+ normalized_z = scale_factor * (np.abs(z) - self.dof / 2) / self.dof
377
+
378
+ # Use sigmoid function for smooth transition
379
+ return 1 / (1 + np.exp(normalized_z))
384
380
 
385
381
  def calculate_intensity(
386
382
  self,
@@ -417,7 +413,7 @@ class WidefieldBeam(LaserProfile):
417
413
  base_intensity = power / (np.pi * self.max_radius**2)
418
414
 
419
415
  # Apply radial intensity profile with smooth falloff at edges
420
- edge_width = self.max_radius * 0.00001
416
+ edge_width = self.max_radius * 0.1 # 10% of max radius
421
417
  radial_profile = 0.5 * (1 - np.tanh((r - self.max_radius) / edge_width))
422
418
  # Apply DoF-based axial intensity profile
423
419
  axial_profile = self._calculate_dof_profile(z_shifted)
@@ -426,6 +422,32 @@ class WidefieldBeam(LaserProfile):
426
422
  return base_intensity * radial_profile * axial_profile
427
423
 
428
424
 
425
+ # Example usage
426
+ if __name__ == "__main__":
427
+ # Create parameters for a typical microscope objective
428
+ params = LaserParameters(
429
+ wavelength=488, # 488 nm
430
+ power=0.001, # 1 mW
431
+ beam_width=0.25, # 250 nm
432
+ numerical_aperture=1.4,
433
+ refractive_index=1.518, # Oil immersion
434
+ )
435
+
436
+ # Create beam object
437
+ beam = GaussianBeam(params)
438
+
439
+ # Get intensity map
440
+ result = beam.get_intensity_map(
441
+ volume_size=(5, 5, 10), # 5x5x10 microns
442
+ voxel_size=0.1, # 100 nm voxels
443
+ t=0, # t=0 seconds
444
+ )
445
+
446
+ # print(f"Beam waist: {params.beam_width:.3f} µm")
447
+ # print(f"Rayleigh range: {params.rayleigh_range:.3f} µm")
448
+ # print(f"Diffraction limit: {params.diffraction_limited_width:.3f} µm")
449
+
450
+
429
451
  class HiLoBeam(LaserProfile):
430
452
  """
431
453
  Highly Inclined Laminated Optical (HiLo) illumination profile.
@@ -527,3 +549,143 @@ class HiLoBeam(LaserProfile):
527
549
  lamination_factor = np.exp(-np.abs(z_shifted) / (2 * self.axial_resolution))
528
550
 
