AMS-BP 0.0.24__py3-none-any.whl → 0.0.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
AMS_BP/__init__.py CHANGED
@@ -10,4 +10,4 @@ Last updated: 2024-12-16
10
10
 
11
11
  """
12
12
 
13
- __version__ = "0.0.24"
13
+ __version__ = "0.0.26"
@@ -371,15 +371,16 @@ class WidefieldBeam(LaserProfile):
371
371
  Returns:
372
372
  Intensity scaling factor between 0 and 1
373
373
  """
374
- # Use error function for smooth transition at DoF boundaries
375
- # Scale factor determines how sharp the transition is
376
- scale_factor = 2.0 # Adjust this to change transition sharpness
377
-
378
- # Normalize z by DoF and create smooth falloff
379
- normalized_z = scale_factor * (np.abs(z) - self.dof / 2) / self.dof
380
-
381
- # Use sigmoid function for smooth transition
382
- return 1 / (1 + np.exp(normalized_z))
374
+ # # Use error function for smooth transition at DoF boundaries
375
+ # # Scale factor determines how sharp the transition is
376
+ # scale_factor = 2.0 # Adjust this to change transition sharpness
377
+ #
378
+ # # Normalize z by DoF and create smooth falloff
379
+ # normalized_z = scale_factor * (np.abs(z)) / self.dof
380
+ #
381
+ # # Use sigmoid function for smooth transition
382
+ # return 1 / (1 + np.exp(normalized_z))
383
+ return 1.0
383
384
 
384
385
  def calculate_intensity(
385
386
  self,
@@ -416,7 +417,7 @@ class WidefieldBeam(LaserProfile):
416
417
  base_intensity = power / (np.pi * self.max_radius**2)
417
418
 
418
419
  # Apply radial intensity profile with smooth falloff at edges
419
- edge_width = self.max_radius * 0.1 # 10% of max radius
420
+ edge_width = self.max_radius * 0.00001
420
421
  radial_profile = 0.5 * (1 - np.tanh((r - self.max_radius) / edge_width))
421
422
  # Apply DoF-based axial intensity profile
422
423
  axial_profile = self._calculate_dof_profile(z_shifted)
@@ -425,32 +426,6 @@ class WidefieldBeam(LaserProfile):
425
426
  return base_intensity * radial_profile * axial_profile
426
427
 
427
428
 
428
- # Example usage
429
- if __name__ == "__main__":
430
- # Create parameters for a typical microscope objective
431
- params = LaserParameters(
432
- wavelength=488, # 488 nm
433
- power=0.001, # 1 mW
434
- beam_width=0.25, # 250 nm
435
- numerical_aperture=1.4,
436
- refractive_index=1.518, # Oil immersion
437
- )
438
-
439
- # Create beam object
440
- beam = GaussianBeam(params)
441
-
442
- # Get intensity map
443
- result = beam.get_intensity_map(
444
- volume_size=(5, 5, 10), # 5x5x10 microns
445
- voxel_size=0.1, # 100 nm voxels
446
- t=0, # t=0 seconds
447
- )
448
-
449
- # print(f"Beam waist: {params.beam_width:.3f} µm")
450
- # print(f"Rayleigh range: {params.rayleigh_range:.3f} µm")
451
- # print(f"Diffraction limit: {params.diffraction_limited_width:.3f} µm")
452
-
453
-
454
429
  class HiLoBeam(LaserProfile):
455
430
  """
456
431
  Highly Inclined Laminated Optical (HiLo) illumination profile.
@@ -552,143 +527,3 @@ class HiLoBeam(LaserProfile):
552
527
  lamination_factor = np.exp(-np.abs(z_shifted) / (2 * self.axial_resolution))
553
528
 
