ydb-qdrant 2.2.1 → 2.2.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +47 -0
- package/package.json +3 -2
package/README.md
CHANGED
|
@@ -167,6 +167,53 @@ export async function searchDocuments(collection: string, queryEmbedding: number
|
|
|
167
167
|
|
|
168
168
|
This pattern avoids running a separate HTTP service: vector search is executed directly against YDB via the shared `createYdbQdrantClient` instance, while the rest of your code works with plain TypeScript functions.
|
|
169
169
|
|
|
170
|
+
## Recommended Vector Dimensions
|
|
171
|
+
|
|
172
|
+
When creating a collection, you must specify the vector `size` matching your embedding model. Below are popular models with their dimensions and typical use cases:
|
|
173
|
+
|
|
174
|
+
### Commercial API Models
|
|
175
|
+
|
|
176
|
+
| Provider | Model | Dimensions | Use Cases |
|
|
177
|
+
|----------|-------|------------|-----------|
|
|
178
|
+
| **OpenAI** | `text-embedding-3-small` | 1536 (default, can reduce to 256-1536) | RAG, semantic search, general-purpose embeddings |
|
|
179
|
+
| **OpenAI** | `text-embedding-3-large` | 3072 (default, can reduce to 256, 512, 1024, 1536, 3072) | High-accuracy RAG, multilingual tasks |
|
|
180
|
+
| **OpenAI** | `text-embedding-ada-002` | 1536 | Legacy model, widely adopted |
|
|
181
|
+
| **OpenAI** (Legacy) | `text-search-curie-doc-001` | 4096 | Legacy GPT-3 model, deprecated |
|
|
182
|
+
| **OpenAI** (Legacy) | `text-search-davinci-doc-001` | 12288 | Legacy GPT-3 model, deprecated |
|
|
183
|
+
| **Cohere** | `embed-v4.0` | 256, 512, 1024, 1536 (default) | Multimodal (text + image), RAG, enterprise search |
|
|
184
|
+
| **Cohere** | `embed-english-v3.0` | 1024 | English text, semantic search, classification |
|
|
185
|
+
| **Cohere** | `embed-multilingual-v3.0` | 1024 | 100+ languages, long-document retrieval, clustering |
|
|
186
|
+
| **Google** | `gemini-embedding-001` | 3072 (configurable) | Multilingual, general-purpose, RAG |
|
|
187
|
+
| **Google** | `text-embedding-004` | 768 | General-purpose text embeddings |
|
|
188
|
+
| **Google** | `text-embedding-005` | 768 | Improved version of text-embedding-004 |
|
|
189
|
+
| **Google** | `text-multilingual-embedding-002` | 768 | Multilingual text embeddings |
|
|
190
|
+
|
|
191
|
+
### Open-Source Models (HuggingFace)
|
|
192
|
+
|
|
193
|
+
| Model | Dimensions | Use Cases |
|
|
194
|
+
|-------|------------|-----------|
|
|
195
|
+
| `sentence-transformers/all-MiniLM-L6-v2` | 384 | Fast semantic search, low-resource environments |
|
|
196
|
+
| `BAAI/bge-base-en-v1.5` | 768 | RAG, retrieval, English text |
|
|
197
|
+
| `BAAI/bge-large-en-v1.5` | 1024 | High-accuracy RAG, English text |
|
|
198
|
+
| `BAAI/bge-m3` | 1024 | Multilingual, dense/sparse/multi-vector |
|
|
199
|
+
| `intfloat/e5-base-v2` | 768 | General retrieval, English text |
|
|
200
|
+
| `intfloat/e5-large-v2` | 1024 | High-accuracy retrieval, English text |
|
|
201
|
+
| `intfloat/e5-mistral-7b-instruct` | 4096 | High-dimensional embeddings, advanced RAG |
|
|
202
|
+
| `nomic-ai/nomic-embed-text-v1` | 768 | General-purpose, open weights |
|
|
203
|
+
|
|
204
|
+
### Choosing Dimensions
|
|
205
|
+
|
|
206
|
+
- **Higher dimensions (1024-4096)**: Better semantic fidelity, higher storage/compute costs
|
|
207
|
+
- **Lower dimensions (384-768)**: Faster queries, lower costs, suitable for many use cases
|
|
208
|
+
- **Variable dimensions**: Some models (OpenAI v3, Cohere v4) allow dimension reduction with minimal accuracy loss
|
|
209
|
+
- **Legacy models**: Older OpenAI GPT-3 models (Curie: 4096, Davinci: 12288) are deprecated but may still be in use
|
|
210
|
+
|
|
211
|
+
**References:**
|
|
212
|
+
- [OpenAI Embeddings Guide](https://platform.openai.com/docs/guides/embeddings)
|
|
213
|
+
- [Cohere Embed Models](https://docs.cohere.com/docs/cohere-embed)
|
|
214
|
+
- [Google Gemini Embeddings](https://ai.google.dev/gemini-api/docs/embeddings)
|
|
215
|
+
- [HuggingFace Sentence Transformers](https://huggingface.co/sentence-transformers)
|
|
216
|
+
|
|
170
217
|
## Quick Start
|
|
171
218
|
|
|
172
219
|
### Use with IDE agents (Roo Code, Cline)
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "ydb-qdrant",
|
|
3
|
-
"version": "2.2.
|
|
3
|
+
"version": "2.2.2",
|
|
4
4
|
"main": "dist/package/Api.js",
|
|
5
5
|
"types": "dist/package/Api.d.ts",
|
|
6
6
|
"exports": {
|
|
@@ -54,6 +54,7 @@
|
|
|
54
54
|
"dependencies": {
|
|
55
55
|
"@bufbuild/protobuf": "^2.10.0",
|
|
56
56
|
"@grpc/grpc-js": "^1.14.0",
|
|
57
|
+
"@yandex-cloud/nodejs-sdk": "^2.9.0",
|
|
57
58
|
"@ydbjs/api": "^6.0.4",
|
|
58
59
|
"@ydbjs/core": "^6.0.4",
|
|
59
60
|
"@ydbjs/query": "^6.0.4",
|
|
@@ -79,4 +80,4 @@
|
|
|
79
80
|
"typescript-eslint": "^8.47.0",
|
|
80
81
|
"vitest": "^4.0.12"
|
|
81
82
|
}
|
|
82
|
-
}
|
|
83
|
+
}
|