529
551
  return intensity * lamination_factor
552
+
553
+
554
+ class ConfocalBeam(LaserProfile):
555
+ """
556
+ Confocal microscopy beam profile with point scanning and pinhole characteristics.
557
+
558
+ Implements key optical principles of confocal microscopy:
559
+ - Point scanning illumination
560
+ - Pinhole-based rejection of out-of-focus light
561
+ - Depth-resolved imaging capabilities
562
+ """
563
+
564
+ def __init__(
565
+ self,
566
+ params: LaserParameters,
567
+ pinhole_diameter: float, # Pinhole diameter in microns
568
+ scanning_mode: str = "point", # 'point' or 'line'
569
+ line_orientation: str = "horizontal", # 'horizontal' or 'vertical'
570
+ ):
571
+ """
572
+ Initialize Confocal beam profile.
573
+
574
+ Args:
575
+ params: LaserParameters for the beam
576
+ pinhole_diameter: Diameter of the detection pinhole in microns
577
+ scanning_mode: Scanning method ('point' or 'line')
578
+ line_orientation: Orientation for line scanning
579
+ """
580
+ super().__init__(params)
581
+
582
+ # Validate numerical aperture
583
+ if params.numerical_aperture is None:
584
+ raise ValueError(
585
+ "Numerical aperture must be specified for confocal microscopy"
586
+ )
587
+
588
+ # Pinhole and optical characteristics
589
+ self.pinhole_diameter = pinhole_diameter
590
+ self.scanning_mode = scanning_mode
591
+ self.line_orientation = line_orientation
592
+
593
+ # Calculate optical parameters
594
+ wavelength_microns = params.wavelength / 1000.0
595
+ na = params.numerical_aperture
596
+
597
+ # Theoretical resolution calculations
598
+ self.lateral_resolution = 0.61 * wavelength_microns / na
599
+ self.axial_resolution = 0.5 * wavelength_microns / (na**2)
600
+
601
+ # Pinhole transmission calculation
602
+ # Airy disk radius calculation
603
+ self.airy_radius = 1.22 * wavelength_microns / (2 * na)
604
+
605
+ # Transmission through pinhole
606
+ def pinhole_transmission(z):
607
+ """
608
+ Calculate pinhole transmission as a function of z-position.
609
+ Uses an error function to model smooth transition.
610
+ """
611
+ # Normalized z-position relative to focal plane
612
+ z_norm = z / self.axial_resolution
613
+
614
+ # Smooth transition function
615
+ return 0.5 * (1 + np.tanh(-z_norm))
616
+
617
+ self.pinhole_transmission = pinhole_transmission
618
+
619
+ # print("Confocal Microscopy Configuration:")
620
+ # print(f" Scanning Mode: {scanning_mode}")
621
+ # print(f" Pinhole Diameter: {pinhole_diameter:.2f} µm")
622
+ # print(f" Lateral Resolution: {self.lateral_resolution:.3f} µm")
623
+ # print(f" Axial Resolution: {self.axial_resolution:.3f} µm")
624
+ # print(f" Airy Disk Radius: {self.airy_radius:.3f} µm")
625
+
626
+ def calculate_intensity(
627
+ self,
628
+ x: np.ndarray | float,
629
+ y: np.ndarray | float,
630
+ z: np.ndarray | float,
631
+ t: float,
632
+ ) -> np.ndarray:
633
+ """
634
+ Calculate the confocal illumination intensity distribution.
635
+
636
+ Args:
637
+ x: X coordinates in microns (3D array)
638
+ y: Y coordinates in microns (3D array)
639
+ z: Z coordinates in microns (3D array)
640
+ t: Time in seconds
641
+
642
+ Returns:
643
+ 3D array of intensities in W/µm²
644
+ """
645
+ # Get time-dependent parameters
646
+ power = self.params.get_power(t)
647
+ pos = self.params.get_position(t)
648
+
649
+ # Shift coordinates based on current beam position
650
+ x_shifted = x - pos[0]
651
+ y_shifted = y - pos[1]
652
+ z_shifted = z - pos[2]
653
+
654
+ # Base beam parameters
655
+ w0 = self.params.beam_width # Beam waist
656
+ zR = self.params.rayleigh_range # Rayleigh range
657
+
658
+ # Calculate beam width at z
659
+ w_z = w0 * np.sqrt(1 + (z_shifted / zR) ** 2)
660
+
661
+ # Peak intensity calculation
662
+ I0 = 2 * power / (np.pi * w0**2)
663
+
664
+ # Scanning mode intensity modification
665
+ if self.scanning_mode == "point":
666
+ # Point scanning: standard Gaussian beam
667
+ radial_intensity = (
668
+ I0
669
+ * (w0 / w_z) ** 2
670
+ * np.exp(-2 * (x_shifted**2 + y_shifted**2) / w_z**2)
671
+ )
672
+ elif self.scanning_mode == "line":
673
+ # Line scanning: different intensity distribution
674
+ if self.line_orientation == "horizontal":
675
+ line_intensity = (
676
+ I0 * (w0 / w_z) ** 2 * np.exp(-2 * y_shifted**2 / w_z**2)
677
+ )
678
+ radial_intensity = line_intensity
679
+ else: # vertical line scanning
680
+ line_intensity = (
681
+ I0 * (w0 / w_z) ** 2 * np.exp(-2 * x_shifted**2 / w_z**2)
682
+ )
683
+ radial_intensity = line_intensity
684
+ else:
685
+ raise ValueError(f"Unknown scanning mode: {self.scanning_mode}")
686
+
687
+ # Pinhole transmission effect
688
+ pinhole_effect = self.pinhole_transmission(z_shifted)
689
+
690
+ # Final intensity calculation
691
+ return radial_intensity * pinhole_effect
@@ -85,19 +85,15 @@ class PSFEngine:
85
85
  self._grid_xy = _generate_grid(self._psf_size, self.params.pixel_size)
86
86
 