554
529
  return intensity * lamination_factor
555
-
556
-
557
- class ConfocalBeam(LaserProfile):
558
- """
559
- Confocal microscopy beam profile with point scanning and pinhole characteristics.
560
-
561
- Implements key optical principles of confocal microscopy:
562
- - Point scanning illumination
563
- - Pinhole-based rejection of out-of-focus light
564
- - Depth-resolved imaging capabilities
565
- """
566
-
567
- def __init__(
568
- self,
569
- params: LaserParameters,
570
- pinhole_diameter: float, # Pinhole diameter in microns
571
- scanning_mode: str = "point", # 'point' or 'line'
572
- line_orientation: str = "horizontal", # 'horizontal' or 'vertical'
573
- ):
574
- """
575
- Initialize Confocal beam profile.
576
-
577
- Args:
578
- params: LaserParameters for the beam
579
- pinhole_diameter: Diameter of the detection pinhole in microns
580
- scanning_mode: Scanning method ('point' or 'line')
581
- line_orientation: Orientation for line scanning
582
- """
583
- super().__init__(params)
584
-
585
- # Validate numerical aperture
586
- if params.numerical_aperture is None:
587
- raise ValueError(
588
- "Numerical aperture must be specified for confocal microscopy"
589
- )
590
-
591
- # Pinhole and optical characteristics
592
- self.pinhole_diameter = pinhole_diameter
593
- self.scanning_mode = scanning_mode
594
- self.line_orientation = line_orientation
595
-
596
- # Calculate optical parameters
597
- wavelength_microns = params.wavelength / 1000.0
598
- na = params.numerical_aperture
599
-
600
- # Theoretical resolution calculations
601
- self.lateral_resolution = 0.61 * wavelength_microns / na
602
- self.axial_resolution = 0.5 * wavelength_microns / (na**2)
603
-
604
- # Pinhole transmission calculation
605
- # Airy disk radius calculation
606
- self.airy_radius = 1.22 * wavelength_microns / (2 * na)
607
-
608
- # Transmission through pinhole
609
- def pinhole_transmission(z):
610
- """
611
- Calculate pinhole transmission as a function of z-position.
612
- Uses an error function to model smooth transition.
613
- """
614
- # Normalized z-position relative to focal plane
615
- z_norm = z / self.axial_resolution
616
-
617
- # Smooth transition function
618
- return 0.5 * (1 + np.tanh(-z_norm))
619
-
620
- self.pinhole_transmission = pinhole_transmission
621
-
622
- # print("Confocal Microscopy Configuration:")
623
- # print(f" Scanning Mode: {scanning_mode}")
624
- # print(f" Pinhole Diameter: {pinhole_diameter:.2f} µm")
625
- # print(f" Lateral Resolution: {self.lateral_resolution:.3f} µm")
626
- # print(f" Axial Resolution: {self.axial_resolution:.3f} µm")
627
- # print(f" Airy Disk Radius: {self.airy_radius:.3f} µm")
628
-
629
- def calculate_intensity(
630
- self,
631
- x: np.ndarray | float,
632
- y: np.ndarray | float,
633
- z: np.ndarray | float,
634
- t: float,
635
- ) -> np.ndarray:
636
- """
637
- Calculate the confocal illumination intensity distribution.
638
-
639
- Args:
640
- x: X coordinates in microns (3D array)
641
- y: Y coordinates in microns (3D array)
642
- z: Z coordinates in microns (3D array)
643
- t: Time in seconds
644
-
645
- Returns:
646
- 3D array of intensities in W/µm²
647
- """
648
- # Get time-dependent parameters
649
- power = self.params.get_power(t)
650
- pos = self.params.get_position(t)
651
-
652
- # Shift coordinates based on current beam position
653
- x_shifted = x - pos[0]
654
- y_shifted = y - pos[1]
655
- z_shifted = z - pos[2]
656
-
657
- # Base beam parameters
658
- w0 = self.params.beam_width # Beam waist
659
- zR = self.params.rayleigh_range # Rayleigh range
660
-
661
- # Calculate beam width at z
662
- w_z = w0 * np.sqrt(1 + (z_shifted / zR) ** 2)
663
-
664
- # Peak intensity calculation
665
- I0 = 2 * power / (np.pi * w0**2)
666
-
667
- # Scanning mode intensity modification
668
- if self.scanning_mode == "point":
669
- # Point scanning: standard Gaussian beam
670
- radial_intensity = (
671
- I0
672
- * (w0 / w_z) ** 2
673
- * np.exp(-2 * (x_shifted**2 + y_shifted**2) / w_z**2)
674
- )
675
- elif self.scanning_mode == "line":
676
- # Line scanning: different intensity distribution
677
- if self.line_orientation == "horizontal":
678
- line_intensity = (
679
- I0 * (w0 / w_z) ** 2 * np.exp(-2 * y_shifted**2 / w_z**2)
680
- )
681
- radial_intensity = line_intensity
682
- else: # vertical line scanning
683
- line_intensity = (
684
- I0 * (w0 / w_z) ** 2 * np.exp(-2 * x_shifted**2 / w_z**2)
685
- )
686
- radial_intensity = line_intensity
687
- else:
688
- raise ValueError(f"Unknown scanning mode: {self.scanning_mode}")
689
-
690
- # Pinhole transmission effect
691
- pinhole_effect = self.pinhole_transmission(z_shifted)
692
-
693
- # Final intensity calculation
694
- return radial_intensity * pinhole_effect
@@ -116,7 +116,7 @@ class PSFEngine:
116
116
  return (r <= self.params.pinhole_radius).astype(np.float64)
117
117
 