87
87
  # Pre-calculate normalized sigma values
88
- self._norm_sigma_xy = self._sigma_xy / 2.0
89
- self._norm_sigma_z = self._sigma_z / 2.0
88
+ self._norm_sigma_xy = self._sigma_xy / 2.355
89
+ self._norm_sigma_z = self._sigma_z / 2.355
90
90
 
91
91
  # Generate pinhole mask if specified
92
92
  if self.params.pinhole_radius is not None:
93
93
  if self.params.pinhole_radius < AIRYFACTOR * self._sigma_xy:
94
- RuntimeWarning(
94
+ raise ValueError(
95
95
  f"Pinhole size ({self.params.pinhole_radius} um) is smaller than {AIRYFACTOR} times the Airy lobe. This will diffract the emission light in the pinhole; an ideal pinhole size for this setup is {self._sigma_xy} um."
96
96
  )
97
- #
98
- # raise ValueError(
99
- # f"Pinhole size ({self.params.pinhole_radius} um) is smaller than {AIRYFACTOR} times the Airy lobe. This will diffract the emission light in the pinhole; an ideal pinhole size for this setup is {self._sigma_xy} um."
100
- # )
101
97
  self._pinhole_mask = self._generate_pinhole_mask()
102
98
  else:
103
99
  self._pinhole_mask = None
@@ -120,9 +116,7 @@ class PSFEngine:
120
116
  return (r <= self.params.pinhole_radius).astype(np.float64)
121
117
 
122
118
  @lru_cache(maxsize=128)
123
- def psf_z(
124
- self, x_val: float, y_val: float, z_val: float, norm_scale: bool = True
125
- ) -> NDArray[np.float64]:
119
+ def psf_z(self, z_val: float) -> NDArray[np.float64]:
126
120
  """Calculate the PSF at the detector for a point source at z_val.
127
121
 
128
122
  This represents how light from a point source at position z_val
@@ -130,28 +124,17 @@ class PSFEngine:
130
124
  detector. If a pinhole is present, it spatially filters this pattern.
131
125
 
132
126
  Args:
133
- x_val: x-position of the point source in micrometers
134
- y_val: y-position of the point source in micrometers
135
127
  z_val: Z-position of the point source in micrometers
136
128
 
137
129
  Returns:
138
130
  2D array containing the light intensity pattern at the detector
139
131
  """
140
132
  x, y = self._grid_xy
141
- sigma_xy_z_squared = (self._norm_sigma_xy**2) * (
142
- 1 + (z_val / self._norm_sigma_z) ** 2
143
- )
144
133
 
145
134
  # Calculate how light from the point source diffracts through collection optics
146
- r_squared = (x - x_val % self.params.pixel_size) ** 2 + (
147
- y - y_val % self.params.pixel_size
148
- ) ** 2
149
- psf_at_detector = np.exp(-0.5 * (r_squared / sigma_xy_z_squared))
150
-
151
- if norm_scale:
152
- psf_at_detector = self.normalize_psf(
153
- psf_at_detector, mode="sum"
154
- ) * self.psf_z_xy0(z_val)
135
+ r_squared = (x / self._norm_sigma_xy) ** 2 + (y / self._norm_sigma_xy) ** 2
136
+ z_term = (z_val / self._norm_sigma_z) ** 2
137
+ psf_at_detector = np.exp(-0.5 * (r_squared + z_term))
155
138
 
156
139
  if self._pinhole_mask is not None:
157
140
  # Apply pinhole's spatial filtering
@@ -269,7 +252,7 @@ def calculate_psf_size(
269
252
  Tuple of dimensions (z,y,x) or (y,x) for the PSF calculation
270
253
  """
271
254
  # Calculate radius to capture important features (2x Airy radius)
272
- r_psf = 3 * sigma_xy
255
+ r_psf = 2 * sigma_xy
273
256
 