118
118
  @lru_cache(maxsize=128)
119
- def psf_z(self, z_val: float) -> NDArray[np.float64]:
119
+ def psf_z(self, x_val: float, y_val: float, z_val: float) -> NDArray[np.float64]:
120
120
  """Calculate the PSF at the detector for a point source at z_val.
121
121
 
122
122
  This represents how light from a point source at position z_val
@@ -124,6 +124,8 @@ class PSFEngine:
124
124
  detector. If a pinhole is present, it spatially filters this pattern.
125
125
 
126
126
  Args:
127
+ x_val: x-position of the point source in micrometers
128
+ y_val: y-position of the point source in micrometers
127
129
  z_val: Z-position of the point source in micrometers
128
130
 
129
131
  Returns:
@@ -132,7 +134,9 @@ class PSFEngine:
132
134
  x, y = self._grid_xy
133
135
 
134
136
  # Calculate how light from the point source diffracts through collection optics
135
- r_squared = (x / self._norm_sigma_xy) ** 2 + (y / self._norm_sigma_xy) ** 2
137
+ r_squared = (
138
+ (x - x_val % self.params.pixel_size) / self._norm_sigma_xy
139
+ ) ** 2 + ((y - y_val % self.params.pixel_size) / self._norm_sigma_xy) ** 2
136
140
  z_term = (z_val / self._norm_sigma_z) ** 2
137
141
  psf_at_detector = np.exp(-0.5 * (r_squared + z_term))
138
142
 
@@ -252,7 +256,7 @@ def calculate_psf_size(
252
256
  Tuple of dimensions (z,y,x) or (y,x) for the PSF calculation
253
257
  """
254
258
  # Calculate radius to capture important features (2x Airy radius)
255
- r_psf = 2 * sigma_xy
259
+ r_psf = 3 * sigma_xy
256
260
 
257
261
  # Convert to pixels and ensure odd number
258
262
  pixels_xy = int(np.ceil(r_psf / pixel_size))
@@ -168,11 +168,11 @@ class incident_photons:
168
168
  photons_n = self.transmission_photon_rate.values[i] * dt
169
169
  photons += photons_n
170
170
  psf_gen = (
171
- self.generator[i].normalize_psf(
172
- self.generator[i].psf_z(z_val=self.position[2]),
173
- mode="sum",
171
+ self.generator[i].psf_z(
172
+ x_val=self.position[0],
173
+ y_val=self.position[1],
174
+ z_val=self.position[2],
174
175
  )
175
- * self.generator[i].psf_z_xy0(z_val=self.position[2])
176
176
  * photons_n
177
177
  )
178
178
 
AMS_BP/sim_microscopy.py CHANGED
@@ -73,7 +73,9 @@ class VirtualMicroscope:
73
73
  def _set_laser_powers(self, laser_power: Dict[str, float]) -> None:
74
74
  if laser_power is not None:
75
75
  for laser in laser_power.keys():
76
- if isinstance(self.lasers[laser].params.power, float):
76
+ if isinstance(self.lasers[laser].params.power, float) and isinstance(
77
+ laser_power[laser], float
78
+ ):
77
79
  if laser_power[laser] > self.lasers[laser].params.max_power:
78
80
  raise ValueError(
79
81
  "Provided laser power for laser: {} nm, is larger than the maximum power: {}".format(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: AMS_BP
3
- Version: 0.0.24
3
+ Version: 0.0.26
4
4
  Summary: Advanced Microscopy Simulations developed for the Weber Lab by Baljyot Singh Parmar
5
5
  Project-URL: Documentation, https://joemans3.github.io/AMS_BP/
6
6
  Project-URL: Source code, https://github.com/joemans3/AMS_BP
@@ -172,4 +172,4 @@ from AMS_BP.configio.saving import save_config_frames
172
172
  save_config_frames(metadata, frames, setup_config["base_config"].OutputParameters)
173
173
  ```
174
174
 
175
- > A more detailed example is provided in the jupyter notebook in the examples. For starters refer to the [VisualizingIndividualModules](examples/VisualizingIndividualModules/modules_explained.ipynb)
175
+ > A more detailed example is provided in the jupyter notebook in the examples. For starters refer to the [VisualizingIndividualModules](examples/VisualizingIndividualModules/modules_explained.ipynb). Then head over to the [laser modulation module](examples/VisualizingIndividualModules/laser_modulation.ipynb) which will show how to change the laser power over time in the simulations. Then view an example of a complex experiment setup for [FRAP](examples/QuantitativeExperiments/FRAP_methods.ipynb) which is possible by the use of compositions of modules in this simulation library.
@@ -1,7 +1,7 @@
1
- AMS_BP/__init__.py,sha256=_0wRoFCXiDI2esMHAgmC0k46izWDlMXa_aqJ_MoW48g,327
1
+ AMS_BP/__init__.py,sha256=PRd0eVcZs7H8ezQRMXS-q-AES78dJ-DWPSQZT3j5QP0,327
2
2
  AMS_BP/run_cell_simulation.py,sha256=7InopFikjo0HfaLO2siXskBIbyCIte9avG4YXjjaWCI,7420
3
3
  AMS_BP/sim_config.toml,sha256=3IqOQIJYmP5g4okk15nqQiNZb3ij7Pt63HbpI-5tySw,11672
4
- AMS_BP/sim_microscopy.py,sha256=0UZfyT44nrB4JdfnFnRPTVBm3tPbCyOnPXiBBZs8xIc,18617
4
+ AMS_BP/sim_microscopy.py,sha256=u60ApTA6MTUmqSAd7EsAxweKya_Typput8NumDq9fp8,18697
5
5
  AMS_BP/cells/__init__.py,sha256=yWFScBC1uOGDkeC8i1m1ZBtIREcyt4JHxYa72LxbBZU,177
6
6
  AMS_BP/cells/base_cell.py,sha256=FIPB9J8F40tb53vv7C6qG-SaAFLOI8-MGIk1mmZ-gnI,1503
7
7
  AMS_BP/cells/rectangular_cell.py,sha256=5yGxvTXYvgldLXyWXpE_SD9Zx2NLerC-I2j02reHsJ0,2515