274
257
  # Convert to pixels and ensure odd number
275
258
  pixels_xy = int(np.ceil(r_psf / pixel_size))
@@ -168,11 +168,11 @@ class incident_photons:
168
168
  photons_n = self.transmission_photon_rate.values[i] * dt
169
169
  photons += photons_n
170
170
  psf_gen = (
171
- self.generator[i].psf_z(
172
- x_val=self.position[0],
173
- y_val=self.position[1],
174
- z_val=self.position[2],
171
+ self.generator[i].normalize_psf(
172
+ self.generator[i].psf_z(z_val=self.position[2]),
173
+ mode="sum",
175
174
  )
175
+ * self.generator[i].psf_z_xy0(z_val=self.position[2])
176
176
  * photons_n
177
177
  )
178
178
 
@@ -27,7 +27,6 @@ class StateTransitionCalculator:
27
27
  self.current_global_time = current_global_time # ms (oversample motion time)
28
28
  self.laser_intensity_generator = laser_intensity_generator
29
29
  self.fluorescent_state_history = {} # {fluorescent.state.name : [delta time (seconds), laser_intensites], ...}
30
- self.current_global_time_s = self.current_global_time * 1e-3
31
30
 
32
31
  def __call__(
33
32
  self,
@@ -49,9 +48,7 @@ class StateTransitionCalculator:
49
48
  time = 0
50
49
  transitions = self.flurophoreobj.state_history[self.current_global_time][2]
51
50
  final_state_name = transitions[0].from_state
52
- laser_intensities = self._initialize_state_hist(
53
- self.current_global_time, time + self.current_global_time_s
54
- )
51
+ laser_intensities = self._initialize_state_hist(self.current_global_time, time)
55
52
 