@@ -29,11 +29,11 @@ AMS_BP/optics/filters/filters.py,sha256=-iw7eqmDO77SEqlFTv5jJNVwpA8y93TLsjy5hhsA
29
29
  AMS_BP/optics/filters/channels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
30
30
  AMS_BP/optics/filters/channels/channelschema.py,sha256=SConyA5yVdfnI_8sgcxVC8SV7S8tGUJYPPC6jn7lglU,906
31
31
  AMS_BP/optics/lasers/__init__.py,sha256=T7dHohhyLf_pBw4TidarYHWmiwxVXGE71-Bf1aeBbuc,564
32
- AMS_BP/optics/lasers/laser_profiles.py,sha256=dLnobLB-zZIG9EyMkU4E2P9CDl3n3OLzgR8Tx5EAd2c,22864
32
+ AMS_BP/optics/lasers/laser_profiles.py,sha256=7mqf5VMpb0VN_veqYEdeiakr0kaOilfGzNq5mzFQuRw,17136
33
33
  AMS_BP/optics/psf/__init__.py,sha256=ezrKPgpTeR4gTHOvF0mhF6u2zMMTd8Bgp8PGeOf11fA,121
34
- AMS_BP/optics/psf/psf_engine.py,sha256=Do54D1jMbSrj5uljdTrrEttCvxq3qbVT74acRuOk15c,9434
34
+ AMS_BP/optics/psf/psf_engine.py,sha256=CDtnZpUvYexIih6ssBZsd5s1RUSa5fjUxgzEVELo6CE,9684
35
35
  AMS_BP/photophysics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
- AMS_BP/photophysics/photon_physics.py,sha256=QRG_QIZ4csJ3g5qGP9Wtk7kzqm8_MUbVHfFef6cMtHQ,6671
36
+ AMS_BP/photophysics/photon_physics.py,sha256=9FWBXaxuSRaSxW8bY0x1d5R5buooibZbRdYTuQcMXhQ,6624
37
37
  AMS_BP/photophysics/state_kinetics.py,sha256=IdZtlHCLs--iSjLwDu2IQA617qXC4la8VpqosrM-vgQ,5401
38
38
  AMS_BP/probabilityfuncs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
39
39
  AMS_BP/probabilityfuncs/markov_chain.py,sha256=LV6KGr8Lv4NIvBPJqsR0CEynssa_mPH30qLaK85GObA,4339
@@ -48,8 +48,8 @@ AMS_BP/utils/decorators.py,sha256=4qFdvzPJne0dhkhD1znPxRln1Rfr5NX8rdcCDcbATRU,62
48
48
  AMS_BP/utils/errors.py,sha256=7BOd-L4_YeKmWn3Q4EOdTnNF3Bj_exDa3eg5X0yCZrc,759
49
49
  AMS_BP/utils/maskMaker.py,sha256=2ca3n2nc8rFtUh1LurKXOJJsUmhrOpWbRnVX7fjRVvs,335
50
50
  AMS_BP/utils/util_functions.py,sha256=jI6WBh09_khdABnEoVK7SK1WRvCLHuw40f5ALyflzlc,9478
51
- ams_bp-0.0.24.dist-info/METADATA,sha256=s8z9bcI32yK1EZINiomMaexx3UFZ1gGJZLDc7412oqk,5483
52
- ams_bp-0.0.24.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
53
- ams_bp-0.0.24.dist-info/entry_points.txt,sha256=MFUK9bZWW61djfsavqopMqiVPVn4lJtt6v8qzyEFyNM,76
54
- ams_bp-0.0.24.dist-info/licenses/LICENSE,sha256=k_-JV1DQKvO0FR8WjvOisqdTl0kp6VJ7RFM3YZhao0c,1071
55
- ams_bp-0.0.24.dist-info/RECORD,,
51
+ ams_bp-0.0.26.dist-info/METADATA,sha256=aaB17p23_wqvfOqQQfb90g7zFD1MrgpdXwoCsbYx37s,5869
52
+ ams_bp-0.0.26.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
53
+ ams_bp-0.0.26.dist-info/entry_points.txt,sha256=MFUK9bZWW61djfsavqopMqiVPVn4lJtt6v8qzyEFyNM,76
54
+ ams_bp-0.0.26.dist-info/licenses/LICENSE,sha256=k_-JV1DQKvO0FR8WjvOisqdTl0kp6VJ7RFM3YZhao0c,1071
55
+ ams_bp-0.0.26.dist-info/RECORD,,