56
53
  while time < self.time_duration:
57
54
  stateTransitionMatrixR = [
AMS_BP/sim_microscopy.py CHANGED
@@ -73,9 +73,7 @@ class VirtualMicroscope:
73
73
  def _set_laser_powers(self, laser_power: Dict[str, float]) -> None:
74
74
  if laser_power is not None:
75
75
  for laser in laser_power.keys():
76
- if isinstance(self.lasers[laser].params.power, float) and isinstance(
77
- laser_power[laser], float
78
- ):
76
+ if isinstance(self.lasers[laser].params.power, float):
79
77
  if laser_power[laser] > self.lasers[laser].params.max_power:
80
78
  raise ValueError(
81
79
  "Provided laser power for laser: {} nm, is larger than the maximum power: {}".format(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: AMS_BP
3
- Version: 0.0.31
3
+ Version: 0.0.231
4
4
  Summary: Advanced Microscopy Simulations developed for the Weber Lab by Baljyot Singh Parmar
5
5
  Project-URL: Documentation, https://joemans3.github.io/AMS_BP/
6
6
  Project-URL: Source code, https://github.com/joemans3/AMS_BP
@@ -171,5 +171,3 @@ frames, metadata = function_exp(microscope=microscope, config=config_exp)
171
171
  from AMS_BP.configio.saving import save_config_frames
172
172
  save_config_frames(metadata, frames, setup_config["base_config"].OutputParameters)
173
173
  ```
174
-
175
- > A more detailed example is provided in the jupyter notebook in the examples. For starters refer to the [VisualizingIndividualModules](examples/VisualizingIndividualModules/modules_explained.ipynb). Then head over to the [laser modulation module](examples/VisualizingIndividualModules/laser_modulation.ipynb) which will show how to change the laser power over time in the simulations. Then view an example of a complex experiment setup for [FRAP](examples/QuantitativeExperiments/FRAP_methods.ipynb) which is possible by the use of compositions of modules in this simulation library.
@@ -1,7 +1,7 @@
1
- AMS_BP/__init__.py,sha256=iU9u6S7CcnHsXcUjS8BDRGWvPnqK-wceLqo-pkKOSrk,327
1
+ AMS_BP/__init__.py,sha256=rqdkAwhLvzoA4UNC7EgJOgze5vTlp72Cm62WfiIINCc,328
2
2
  AMS_BP/run_cell_simulation.py,sha256=7InopFikjo0HfaLO2siXskBIbyCIte9avG4YXjjaWCI,7420
3
3
  AMS_BP/sim_config.toml,sha256=3IqOQIJYmP5g4okk15nqQiNZb3ij7Pt63HbpI-5tySw,11672
4
- AMS_BP/sim_microscopy.py,sha256=u60ApTA6MTUmqSAd7EsAxweKya_Typput8NumDq9fp8,18697
4
+ AMS_BP/sim_microscopy.py,sha256=0UZfyT44nrB4JdfnFnRPTVBm3tPbCyOnPXiBBZs8xIc,18617
5
5
  AMS_BP/cells/__init__.py,sha256=yWFScBC1uOGDkeC8i1m1ZBtIREcyt4JHxYa72LxbBZU,177
6
6
  AMS_BP/cells/base_cell.py,sha256=FIPB9J8F40tb53vv7C6qG-SaAFLOI8-MGIk1mmZ-gnI,1503
7
7
  AMS_BP/cells/rectangular_cell.py,sha256=5yGxvTXYvgldLXyWXpE_SD9Zx2NLerC-I2j02reHsJ0,2515
@@ -16,10 +16,10 @@ AMS_BP/metadata/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
16
  AMS_BP/metadata/metadata.py,sha256=YDumjc5sI3lY_UZx8f0ZhMqbG2qKQkysXwl7CY4ZtnY,2927
17
17
  AMS_BP/motion/__init__.py,sha256=cy3W-wCRjjlN1DrTqYc-JltYwcE8SZCXMVPJ2o6q_BQ,178
18
18
  AMS_BP/motion/condensate_movement.py,sha256=eig4WtD7o1cvIafWMjOk6pqxyhe_IIucgLcBEoDvasU,11648
19
- AMS_BP/motion/track_gen.py,sha256=2ssg8BXxZUEufycqgziL2BOeKOInTmmjzsthfS80gfI,19540
19
+ AMS_BP/motion/track_gen.py,sha256=Z3QJLVMP1gX4SlgOXFxBg8sJhBG0Xq25ixnBoEHEAZI,19462
20
20
  AMS_BP/motion/movement/__init__.py,sha256=PqovpG4dAuFFIP9M2_kt-6egQJX3P5ig4MMWVzNaswg,278
21
21
  AMS_BP/motion/movement/boundary_conditions.py,sha256=jpfK3AEUY8btrTsu19bpUfx-jri7_HfyxqMFjMoxAVM,2200
22
- AMS_BP/motion/movement/fbm_BP.py,sha256=47d2ph4r8Izso_mBxxgQYH9xjEqj_zXUzIGpEXPEhFM,9292
22
+ AMS_BP/motion/movement/fbm_BP.py,sha256=dH-JZiAInnIaZXH1wAAo8dOIX9zafclqnZ4dOhKtnO0,9327
23
23
  AMS_BP/optics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
24
  AMS_BP/optics/camera/__init__.py,sha256=eCoDUFHcoCWgbgYdLn8EH7AULM53A3XWTXNZnV8QxeY,182
25
25
  AMS_BP/optics/camera/detectors.py,sha256=_815Ovo7Aj375OZh5Xim8pFuZEEcSVtSdnLRYFqb3_8,10355
@@ -29,12 +29,12 @@ AMS_BP/optics/filters/filters.py,sha256=-iw7eqmDO77SEqlFTv5jJNVwpA8y93TLsjy5hhsA
29
29
  AMS_BP/optics/filters/channels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
30
30
  AMS_BP/optics/filters/channels/channelschema.py,sha256=SConyA5yVdfnI_8sgcxVC8SV7S8tGUJYPPC6jn7lglU,906
31
31
  AMS_BP/optics/lasers/__init__.py,sha256=T7dHohhyLf_pBw4TidarYHWmiwxVXGE71-Bf1aeBbuc,564
32
- AMS_BP/optics/lasers/laser_profiles.py,sha256=7mqf5VMpb0VN_veqYEdeiakr0kaOilfGzNq5mzFQuRw,17136
32
+ AMS_BP/optics/lasers/laser_profiles.py,sha256=J9czY646XcW8GzXx9Eb16mG7tQdWw4oVYveOrihZCeY,22745
33
33
  AMS_BP/optics/psf/__init__.py,sha256=ezrKPgpTeR4gTHOvF0mhF6u2zMMTd8Bgp8PGeOf11fA,121
34
- AMS_BP/optics/psf/psf_engine.py,sha256=FbR4VHQ-VgCWrrDj8AHPPnVgwVUGs-OP19w_TjcbMcU,10215
34
+ AMS_BP/optics/psf/psf_engine.py,sha256=Do54D1jMbSrj5uljdTrrEttCvxq3qbVT74acRuOk15c,9434
35
35
  AMS_BP/photophysics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
- AMS_BP/photophysics/photon_physics.py,sha256=9FWBXaxuSRaSxW8bY0x1d5R5buooibZbRdYTuQcMXhQ,6624
37
- AMS_BP/photophysics/state_kinetics.py,sha256=IdZtlHCLs--iSjLwDu2IQA617qXC4la8VpqosrM-vgQ,5401
36
+ AMS_BP/photophysics/photon_physics.py,sha256=QRG_QIZ4csJ3g5qGP9Wtk7kzqm8_MUbVHfFef6cMtHQ,6671
37
+ AMS_BP/photophysics/state_kinetics.py,sha256=0cc7Vc4LtAbEdGDeg22IJmRGLsONOty4c32hXHO-TSU,5281
38
38
  AMS_BP/probabilityfuncs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
39
39
  AMS_BP/probabilityfuncs/markov_chain.py,sha256=LV6KGr8Lv4NIvBPJqsR0CEynssa_mPH30qLaK85GObA,4339
40
40
  AMS_BP/probabilityfuncs/probability_functions.py,sha256=j_rIxrupGBf_FKkQBh1TvEa34A44jAasaZQRg2u3FuY,11793
@@ -48,8 +48,8 @@ AMS_BP/utils/decorators.py,sha256=4qFdvzPJne0dhkhD1znPxRln1Rfr5NX8rdcCDcbATRU,62
48
48
  AMS_BP/utils/errors.py,sha256=7BOd-L4_YeKmWn3Q4EOdTnNF3Bj_exDa3eg5X0yCZrc,759
49
49
  AMS_BP/utils/maskMaker.py,sha256=2ca3n2nc8rFtUh1LurKXOJJsUmhrOpWbRnVX7fjRVvs,335
50
50
  AMS_BP/utils/util_functions.py,sha256=jI6WBh09_khdABnEoVK7SK1WRvCLHuw40f5ALyflzlc,9478
51
- ams_bp-0.0.31.dist-info/METADATA,sha256=_BrdW-rInQ_BfbnMgpegzioE8C7ksXy3Z0guJdZxWxA,5869
52
- ams_bp-0.0.31.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
53
- ams_bp-0.0.31.dist-info/entry_points.txt,sha256=MFUK9bZWW61djfsavqopMqiVPVn4lJtt6v8qzyEFyNM,76
54
- ams_bp-0.0.31.dist-info/licenses/LICENSE,sha256=k_-JV1DQKvO0FR8WjvOisqdTl0kp6VJ7RFM3YZhao0c,1071
55
- ams_bp-0.0.31.dist-info/RECORD,,
51
+ ams_bp-0.0.231.dist-info/METADATA,sha256=Rs9gQc6T1-ZcguRTLWfsl42ZsTmJCtVgXRn-pcL7noY,5284
52
+ ams_bp-0.0.231.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
53
+ ams_bp-0.0.231.dist-info/entry_points.txt,sha256=MFUK9bZWW61djfsavqopMqiVPVn4lJtt6v8qzyEFyNM,76
54
+ ams_bp-0.0.231.dist-info/licenses/LICENSE,sha256=k_-JV1DQKvO0FR8WjvOisqdTl0kp6VJ7RFM3YZhao0c,1071
55
+ ams_bp-0.0.231.dist-info/RECORD,,